// truncateTableInChunks truncates the data of a table in chunks. It deletes a // range of data for the table, which includes the PK and all indexes. func truncateTableInChunks( ctx context.Context, tableDesc *sqlbase.TableDescriptor, db *client.DB, ) error { const chunkSize = TableTruncateChunkSize var resume roachpb.Span for row, done := 0, false; !done; row += chunkSize { resumeAt := resume if log.V(2) { log.Infof(ctx, "table %s truncate at row: %d, span: %s", tableDesc.Name, row, resume) } if err := db.Txn(ctx, func(txn *client.Txn) error { rd, err := makeRowDeleter(txn, tableDesc, nil, nil, false) if err != nil { return err } td := tableDeleter{rd: rd} if err := td.init(txn); err != nil { return err } resume, err = td.deleteAllRows(txn.Context, resumeAt, chunkSize) return err }); err != nil { return err } done = resume.Key == nil } return nil }
func (hv *historyVerifier) runTxn( txnIdx int, priority int32, isolation enginepb.IsolationType, cmds []*cmd, db *client.DB, t *testing.T, ) error { var retry int txnName := fmt.Sprintf("txn %d", txnIdx+1) cmdIdx := -1 err := db.Txn(context.TODO(), func(txn *client.Txn) error { // If this is 2nd attempt, and a retry wasn't expected, return a // retry error which results in further histories being enumerated. if retry++; retry > 1 { if !cmds[cmdIdx].expRetry { // Propagate retry error to history execution to enumerate all // histories where this txn retries at this command. return &retryError{txnIdx: txnIdx, cmdIdx: cmdIdx} } // We're expecting a retry, so just send nil down the done channel. cmds[cmdIdx].done(nil) } txn.SetDebugName(txnName, 0) if isolation == enginepb.SNAPSHOT { if err := txn.SetIsolation(enginepb.SNAPSHOT); err != nil { return err } } txn.InternalSetPriority(priority) env := map[string]int64{} for cmdIdx+1 < len(cmds) { cmdIdx++ cmds[cmdIdx].env = env _, err := hv.runCmd(txn, txnIdx, retry, cmds[cmdIdx], t) if err != nil { if log.V(1) { log.Infof(context.Background(), "%s: failed running %s: %s", txnName, cmds[cmdIdx], err) } return err } } return nil }) if err != nil { for _, c := range cmds[cmdIdx:] { c.done(err) } } return err }
// startTestWriter creates a writer which initiates a sequence of // transactions, each which writes up to 10 times to random keys with // random values. If not nil, txnChannel is written to non-blockingly // every time a new transaction starts. func startTestWriter( db *client.DB, i int64, valBytes int32, wg *sync.WaitGroup, retries *int32, txnChannel chan struct{}, done <-chan struct{}, t *testing.T, ) { src := rand.New(rand.NewSource(i)) defer func() { if wg != nil { wg.Done() } }() for j := 0; ; j++ { select { case <-done: return default: first := true err := db.Txn(context.TODO(), func(txn *client.Txn) error { if first && txnChannel != nil { select { case txnChannel <- struct{}{}: default: } } else if !first && retries != nil { atomic.AddInt32(retries, 1) } first = false for j := 0; j <= int(src.Int31n(10)); j++ { key := randutil.RandBytes(src, 10) val := randutil.RandBytes(src, int(src.Int31n(valBytes))) if err := txn.Put(key, val); err != nil { log.Infof(context.Background(), "experienced an error in routine %d: %s", i, err) return err } } return nil }) if err != nil { t.Error(err) } else { time.Sleep(1 * time.Millisecond) } } } }
// purgeOldLeases refreshes the leases on a table. Unused leases older than // minVersion will be released. // If deleted is set, minVersion is ignored; no lease is acquired and all // existing unused leases are released. The table is further marked for // deletion, which will cause existing in-use leases to be eagerly released once // they're not in use any more. // If t has no active leases, nothing is done. func (t *tableState) purgeOldLeases( db *client.DB, deleted bool, minVersion sqlbase.DescriptorVersion, store LeaseStore, ) error { t.mu.Lock() empty := len(t.active.data) == 0 t.mu.Unlock() if empty { // We don't currently have a lease on this table, so no need to refresh // anything. return nil } // Acquire and release a lease on the table at a version >= minVersion. var lease *LeaseState err := db.Txn(context.TODO(), func(txn *client.Txn) error { var err error if !deleted { lease, err = t.acquire(txn, minVersion, store) if err == errTableDropped { deleted = true } } if err == nil || deleted { t.mu.Lock() defer t.mu.Unlock() var toRelease []*LeaseState if deleted { t.deleted = true } toRelease = append([]*LeaseState(nil), t.active.data...) t.releaseLeasesIfNotActive(toRelease, store) return nil } return err }) if err != nil { return err } if lease == nil { return nil } return t.release(lease, store) }
func (hv *historyVerifier) runCmds( cmds []*cmd, db *client.DB, t *testing.T, ) (string, map[string]int64, error) { var strs []string env := map[string]int64{} err := db.Txn(context.TODO(), func(txn *client.Txn) error { for _, c := range cmds { c.historyIdx = hv.idx c.env = env c.init(nil) fmtStr, err := c.execute(txn, t) if err != nil { return err } strs = append(strs, fmt.Sprintf(fmtStr, 0, 0)) } return nil }) return strings.Join(strs, " "), env, err }
