Exemple #1
1
func postFreeze(
	c cluster.Cluster, freeze bool, timeout time.Duration,
) (serverpb.ClusterFreezeResponse, error) {
	httpClient := cluster.HTTPClient
	httpClient.Timeout = timeout

	var resp serverpb.ClusterFreezeResponse
	log.Infof(context.Background(), "requesting: freeze=%t, timeout=%s", freeze, timeout)
	cb := func(v proto.Message) {
		oldNum := resp.RangesAffected
		resp = *v.(*serverpb.ClusterFreezeResponse)
		if oldNum > resp.RangesAffected {
			resp.RangesAffected = oldNum
		}
		if (resp != serverpb.ClusterFreezeResponse{}) {
			log.Infof(context.Background(), "%+v", &resp)
		}
	}
	err := httputil.StreamJSON(
		httpClient,
		c.URL(0)+"/_admin/v1/cluster/freeze",
		&serverpb.ClusterFreezeRequest{Freeze: freeze},
		&serverpb.ClusterFreezeResponse{},
		cb,
	)
	return resp, err
}
func testGossipPeeringsInner(
	ctx context.Context, t *testing.T, c cluster.Cluster, cfg cluster.TestConfig,
) {
	num := c.NumNodes()

	deadline := timeutil.Now().Add(cfg.Duration)

	waitTime := longWaitTime
	if cfg.Duration < waitTime {
		waitTime = shortWaitTime
	}

	for timeutil.Now().Before(deadline) {
		CheckGossip(ctx, t, c, waitTime, HasPeers(num))

		// Restart the first node.
		log.Infof(ctx, "restarting node 0")
		if err := c.Restart(ctx, 0); err != nil {
			t.Fatal(err)
		}
		CheckGossip(ctx, t, c, waitTime, HasPeers(num))

		// Restart another node (if there is one).
		var pickedNode int
		if num > 1 {
			pickedNode = rand.Intn(num-1) + 1
		}
		log.Infof(ctx, "restarting node %d", pickedNode)
		if err := c.Restart(ctx, pickedNode); err != nil {
			t.Fatal(err)
		}
		CheckGossip(ctx, t, c, waitTime, HasPeers(num))
	}
}
Exemple #3
0
// deleteRow adds to the batch the kv operations necessary to delete a table row
// with the given values.
func (rd *rowDeleter) deleteRow(ctx context.Context, b *client.Batch, values []parser.Datum) error {
	if err := rd.fks.checkAll(values); err != nil {
		return err
	}

	primaryIndexKey, secondaryIndexEntries, err := rd.helper.encodeIndexes(rd.fetchColIDtoRowIndex, values)
	if err != nil {
		return err
	}

	for _, secondaryIndexEntry := range secondaryIndexEntries {
		if log.V(2) {
			log.Infof(ctx, "Del %s", secondaryIndexEntry.Key)
		}
		b.Del(secondaryIndexEntry.Key)
	}

	// Delete the row.
	rd.startKey = roachpb.Key(primaryIndexKey)
	rd.endKey = roachpb.Key(encoding.EncodeNotNullDescending(primaryIndexKey))
	if log.V(2) {
		log.Infof(ctx, "DelRange %s - %s", rd.startKey, rd.endKey)
	}
	b.DelRange(&rd.startKey, &rd.endKey, false)
	rd.startKey, rd.endKey = nil, nil

	return nil
}
Exemple #4
0
func main() {
	flag.Parse()

	c := localcluster.New(*numNodes)
	defer c.Close()

	log.SetExitFunc(func(code int) {
		c.Close()
		os.Exit(code)
	})

	signalCh := make(chan os.Signal, 1)
	signal.Notify(signalCh, syscall.SIGINT, syscall.SIGTERM, syscall.SIGQUIT)
	a := newAllocSim(c)

	go func() {
		var exitStatus int
		select {
		case s := <-signalCh:
			log.Infof(context.Background(), "signal received: %v", s)
			exitStatus = 1
		case <-time.After(*duration):
			log.Infof(context.Background(), "finished run of: %s", *duration)
		}
		a.finalStatus()
		c.Close()
		os.Exit(exitStatus)
	}()

	c.Start("allocsim", *workers, flag.Args(), []string{})
	c.UpdateZoneConfig(1, 1<<20)
	a.run(*workers)
}
Exemple #5
0
// improve returns a candidate StoreDescriptor to rebalance a replica to. The
// strategy is to always converge on the mean range count. If that isn't
// possible, we don't return any candidate.
func (rcb rangeCountBalancer) improve(sl StoreList, excluded nodeIDSet) *roachpb.StoreDescriptor {
	// Attempt to select a better candidate from the supplied list.
	sl.stores = selectRandom(rcb.rand, allocatorRandomCount, sl, excluded)
	candidate := rcb.selectBest(sl)
	if candidate == nil {
		if log.V(2) {
			log.Infof(context.TODO(), "not rebalancing: no valid candidate targets: %s",
				formatCandidates(nil, sl.stores))
		}
		return nil
	}

