Exemple #1
0
// MakeMemMetrics instantiates the metric objects for an SQL endpoint.
func MakeMemMetrics(endpoint string) MemoryMetrics {
	prefix := "sql.mon." + endpoint
	MetaMemMaxBytes := metric.Metadata{Name: prefix + ".max"}
	MetaMemCurBytes := metric.Metadata{Name: prefix + ".cur"}
	MetaMemMaxTxnBytes := metric.Metadata{Name: prefix + ".txn.max"}
	MetaMemTxnCurBytes := metric.Metadata{Name: prefix + ".txn.cur"}
	MetaMemMaxSessionBytes := metric.Metadata{Name: prefix + ".session.max"}
	MetaMemSessionCurBytes := metric.Metadata{Name: prefix + ".session.cur"}
	return MemoryMetrics{
		MaxBytesHist:         metric.NewHistogram(MetaMemMaxBytes, time.Minute, log10int64times1000, 3),
		CurBytesCount:        metric.NewCounter(MetaMemCurBytes),
		TxnMaxBytesHist:      metric.NewHistogram(MetaMemMaxTxnBytes, time.Minute, log10int64times1000, 3),
		TxnCurBytesCount:     metric.NewCounter(MetaMemTxnCurBytes),
		SessionMaxBytesHist:  metric.NewHistogram(MetaMemMaxSessionBytes, time.Minute, log10int64times1000, 3),
		SessionCurBytesCount: metric.NewCounter(MetaMemSessionCurBytes),
	}
}
Exemple #2
0
// MakeTxnMetrics returns a TxnMetrics struct that contains metrics whose
// windowed portions retain data for approximately sampleInterval.
func MakeTxnMetrics(sampleInterval time.Duration) TxnMetrics {
	return TxnMetrics{
		Aborts:     metric.NewCounterWithRates(metaAbortsRates),
		Commits:    metric.NewCounterWithRates(metaCommitsRates),
		Commits1PC: metric.NewCounterWithRates(metaCommits1PCRates),
		Abandons:   metric.NewCounterWithRates(metaAbandonsRates),
		Durations:  metric.NewLatency(metaDurationsHistograms, sampleInterval),
		Restarts:   metric.NewHistogram(metaRestartsHistogram, sampleInterval, 100, 3),
	}
}
Exemple #3
0
// TestMetricsRecorder verifies that the metrics recorder properly formats the
// statistics from various registries, both for Time Series and for Status
// Summaries.
func TestMetricsRecorder(t *testing.T) {
	defer leaktest.AfterTest(t)()

	// ========================================
	// Construct a series of fake descriptors for use in test.
	// ========================================
	nodeDesc := roachpb.NodeDescriptor{
		NodeID: roachpb.NodeID(1),
	}
	storeDesc1 := roachpb.StoreDescriptor{
		StoreID: roachpb.StoreID(1),
		Capacity: roachpb.StoreCapacity{
			Capacity:  100,
			Available: 50,
		},
	}
	storeDesc2 := roachpb.StoreDescriptor{
		StoreID: roachpb.StoreID(2),
		Capacity: roachpb.StoreCapacity{
			Capacity:  200,
			Available: 75,
		},
	}

	// ========================================
	// Create registries and add them to the recorder (two node-level, two
	// store-level).
	// ========================================
	reg1 := metric.NewRegistry()
	store1 := fakeStore{
		storeID:  roachpb.StoreID(1),
		desc:     storeDesc1,
		registry: metric.NewRegistry(),
	}
	store2 := fakeStore{
		storeID:  roachpb.StoreID(2),
		desc:     storeDesc2,
		registry: metric.NewRegistry(),
	}
	manual := hlc.NewManualClock(100)
	recorder := NewMetricsRecorder(hlc.NewClock(manual.UnixNano, time.Nanosecond))
	recorder.AddStore(store1)
	recorder.AddStore(store2)
	recorder.AddNode(reg1, nodeDesc, 50)

	// Ensure the metric system's view of time does not advance during this test
	// as the test expects time to not advance too far which would age the actual
	// data (e.g. in histogram's) unexpectedly.
	defer metric.TestingSetNow(func() time.Time {
		return time.Unix(0, manual.UnixNano()).UTC()
	})()

	// ========================================
	// Generate Metrics Data & Expected Results
	// ========================================

	// Flatten the four registries into an array for ease of use.
	regList := []struct {
		reg    *metric.Registry
		prefix string
		source int64
		isNode bool
	}{
		{
			reg:    reg1,
			prefix: "one.",
			source: 1,
			isNode: true,
		},
		{
			reg:    reg1,
			prefix: "two.",
			source: 1,
			isNode: true,
		},
		{
			reg:    store1.registry,
			prefix: "",
			source: int64(store1.storeID),
			isNode: false,
		},
		{
			reg:    store2.registry,
			prefix: "",
			source: int64(store2.storeID),
			isNode: false,
		},
	}

	// Every registry will have a copy of the following metrics.
	metricNames := []struct {
		name string
		typ  string
		val  int64
	}{
		{"testGauge", "gauge", 20},
		{"testGaugeFloat64", "floatgauge", 20},
		{"testCounter", "counter", 5},
		{"testCounterWithRates", "counterwithrates", 2},
		{"testHistogram", "histogram", 10},
		{"testLatency", "latency", 10},