// restoreTable inserts the given DatabaseDescriptor. If the name conflicts with // an existing table, the one being restored is rekeyed with a new ID and the // old data is deleted. func restoreTable( ctx context.Context, db client.DB, database sqlbase.DatabaseDescriptor, table *sqlbase.TableDescriptor, ranges []sqlbase.BackupRangeDescriptor, ) error { if log.V(1) { log.Infof(ctx, "Restoring Table %q", table.Name) } var newTableID sqlbase.ID if err := db.Txn(ctx, func(txn *client.Txn) error { // Make sure there's a database with a name that matches the original. if _, err := getDescriptorID(txn, tableKey{name: database.Name}); err != nil { return errors.Wrapf(err, "a database named %q needs to exist to restore table %q", database.Name, table.Name) } // Assign a new ID for the table. TODO(dan): For now, we're always // generating a new ID, but varints get longer as they get bigger and so // our keys will, too. We should someday figure out how to overwrite an // existing table and steal its ID. var err error newTableID, err = GenerateUniqueDescID(txn) return err }); err != nil { return err } // Create the iteration keys before we give the table its new ID. tableStartKeyOld := roachpb.Key(sqlbase.MakeIndexKeyPrefix(table, table.PrimaryIndex.ID)) tableEndKeyOld := tableStartKeyOld.PrefixEnd() // This loop makes restoring multiple tables O(N*M), where N is the number // of tables and M is the number of ranges. We could reduce this using an // interval tree if necessary. var wg sync.WaitGroup result := struct { syncutil.Mutex firstErr error numErrs int }{} for _, rangeDesc := range ranges { if len(rangeDesc.Path) == 0 { // Empty path means empty range. continue } intersectBegin, intersectEnd := IntersectHalfOpen( rangeDesc.StartKey, rangeDesc.EndKey, tableStartKeyOld, tableEndKeyOld) if intersectBegin != nil && intersectEnd != nil { // Write the data under the new ID. // TODO(dan): There's no SQL descriptors that point at this yet, so it // should be possible to remove it from the one txn this is all currently // run under. If we do that, make sure this data gets cleaned up on errors. wg.Add(1) go func(desc sqlbase.BackupRangeDescriptor) { for r := retry.StartWithCtx(ctx, base.DefaultRetryOptions()); r.Next(); { err := db.Txn(ctx, func(txn *client.Txn) error { return Ingest(ctx, txn, desc.Path, desc.CRC, intersectBegin, intersectEnd, newTableID) }) if _, ok := err.(*client.AutoCommitError); ok { log.Errorf(ctx, "auto commit error during ingest: %s", err) // TODO(dan): Ingest currently does not rely on the // range being empty, but the plan is that it will. When // that change happens, this will have to delete any // partially ingested data or something. continue } if err != nil { log.Errorf(ctx, "%T %s", err, err) result.Lock() defer result.Unlock() if result.firstErr != nil { result.firstErr = err } result.numErrs++ } break } wg.Done() }(rangeDesc) } } wg.Wait() // All concurrent accesses have finished, we don't need the lock anymore. if result.firstErr != nil { // This leaves the data that did get imported in case the user wants to // retry. // TODO(dan): Build tooling to allow a user to restart a failed restore. return errors.Wrapf(result.firstErr, "ingest encountered %d errors", result.numErrs) } table.ID = newTableID return db.Txn(ctx, func(txn *client.Txn) error { // Pass the descriptors by value to keep this idempotent. return restoreTableDesc(ctx, txn, database, *table) }) }
// concurrentIncrements starts two Goroutines in parallel, both of which // read the integers stored at the other's key and add it onto their own. // It is checked that the outcome is serializable, i.e. exactly one of the // two Goroutines (the later write) sees the previous write by the other. func concurrentIncrements(db *client.DB, t *testing.T) { // wgStart waits for all transactions to line up, wgEnd has the main // function wait for them to finish. var wgStart, wgEnd sync.WaitGroup wgStart.Add(2 + 1) wgEnd.Add(2) for i := 0; i < 2; i++ { go func(i int) { // Read the other key, write key i. readKey := []byte(fmt.Sprintf(testUser+"/value-%d", (i+1)%2)) writeKey := []byte(fmt.Sprintf(testUser+"/value-%d", i)) defer wgEnd.Done() wgStart.Done() // Wait until the other goroutines are running. wgStart.Wait() if err := db.Txn(context.TODO(), func(txn *client.Txn) error { txn.SetDebugName(fmt.Sprintf("test-%d", i), 0) // Retrieve the other key. gr, err := txn.Get(readKey) if err != nil { return err } otherValue := int64(0) if gr.Value != nil { otherValue = gr.ValueInt() } _, err = txn.Inc(writeKey, 1+otherValue) return err }); err != nil { t.Error(err) } }(i) } // Kick the goroutines loose. wgStart.Done() // Wait for the goroutines to finish. wgEnd.Wait() // Verify that both keys contain something and, more importantly, that // one key actually contains the value of the first writer and not only // its own. total := int64(0) results := []int64(nil) for i := 0; i < 2; i++ { readKey := []byte(fmt.Sprintf(testUser+"/value-%d", i)) gr, err := db.Get(context.TODO(), readKey) if err != nil { t.Fatal(err) } if gr.Value == nil { t.Fatalf("unexpected empty key: %s=%v", readKey, gr.Value) } total += gr.ValueInt() results = append(results, gr.ValueInt()) } // First writer should have 1, second one 2 if total != 3 { t.Fatalf("got unserializable values %v", results) } }