	// Adding a replica to the candidate must make its range count converge on the
	// mean range count.
	rebalanceConvergesOnMean := rebalanceToConvergesOnMean(sl, *candidate)
	if !rebalanceConvergesOnMean {
		if log.V(2) {
			log.Infof(context.TODO(), "not rebalancing: %s wouldn't converge on the mean %.1f",
				formatCandidates(candidate, sl.stores), sl.candidateCount.mean)
		}
		return nil
	}

	if log.V(2) {
		log.Infof(context.TODO(), "rebalancing: mean=%.1f %s",
			sl.candidateCount.mean, formatCandidates(candidate, sl.stores))
	}
	return candidate
}
Exemple #6
0
// waitAndProcess waits for the pace interval and processes the replica
// if repl is not nil. The method returns true when the scanner needs
// to be stopped. The method also removes a replica from queues when it
// is signaled via the removed channel.
func (rs *replicaScanner) waitAndProcess(
	ctx context.Context, start time.Time, clock *hlc.Clock, stopper *stop.Stopper, repl *Replica,
) bool {
	waitInterval := rs.paceInterval(start, timeutil.Now())
	rs.waitTimer.Reset(waitInterval)
	if log.V(6) {
		log.Infof(ctx, "wait timer interval set to %s", waitInterval)
	}
	for {
		select {
		case <-rs.waitTimer.C:
			if log.V(6) {
				log.Infof(ctx, "wait timer fired")
			}
			rs.waitTimer.Read = true
			if repl == nil {
				return false
			}

			if log.V(2) {
				log.Infof(ctx, "replica scanner processing %s", repl)
			}
			for _, q := range rs.queues {
				q.MaybeAdd(repl, clock.Now())
			}
			return false

		case repl := <-rs.removed:
			rs.removeReplica(repl)

		case <-stopper.ShouldStop():
			return true
		}
	}
}
Exemple #7
0
// process synchronously invokes admin split for each proposed split key.
func (sq *splitQueue) process(
	ctx context.Context, now hlc.Timestamp, r *Replica, sysCfg config.SystemConfig,
) error {
	// First handle case of splitting due to zone config maps.
	desc := r.Desc()
	splitKeys := sysCfg.ComputeSplitKeys(desc.StartKey, desc.EndKey)
	if len(splitKeys) > 0 {
		log.Infof(ctx, "splitting at keys %v", splitKeys)
		for _, splitKey := range splitKeys {
			if err := sq.db.AdminSplit(ctx, splitKey.AsRawKey()); err != nil {
				return errors.Errorf("unable to split %s at key %q: %s", r, splitKey, err)
			}
		}
		return nil
	}

	// Next handle case of splitting due to size.
	zone, err := sysCfg.GetZoneConfigForKey(desc.StartKey)
	if err != nil {
		return err
	}
	size := r.GetMVCCStats().Total()
	// FIXME: why is this implementation not the same as the one above?
	if float64(size)/float64(zone.RangeMaxBytes) > 1 {
		log.Infof(ctx, "splitting size=%d max=%d", size, zone.RangeMaxBytes)
		if _, pErr := client.SendWrappedWith(ctx, r, roachpb.Header{
			Timestamp: now,
		}, &roachpb.AdminSplitRequest{
			Span: roachpb.Span{Key: desc.StartKey.AsRawKey()},
		}); pErr != nil {
			return pErr.GoError()
		}
	}
	return nil
}
Exemple #8
0
func (p *planner) createDescriptorWithID(
	idKey roachpb.Key, id sqlbase.ID, descriptor sqlbase.DescriptorProto,
) error {
	descriptor.SetID(id)
	// TODO(pmattis): The error currently returned below is likely going to be
	// difficult to interpret.
	//
	// TODO(pmattis): Need to handle if-not-exists here as well.
	//
	// TODO(pmattis): This is writing the namespace and descriptor table entries,
	// but not going through the normal INSERT logic and not performing a precise
	// mimicry. In particular, we're only writing a single key per table, while
	// perfect mimicry would involve writing a sentinel key for each row as well.
	descKey := sqlbase.MakeDescMetadataKey(descriptor.GetID())

	b := &client.Batch{}
	descID := descriptor.GetID()
	descDesc := sqlbase.WrapDescriptor(descriptor)
	if log.V(2) {
		log.Infof(p.ctx(), "CPut %s -> %d", idKey, descID)
		log.Infof(p.ctx(), "CPut %s -> %s", descKey, descDesc)
	}
	b.CPut(idKey, descID, nil)
	b.CPut(descKey, descDesc, nil)

	p.setTestingVerifyMetadata(func(systemConfig config.SystemConfig) error {
		if err := expectDescriptorID(systemConfig, idKey, descID); err != nil {
			return err
		}
		return expectDescriptor(systemConfig, descKey, descDesc)
	})

	return p.txn.Run(b)
}
Exemple #9
0
// get performs an HTTPS GET to the specified path for a specific node.
func get(ctx context.Context, t *testing.T, base, rel string) []byte {
	// TODO(bram) #2059: Remove retry logic.
	url := base + rel
	for r := retry.Start(retryOptions); r.Next(); {
		resp, err := cluster.HTTPClient.Get(url)
		if err != nil {
			log.Infof(ctx, "could not GET %s - %s", url, err)
			continue
		}
		defer resp.Body.Close()
		body, err := ioutil.ReadAll(resp.Body)
		if err != nil {
			log.Infof(ctx, "could not read body for %s - %s", url, err)
			continue
		}
		if resp.StatusCode != http.StatusOK {
			log.Infof(ctx, "could not GET %s - statuscode: %d - body: %s", url, resp.StatusCode, body)
			continue
		}
		if log.V(1) {
			log.Infof(ctx, "OK response from %s", url)
		}
		return body
	}
	t.Fatalf("There was an error retrieving %s", url)
	return []byte("")
}
Exemple #10
0
// flush sends the rows accumulated so far in a StreamMessage.
func (m *outbox) flush(last bool, err error) error {
	if !last && m.numRows == 0 {
		return nil
	}
	msg := m.encoder.FormMessage(last, err)

	if log.V(3) {
		log.Infof(m.flowCtx.Context, "flushing outbox")
	}
	var sendErr error
	if m.stream != nil {
		sendErr = m.stream.Send(msg)
	} else {
		sendErr = m.syncFlowStream.Send(msg)
	}
	if sendErr != nil {
		if log.V(1) {
			log.Errorf(m.flowCtx.Context, "outbox flush error: %s", sendErr)
		}
	} else if log.V(3) {
		log.Infof(m.flowCtx.Context, "outbox flushed")
	}
	if sendErr != nil {
		return sendErr
	}

	m.numRows = 0
	return nil
}
Exemple #11
0
func pullImage(
	ctx context.Context, l *LocalCluster, ref string, options types.ImagePullOptions,
) error {
	// HACK: on CircleCI, docker pulls the image on the first access from an
	// acceptance test even though that image is already present. So we first
	// check to see if our image is present in order to avoid this slowness.
	if hasImage(ctx, l, ref) {
		log.Infof(ctx, "ImagePull %s already exists", ref)
		return nil
	}

	log.Infof(ctx, "ImagePull %s starting", ref)
	defer log.Infof(ctx, "ImagePull %s complete", ref)

	rc, err := l.client.ImagePull(ctx, ref, options)
	if err != nil {
		return err
	}
	defer rc.Close()
	out := os.Stderr
	outFd := out.Fd()
	isTerminal := isatty.IsTerminal(outFd)

	return jsonmessage.DisplayJSONMessagesStream(rc, out, outFd, isTerminal, nil)
}
Exemple #12
0
// Run is part of the processor interface.
func (h *hashJoiner) Run(wg *sync.WaitGroup) {
	if wg != nil {
		defer wg.Done()
	}

	ctx, span := tracing.ChildSpan(h.ctx, "hash joiner")
	defer tracing.FinishSpan(span)

	if log.V(2) {
		log.Infof(ctx, "starting hash joiner run")
		defer log.Infof(ctx, "exiting hash joiner run")
	}

	if err := h.buildPhase(ctx); err != nil {
		h.output.Close(err)
		return
	}
	if h.joinType == rightOuter || h.joinType == fullOuter {
		for k, bucket := range h.buckets {
			bucket.seen = make([]bool, len(bucket.rows))
			h.buckets[k] = bucket
		}
	}
	err := h.probePhase(ctx)
	h.output.Close(err)
}
Exemple #13
0
// initNodeID updates the internal NodeDescriptor with the given ID. If zero is
// supplied, a new NodeID is allocated with the first invocation. For all other
// values, the supplied ID is stored into the descriptor (unless one has been
// set previously, in which case a fatal error occurs).
//
// Upon setting a new NodeID, the descriptor is gossiped and the NodeID is
// stored into the gossip instance.
func (n *Node) initNodeID(id roachpb.NodeID) {
	ctx := n.AnnotateCtx(context.TODO())
	if id < 0 {
		log.Fatalf(ctx, "NodeID must not be negative")
	}

	if o := n.Descriptor.NodeID; o > 0 {
		if id == 0 {
			return
		}
		log.Fatalf(ctx, "cannot initialize NodeID to %d, already have %d", id, o)
	}
	var err error
	if id == 0 {
		ctxWithSpan, span := n.AnnotateCtxWithSpan(ctx, "alloc-node-id")
		id, err = allocateNodeID(ctxWithSpan, n.storeCfg.DB)
		if err != nil {
			log.Fatal(ctxWithSpan, err)
		}
		log.Infof(ctxWithSpan, "new node allocated ID %d", id)
		if id == 0 {
			log.Fatal(ctxWithSpan, "new node allocated illegal ID 0")
		}
		span.Finish()
		n.storeCfg.Gossip.NodeID.Set(ctx, id)
	} else {
		log.Infof(ctx, "node ID %d initialized", id)
	}
	// Gossip the node descriptor to make this node addressable by node ID.
	n.Descriptor.NodeID = id
	if err = n.storeCfg.Gossip.SetNodeDescriptor(&n.Descriptor); err != nil {
		log.Fatalf(ctx, "couldn't gossip descriptor for node %d: %s", n.Descriptor.NodeID, err)
	}
}
Exemple #14
0
// runHistoryWithRetry intercepts retry errors. If one is encountered,
// alternate histories are generated which all contain the exact
// history prefix which encountered the error, but which recombine the
// remaining commands with all of the commands from the retrying
// history.
//
// This process continues recursively if there are further retries.
func (hv *historyVerifier) runHistoryWithRetry(
	priorities []int32, isolations []enginepb.IsolationType, cmds []*cmd, db *client.DB, t *testing.T,
) error {
	if err := hv.runHistory(priorities, isolations, cmds, db, t); err != nil {
		if log.V(1) {
			log.Infof(context.Background(), "got an error running history %s: %s", historyString(cmds), err)
		}
		retry, ok := err.(*retryError)
		if !ok {
			return err
		}

		if _, hasRetried := hv.retriedTxns[retry.txnIdx]; hasRetried {
			if log.V(1) {
				log.Infof(context.Background(), "retried txn %d twice; skipping history", retry.txnIdx+1)
			}
			return nil
		}
		hv.retriedTxns[retry.txnIdx] = struct{}{}

		// Randomly subsample 5% of histories for reduced execution time.
		enumHis := sampleHistories(enumerateHistoriesAfterRetry(retry, cmds), 0.05)
		for i, h := range enumHis {
			if log.V(1) {
				log.Infof(context.Background(), "after retry, running alternate history %d of %d", i, len(enumHis))
			}
			if err := hv.runHistoryWithRetry(priorities, isolations, h, db, t); err != nil {
				return err
			}
		}
	}
	return nil
}
Exemple #15
0
// AddMetricStruct examines all fields of metricStruct and adds
// all Iterable or metricGroup objects to the registry.
func (r *Registry) AddMetricStruct(metricStruct interface{}) {
	v := reflect.ValueOf(metricStruct)
	if v.Kind() == reflect.Ptr {
		v = v.Elem()
	}
	t := v.Type()

	for i := 0; i < v.NumField(); i++ {
		vfield, tfield := v.Field(i), t.Field(i)
		if !vfield.CanInterface() {
			if log.V(2) {
				log.Infof(context.TODO(), "Skipping unexported field %s", tfield.Name)
			}
			continue
		}
		val := vfield.Interface()
		switch typ := val.(type) {
		case Iterable:
			r.AddMetric(typ)
		case Struct:
			r.AddMetricStruct(typ)
		default:
			if log.V(2) {
				log.Infof(context.TODO(), "Skipping non-metric field %s", tfield.Name)
			}
		}
	}
}
Exemple #16
0
// sendGossip sends the latest gossip to the remote server, based on
// the remote server's notion of other nodes' high water timestamps.
func (c *client) sendGossip(g *Gossip, stream Gossip_GossipClient) error {
	g.mu.Lock()
	if delta := g.mu.is.delta(c.remoteHighWaterStamps); len(delta) > 0 {
		args := Request{
			NodeID:          g.NodeID.Get(),
			Addr:            g.mu.is.NodeAddr,
			Delta:           delta,
			HighWaterStamps: g.mu.is.getHighWaterStamps(),
		}

		bytesSent := int64(args.Size())
		infosSent := int64(len(delta))
		c.clientMetrics.BytesSent.Inc(bytesSent)
		c.clientMetrics.InfosSent.Inc(infosSent)
		c.nodeMetrics.BytesSent.Inc(bytesSent)
		c.nodeMetrics.InfosSent.Inc(infosSent)

		if log.V(1) {
			ctx := c.AnnotateCtx(stream.Context())
			if c.peerID != 0 {
				log.Infof(ctx, "sending %s to node %d (%s)", extractKeys(args.Delta), c.peerID, c.addr)
			} else {
				log.Infof(ctx, "sending %s to %s", extractKeys(args.Delta), c.addr)
			}
		}

		g.mu.Unlock()
		return stream.Send(&args)
	}
	g.mu.Unlock()
	return nil
}
Exemple #17
0
// wrap the supplied planNode with the sortNode if sorting is required.
// The first returned value is "true" if the sort node can be squashed
// in the selectTopNode (sorting unneeded).
func (n *sortNode) wrap(plan planNode) (bool, planNode) {
	if n != nil {
		// Check to see if the requested ordering is compatible with the existing
		// ordering.
		existingOrdering := plan.Ordering()
		if log.V(2) {
			log.Infof(n.ctx, "Sort: existing=%+v desired=%+v", existingOrdering, n.ordering)
		}
		match := computeOrderingMatch(n.ordering, existingOrdering, false)
		if match < len(n.ordering) {
			n.plan = plan
			n.needSort = true
			return false, n
		}

		if len(n.columns) < len(plan.Columns()) {
			// No sorting required, but we have to strip off the extra render
			// expressions we added.
			n.plan = plan
			return false, n
		}

		if log.V(2) {
			log.Infof(n.ctx, "Sort: no sorting required")
		}
	}

	return true, plan
}
// throttle informs the store pool that the given remote store declined a
// snapshot or failed to apply one, ensuring that it will not be considered
// for up-replication or rebalancing until after the configured timeout period
// has elapsed. Declined being true indicates that the remote store explicitly
// declined a snapshot.
func (sp *StorePool) throttle(reason throttleReason, toStoreID roachpb.StoreID) {
	sp.mu.Lock()
	defer sp.mu.Unlock()
	detail := sp.getStoreDetailLocked(toStoreID)
	ctx := sp.AnnotateCtx(context.TODO())

	// If a snapshot is declined, be it due to an error or because it was
	// rejected, we mark the store detail as having been declined so it won't
	// be considered as a candidate for new replicas until after the configured
	// timeout period has passed.
	switch reason {
	case throttleDeclined:
		detail.throttledUntil = sp.clock.Now().GoTime().Add(sp.declinedReservationsTimeout)
		if log.V(2) {
			log.Infof(ctx, "snapshot declined, store:%s will be throttled for %s until %s",
				toStoreID, sp.declinedReservationsTimeout, detail.throttledUntil)
		}
	case throttleFailed:
		detail.throttledUntil = sp.clock.Now().GoTime().Add(sp.failedReservationsTimeout)
		if log.V(2) {
			log.Infof(ctx, "snapshot failed, store:%s will be throttled for %s until %s",
				toStoreID, sp.failedReservationsTimeout, detail.throttledUntil)
		}
	}
}
Exemple #19
0
// Run is part of the processor interface.
func (m *mergeJoiner) Run(wg *sync.WaitGroup) {
	if wg != nil {
		defer wg.Done()
	}

	ctx, span := tracing.ChildSpan(m.ctx, "merge joiner")
	defer tracing.FinishSpan(span)

	if log.V(2) {
		log.Infof(ctx, "starting merge joiner run")
		defer log.Infof(ctx, "exiting merge joiner run")
	}

	for {
		batch, err := m.streamMerger.NextBatch()
		if err != nil || len(batch) == 0 {
			m.output.Close(err)
			return
		}
		for _, rowPair := range batch {
			row, _, err := m.render(rowPair[0], rowPair[1])
			if err != nil {
				m.output.Close(err)
				return
			}
			if row != nil && !m.output.PushRow(row) {
				if log.V(2) {
					log.Infof(ctx, "no more rows required")
				}
				m.output.Close(nil)
				return
			}
		}
	}
}
Exemple #20
0
func (at *allocatorTest) Run(ctx context.Context, t *testing.T) {
	at.f = MakeFarmer(t, at.Prefix, stopper)

	if at.CockroachDiskSizeGB != 0 {
		at.f.AddVars["cockroach_disk_size"] = strconv.Itoa(at.CockroachDiskSizeGB)
	}

	log.Infof(ctx, "creating cluster with %d node(s)", at.StartNodes)
	if err := at.f.Resize(at.StartNodes); err != nil {
		t.Fatal(err)
	}
	CheckGossip(ctx, t, at.f, longWaitTime, HasPeers(at.StartNodes))
	at.f.Assert(ctx, t)
	log.Info(ctx, "initial cluster is up")

	// We must stop the cluster because a) `nodectl` pokes at the data directory
	// and, more importantly, b) we don't want the cluster above and the cluster
	// below to ever talk to each other (see #7224).
	log.Info(ctx, "stopping cluster")
	for i := 0; i < at.f.NumNodes(); i++ {
		if err := at.f.Kill(ctx, i); err != nil {
			t.Fatalf("error stopping node %d: %s", i, err)
		}
	}

	log.Info(ctx, "downloading archived stores from Google Cloud Storage in parallel")
	errors := make(chan error, at.f.NumNodes())
	for i := 0; i < at.f.NumNodes(); i++ {
		go func(nodeNum int) {
			errors <- at.f.Exec(nodeNum, "./nodectl download "+at.StoreURL)
		}(i)
	}
	for i := 0; i < at.f.NumNodes(); i++ {
		if err := <-errors; err != nil {
			t.Fatalf("error downloading store %d: %s", i, err)
		}
	}

	log.Info(ctx, "restarting cluster with archived store(s)")
	for i := 0; i < at.f.NumNodes(); i++ {
		if err := at.f.Restart(ctx, i); err != nil {
			t.Fatalf("error restarting node %d: %s", i, err)
		}
	}
	at.f.Assert(ctx, t)

	log.Infof(ctx, "resizing cluster to %d nodes", at.EndNodes)
	if err := at.f.Resize(at.EndNodes); err != nil {
		t.Fatal(err)
	}
	CheckGossip(ctx, t, at.f, longWaitTime, HasPeers(at.EndNodes))
	at.f.Assert(ctx, t)

	log.Info(ctx, "waiting for rebalance to finish")
	if err := at.WaitForRebalance(ctx, t); err != nil {
		t.Fatal(err)
	}
	at.f.Assert(ctx, t)
}
Exemple #21
0
// Start starts a node.
func (n *Node) Start() {
	n.Lock()
	defer n.Unlock()

	if n.cmd != nil {
		return
	}

	n.cmd = exec.Command(n.args[0], n.args[1:]...)
	n.cmd.Env = os.Environ()
	n.cmd.Env = append(n.cmd.Env, n.env...)

	stdoutPath := filepath.Join(n.logDir, "stdout")
	stdout, err := os.OpenFile(stdoutPath,
		os.O_RDWR|os.O_CREATE|os.O_APPEND, 0666)
	if err != nil {
		log.Fatalf(context.Background(), "unable to open file %s: %s", stdoutPath, err)
	}
	n.cmd.Stdout = stdout

	stderrPath := filepath.Join(n.logDir, "stderr")
	stderr, err := os.OpenFile(stderrPath,
		os.O_RDWR|os.O_CREATE|os.O_APPEND, 0666)
	if err != nil {
		log.Fatalf(context.Background(), "unable to open file %s: %s", stderrPath, err)
	}
	n.cmd.Stderr = stderr

	err = n.cmd.Start()
	if n.cmd.Process != nil {
		log.Infof(context.Background(), "process %d started: %s",
			n.cmd.Process.Pid, strings.Join(n.args, " "))
	}
	if err != nil {
		log.Infof(context.Background(), "%v", err)
		_ = stdout.Close()
		_ = stderr.Close()
		return
	}

	go func(cmd *exec.Cmd) {
		if err := cmd.Wait(); err != nil {
			log.Errorf(context.Background(), "waiting for command: %v", err)
		}
		_ = stdout.Close()
		_ = stderr.Close()

		ps := cmd.ProcessState
		sy := ps.Sys().(syscall.WaitStatus)

		log.Infof(context.Background(), "Process %d exited with status %d",
			ps.Pid(), sy.ExitStatus())
		log.Infof(context.Background(), ps.String())

		n.Lock()
		n.cmd = nil
		n.Unlock()
	}(n.cmd)
}
Exemple #22
0
// Run is part of the processor interface.
func (d *distinct) Run(wg *sync.WaitGroup) {
	if wg != nil {
		defer wg.Done()
	}

	ctx, span := tracing.ChildSpan(d.ctx, "distinct")
	defer tracing.FinishSpan(span)

	if log.V(2) {
		log.Infof(ctx, "starting distinct process")
		defer log.Infof(ctx, "exiting distinct")
	}

	var scratch []byte
	for {
		row, err := d.input.NextRow()
		if err != nil || row == nil {
			d.output.Close(err)
			return
		}

		// If we are processing DISTINCT(x, y) and the input stream is ordered
		// by x, we define x to be our group key. Our seen set at any given time
		// is only the set of all rows with the same group key. The encoding of
		// the row is the key we use in our 'seen' set.
		encoding, err := d.encode(scratch, row)
		if err != nil {
			d.output.Close(err)
			return
		}

		// The 'seen' set is reset whenever we find consecutive rows differing on the
		// group key thus avoiding the need to store encodings of all rows.
		matched, err := d.matchLastGroupKey(row)
		if err != nil {
			d.output.Close(err)
			return
		}

		if !matched {
			d.lastGroupKey = row
			d.seen = make(map[string]struct{})
		}

		key := string(encoding)
		if _, ok := d.seen[key]; !ok {
			d.seen[key] = struct{}{}
			if !d.output.PushRow(row) {
				if log.V(2) {
					log.Infof(ctx, "no more rows required")
				}
				d.output.Close(nil)
				return
			}
		}
		scratch = encoding[:0]
	}
}
Exemple #23
0
// Run is part of the processor interface.
func (ev *evaluator) Run(wg *sync.WaitGroup) {
	if wg != nil {
		defer wg.Done()
	}

	ctx, span := tracing.ChildSpan(ev.ctx, "evaluator")
	defer tracing.FinishSpan(span)

	if log.V(2) {
		log.Infof(ctx, "starting evaluator process")
		defer log.Infof(ctx, "exiting evaluator")
	}

	first := true
	for {
		row, err := ev.input.NextRow()
		if err != nil || row == nil {
			ev.output.Close(err)
			return
		}

		if first {
			first = false

			types := make([]sqlbase.ColumnType_Kind, len(row))
			for i := range types {
				types[i] = row[i].Type
			}
			for i, expr := range ev.specExprs {
				err := ev.exprs[i].init(expr, types, ev.flowCtx.evalCtx)
				if err != nil {
					ev.output.Close(err)
					return
				}
				ev.exprTypes[i] = sqlbase.DatumTypeToColumnKind(ev.exprs[i].expr.ResolvedType())
			}
		}

		outRow, err := ev.eval(row)
		if err != nil {
			ev.output.Close(err)
			return
		}

		if log.V(3) {
			log.Infof(ctx, "pushing %s\n", outRow)
		}
		// Push the row to the output RowReceiver; stop if they don't need more
		// rows.
		if !ev.output.PushRow(outRow) {
			if log.V(2) {
				log.Infof(ctx, "no more rows required")
			}
			ev.output.Close(nil)
			return
		}
	}
}
Exemple #24
0
func (r *RocksDB) open() error {
	var ver storageVersion
	if len(r.dir) != 0 {
		log.Infof(context.TODO(), "opening rocksdb instance at %q", r.dir)

		// Check the version number.
		var err error
		if ver, err = getVersion(r.dir); err != nil {
			return err
		}
		if ver < versionMinimum || ver > versionCurrent {
			// Instead of an error, we should call a migration if possible when
			// one is needed immediately following the DBOpen call.
			return fmt.Errorf("incompatible rocksdb data version, current:%d, on disk:%d, minimum:%d",
				versionCurrent, ver, versionMinimum)
		}
	} else {
		if log.V(2) {
			log.Infof(context.TODO(), "opening in memory rocksdb instance")
		}

		// In memory dbs are always current.
		ver = versionCurrent
	}

	blockSize := envutil.EnvOrDefaultBytes("COCKROACH_ROCKSDB_BLOCK_SIZE", defaultBlockSize)
	walTTL := envutil.EnvOrDefaultDuration("COCKROACH_ROCKSDB_WAL_TTL", 0).Seconds()

	status := C.DBOpen(&r.rdb, goToCSlice([]byte(r.dir)),
		C.DBOptions{
			cache:           r.cache.cache,
			block_size:      C.uint64_t(blockSize),
			wal_ttl_seconds: C.uint64_t(walTTL),
			allow_os_buffer: C.bool(true),
			logging_enabled: C.bool(log.V(3)),
			num_cpu:         C.int(runtime.NumCPU()),
			max_open_files:  C.int(r.maxOpenFiles),
		})
	if err := statusToError(status); err != nil {
		return errors.Errorf("could not open rocksdb instance: %s", err)
	}

	// Update or add the version file if needed.
	if ver < versionCurrent {
		if err := writeVersionFile(r.dir); err != nil {
			return err
		}
	}

	// Start a goroutine that will finish when the underlying handle
	// is deallocated. This is used to check a leak in tests.
	go func() {
		<-r.deallocated
	}()
	return nil
}
Exemple #25
0
func (t *parallelTest) setup(spec *parTestSpec) {
	if spec.ClusterSize == 0 {
		spec.ClusterSize = 1
	}

	if testing.Verbose() || log.V(1) {
		log.Infof(t.ctx, "Cluster Size: %d", spec.ClusterSize)
	}

	args := base.TestClusterArgs{
		ServerArgs: base.TestServerArgs{
			Knobs: base.TestingKnobs{
				SQLExecutor: &sql.ExecutorTestingKnobs{
					WaitForGossipUpdate:   true,
					CheckStmtStringChange: true,
				},
			},
		},
	}
	t.cluster = serverutils.StartTestCluster(t, spec.ClusterSize, args)
	t.clients = make([][]*gosql.DB, spec.ClusterSize)
	for i := range t.clients {
		t.clients[i] = append(t.clients[i], t.cluster.ServerConn(i))
	}
	r0 := sqlutils.MakeSQLRunner(t, t.clients[0][0])

	if spec.RangeSplitSize != 0 {
		if testing.Verbose() || log.V(1) {
			log.Infof(t.ctx, "Setting range split size: %d", spec.RangeSplitSize)
		}
		zoneCfg := config.DefaultZoneConfig()
		zoneCfg.RangeMaxBytes = int64(spec.RangeSplitSize)
		zoneCfg.RangeMinBytes = zoneCfg.RangeMaxBytes / 2
		buf, err := protoutil.Marshal(&zoneCfg)
		if err != nil {
			t.Fatal(err)
		}
		objID := keys.RootNamespaceID
		r0.Exec(`UPDATE system.zones SET config = $2 WHERE id = $1`, objID, buf)
	}

	if testing.Verbose() || log.V(1) {
		log.Infof(t.ctx, "Creating database")
	}

	r0.Exec("CREATE DATABASE test")
	for i := range t.clients {
		sqlutils.MakeSQLRunner(t, t.clients[i][0]).Exec("SET DATABASE = test")
	}

	if testing.Verbose() || log.V(1) {
		log.Infof(t.ctx, "Test setup done")
	}
}
Exemple #26
0
// If the time is greater than the timestamp stored at `key`, run `f`.
// Before running `f`, the timestamp is updated forward by a small amount via
// a compare-and-swap to ensure at-most-one concurrent execution. After `f`
// executes the timestamp is set to the next execution time.
// Returns how long until `f` should be run next (i.e. when this method should
// be called again).
func (s *Server) maybeRunPeriodicCheck(
	op string, key roachpb.Key, f func(context.Context),
) time.Duration {
	ctx, span := s.AnnotateCtxWithSpan(context.Background(), "op")
	defer span.Finish()

	// Add the op name to the log context.
	ctx = log.WithLogTag(ctx, op, nil)

	resp, err := s.db.Get(ctx, key)
	if err != nil {
		log.Infof(ctx, "error reading time: %s", err)
		return updateCheckRetryFrequency
	}

	// We should early returned below if either the next check time is in the
	// future or if the atomic compare-and-set of that time failed (which
	// would happen if two nodes tried at the same time).
	if resp.Exists() {
		whenToCheck, pErr := resp.Value.GetTime()
		if pErr != nil {
			log.Warningf(ctx, "error decoding time: %s", err)
			return updateCheckRetryFrequency
		} else if delay := whenToCheck.Sub(timeutil.Now()); delay > 0 {
			return delay
		}

		nextRetry := whenToCheck.Add(updateCheckRetryFrequency)
		if err := s.db.CPut(ctx, key, nextRetry, whenToCheck); err != nil {
			if log.V(2) {
				log.Infof(ctx, "could not set next version check time (maybe another node checked?): %s", err)
			}
			return updateCheckRetryFrequency
		}
	} else {
		log.Infof(ctx, "No previous %s time.", op)
		nextRetry := timeutil.Now().Add(updateCheckRetryFrequency)
		// CPut with `nil` prev value to assert that no other node has checked.
		if err := s.db.CPut(ctx, key, nextRetry, nil); err != nil {
			if log.V(2) {
				log.Infof(ctx, "Could not set %s time (maybe another node checked?): %v", op, err)
			}
			return updateCheckRetryFrequency
		}
	}

	f(ctx)

	if err := s.db.Put(ctx, key, timeutil.Now().Add(updateCheckFrequency)); err != nil {
		log.Infof(ctx, "Error updating %s time: %v", op, err)
	}
	return updateCheckFrequency
}
Exemple #27
0
func testPutInner(ctx context.Context, t *testing.T, c cluster.Cluster, cfg cluster.TestConfig) {
	db, err := c.NewClient(ctx, 0)
	if err != nil {
		t.Fatal(err)
	}

	errs := make(chan error, c.NumNodes())
	start := timeutil.Now()
	deadline := start.Add(cfg.Duration)
	var count int64
	for i := 0; i < c.NumNodes(); i++ {
		go func() {
			r, _ := randutil.NewPseudoRand()
			value := randutil.RandBytes(r, 8192)

			for timeutil.Now().Before(deadline) {
				k := atomic.AddInt64(&count, 1)
				v := value[:r.Intn(len(value))]
				if err := db.Put(ctx, fmt.Sprintf("%08d", k), v); err != nil {
					errs <- err
					return
				}
			}
			errs <- nil
		}()
	}

	for i := 0; i < c.NumNodes(); {
		baseCount := atomic.LoadInt64(&count)
		select {
		case <-stopper.ShouldStop():
			t.Fatalf("interrupted")
		case err := <-errs:
			if err != nil {
				t.Fatal(err)
			}
			i++
		case <-time.After(1 * time.Second):
			// Periodically print out progress so that we know the test is still
			// running.
			loadedCount := atomic.LoadInt64(&count)
			log.Infof(ctx, "%d (%d/s)", loadedCount, loadedCount-baseCount)
			c.Assert(ctx, t)
			if err := cluster.Consistent(ctx, c, 0); err != nil {
				t.Fatal(err)
			}
		}
	}

	elapsed := timeutil.Since(start)
	log.Infof(ctx, "%d %.1f/sec", count, float64(count)/elapsed.Seconds())
}
Exemple #28
0
// clearOverlappingCachedRangeDescriptors looks up and clears any
// cache entries which overlap the specified descriptor.
func (rdc *rangeDescriptorCache) clearOverlappingCachedRangeDescriptors(
	desc *roachpb.RangeDescriptor,
) error {
	key := desc.EndKey
	metaKey, err := meta(key)
	if err != nil {
		return err
	}

	// Clear out any descriptors which subsume the key which we're going
	// to cache. For example, if an existing KeyMin->KeyMax descriptor
	// should be cleared out in favor of a KeyMin->"m" descriptor.
	k, v, ok := rdc.rangeCache.cache.Ceil(rangeCacheKey(metaKey))
	if ok {
		descriptor := v.(*roachpb.RangeDescriptor)
		if descriptor.StartKey.Less(key) && !descriptor.EndKey.Less(key) {
			if log.V(2) {
				log.Infof(rdc.ctx, "clearing overlapping descriptor: key=%s desc=%s", k, descriptor)
			}
			rdc.rangeCache.cache.Del(k.(rangeCacheKey))
		}
	}

	startMeta, err := meta(desc.StartKey)
	if err != nil {
		return err
	}
	endMeta, err := meta(desc.EndKey)
	if err != nil {
		return err
	}

	// Also clear any descriptors which are subsumed by the one we're
	// going to cache. This could happen on a merge (and also happens
	// when there's a lot of concurrency). Iterate from the range meta key
	// after RangeMetaKey(desc.StartKey) to the range meta key for desc.EndKey.
	var keys []rangeCacheKey
	rdc.rangeCache.cache.DoRange(func(k, v interface{}) bool {
		if log.V(2) {
			log.Infof(rdc.ctx, "clearing subsumed descriptor: key=%s desc=%s",
				k, v.(*roachpb.RangeDescriptor))
		}
		keys = append(keys, k.(rangeCacheKey))

		return false
	}, rangeCacheKey(startMeta.Next()), rangeCacheKey(endMeta))

	for _, key := range keys {
		rdc.rangeCache.cache.Del(key)
	}
	return nil
}
Exemple #29
0
// manage manages outgoing clients. Periodically, the infostore is
// scanned for infos with hop count exceeding the MaxHops
// threshold. If the number of outgoing clients doesn't exceed
// maxPeers(), a new gossip client is connected to a randomly selected
// peer beyond MaxHops threshold. Otherwise, the least useful peer
// node is cut off to make room for a replacement. Disconnected
// clients are processed via the disconnected channel and taken out of
// the outgoing address set. If there are no longer any outgoing
// connections or the sentinel gossip is unavailable, the bootstrapper
// is notified via the stalled conditional variable.
func (g *Gossip) manage() {
	g.server.stopper.RunWorker(func() {
		ctx := g.AnnotateCtx(context.Background())
		cullTicker := time.NewTicker(g.jitteredInterval(g.cullInterval))
		stallTicker := time.NewTicker(g.jitteredInterval(g.stallInterval))
		defer cullTicker.Stop()
		defer stallTicker.Stop()
		for {
			select {
			case <-g.server.stopper.ShouldStop():
				return
			case c := <-g.disconnected:
				g.doDisconnected(c)
			case nodeID := <-g.tighten:
				g.tightenNetwork(nodeID)
			case <-cullTicker.C:
				func() {
					g.mu.Lock()
					if !g.outgoing.hasSpace() {
						leastUsefulID := g.mu.is.leastUseful(g.outgoing)

						if c := g.findClient(func(c *client) bool {
							return c.peerID == leastUsefulID
						}); c != nil {
							if log.V(1) {
								log.Infof(ctx, "closing least useful client %+v to tighten network graph", c)
							}
							log.Eventf(ctx, "culling %s", c.addr)
							c.close()

							// After releasing the lock, block until the client disconnects.
							defer func() {
								g.doDisconnected(<-g.disconnected)
							}()
						} else {
							if log.V(1) {
								g.clientsMu.Lock()
								log.Infof(ctx, "couldn't find least useful client among %+v", g.clientsMu.clients)
								g.clientsMu.Unlock()
							}
						}
					}
					g.mu.Unlock()
				}()
			case <-stallTicker.C:
				g.mu.Lock()
				g.maybeSignalStatusChangeLocked()
				g.mu.Unlock()
			}
		}
	})
}
Exemple #30
0
// processValueSingle processes the given value (of column
// family.DefaultColumnID), setting values in the rf.row accordingly. The key is
// only used for logging.
func (rf *RowFetcher) processValueSingle(
	family *ColumnFamilyDescriptor, kv client.KeyValue, debugStrings bool, prettyKeyPrefix string,
) (prettyKey string, prettyValue string, err error) {
	prettyKey = prettyKeyPrefix

	colID := family.DefaultColumnID
	if colID == 0 {
		// If this is the sentinel family, a value is not expected, so we're done.
		// Otherwise, this means something went wrong in the TableDescriptor
		// bookkeeping.
		if family.ID == keys.SentinelFamilyID {
			return "", "", nil
		}
		return "", "", errors.Errorf("single entry value with no default column id")
	}

	idx, ok := rf.colIdxMap[colID]
	if ok && (debugStrings || rf.valNeededForCol[idx]) {
		if debugStrings {
			prettyKey = fmt.Sprintf("%s/%s", prettyKey, rf.desc.Columns[idx].Name)
		}
		typ := rf.cols[idx].Type
		// TODO(arjun): The value is a directly marshaled single value, so we
		// unmarshal it eagerly here. This can potentially be optimized out,
		// although that would require changing UnmarshalColumnValue to operate
		// on bytes, and for Encode/DecodeTableValue to operate on marshaled
		// single values.
		value, err := UnmarshalColumnValue(&rf.alloc, typ, kv.Value)
		if err != nil {
			return "", "", err
		}
		if debugStrings {
			prettyValue = value.String()
		}
		if !rf.row[idx].IsUnset() {
			panic(fmt.Sprintf("duplicate value for column %d", idx))
		}
		rf.row[idx] = DatumToEncDatum(typ, value)
		if log.V(3) {
			log.Infof(context.TODO(), "Scan %s -> %v", kv.Key, value)
		}
	} else {
		// No need to unmarshal the column value. Either the column was part of
		// the index key or it isn't needed.
		if log.V(3) {
			log.Infof(context.TODO(), "Scan %s -> [%d] (skipped)", kv.Key, colID)
		}
	}

	return prettyKey, prettyValue, nil
}