		// Stats needed for store summaries.
		{"ranges", "counter", 1},
		{"replicas.leaders", "gauge", 1},
		{"replicas.leaseholders", "gauge", 1},
		{"ranges", "gauge", 1},
		{"ranges.available", "gauge", 1},
	}

	// Add the metrics to each registry and set their values. At the same time,
	// generate expected time series results and status summary metric values.
	var expected []tspb.TimeSeriesData
	expectedNodeSummaryMetrics := make(map[string]float64)
	expectedStoreSummaryMetrics := make(map[string]float64)

	// addExpected generates expected data for a single metric data point.
	addExpected := func(prefix, name string, source, time, val int64, isNode bool) {
		// Generate time series data.
		tsPrefix := "cr.node."
		if !isNode {
			tsPrefix = "cr.store."
		}
		expect := tspb.TimeSeriesData{
			Name:   tsPrefix + prefix + name,
			Source: strconv.FormatInt(source, 10),
			Datapoints: []tspb.TimeSeriesDatapoint{
				{
					TimestampNanos: time,
					Value:          float64(val),
				},
			},
		}
		expected = append(expected, expect)

		// Generate status summary data.
		if isNode {
			expectedNodeSummaryMetrics[prefix+name] = float64(val)
		} else {
			// This can overwrite the previous value, but this is expected as
			// all stores in our tests have identical values; when comparing
			// status summaries, the same map is used as expected data for all
			// stores.
			expectedStoreSummaryMetrics[prefix+name] = float64(val)
		}
	}

	for _, reg := range regList {
		for _, data := range metricNames {
			switch data.typ {
			case "gauge":
				g := metric.NewGauge(metric.Metadata{Name: reg.prefix + data.name})
				reg.reg.AddMetric(g)
				g.Update(data.val)
				addExpected(reg.prefix, data.name, reg.source, 100, data.val, reg.isNode)
			case "floatgauge":
				g := metric.NewGaugeFloat64(metric.Metadata{Name: reg.prefix + data.name})
				reg.reg.AddMetric(g)
				g.Update(float64(data.val))
				addExpected(reg.prefix, data.name, reg.source, 100, data.val, reg.isNode)
			case "counter":
				c := metric.NewCounter(metric.Metadata{Name: reg.prefix + data.name})
				reg.reg.AddMetric(c)
				c.Inc((data.val))
				addExpected(reg.prefix, data.name, reg.source, 100, data.val, reg.isNode)
			case "counterwithrates":
				r := metric.NewCounterWithRates(metric.Metadata{Name: reg.prefix + data.name})
				reg.reg.AddMetric(r)
				r.Inc(data.val)
				addExpected(reg.prefix, data.name, reg.source, 100, data.val, reg.isNode)
			case "histogram":
				h := metric.NewHistogram(metric.Metadata{Name: reg.prefix + data.name}, time.Second, 1000, 2)
				reg.reg.AddMetric(h)
				h.RecordValue(data.val)
				for _, q := range recordHistogramQuantiles {
					addExpected(reg.prefix, data.name+q.suffix, reg.source, 100, data.val, reg.isNode)
				}
			case "latency":
				l := metric.NewLatency(metric.Metadata{Name: reg.prefix + data.name}, time.Hour)
				reg.reg.AddMetric(l)
				l.RecordValue(data.val)
				// Latency is simply three histograms (at different resolution
				// time scales).
				for _, q := range recordHistogramQuantiles {
					addExpected(reg.prefix, data.name+q.suffix, reg.source, 100, data.val, reg.isNode)
				}
			default:
				t.Fatalf("unexpected: %+v", data)
			}
		}
	}

	// ========================================
	// Verify time series data
	// ========================================
	actual := recorder.GetTimeSeriesData()

	// Actual comparison is simple: sort the resulting arrays by time and name,
	// and use reflect.DeepEqual.
	sort.Sort(byTimeAndName(actual))
	sort.Sort(byTimeAndName(expected))
	if a, e := actual, expected; !reflect.DeepEqual(a, e) {
		t.Errorf("recorder did not yield expected time series collection; diff:\n %v", pretty.Diff(e, a))
	}

	// ========================================
	// Verify node summary generation
	// ========================================
	expectedNodeSummary := &NodeStatus{
		Desc:      nodeDesc,
		BuildInfo: build.GetInfo(),
		StartedAt: 50,
		UpdatedAt: 100,
		Metrics:   expectedNodeSummaryMetrics,
		StoreStatuses: []StoreStatus{
			{
				Desc:    storeDesc1,
				Metrics: expectedStoreSummaryMetrics,
			},
			{
				Desc:    storeDesc2,
				Metrics: expectedStoreSummaryMetrics,
			},
		},
	}

	nodeSummary := recorder.GetStatusSummary()
	if nodeSummary == nil {
		t.Fatalf("recorder did not return nodeSummary")
	}

	sort.Sort(byStoreDescID(nodeSummary.StoreStatuses))
	if a, e := nodeSummary, expectedNodeSummary; !reflect.DeepEqual(a, e) {
		t.Errorf("recorder did not produce expected NodeSummary; diff:\n %v", pretty.Diff(e, a))
	}
}
Exemple #4
0
func newStoreMetrics(sampleInterval time.Duration) *StoreMetrics {
	storeRegistry := metric.NewRegistry()
	sm := &StoreMetrics{
		registry: storeRegistry,

		// Replica metrics.
		ReplicaCount:                  metric.NewCounter(metaReplicaCount),
		ReservedReplicaCount:          metric.NewCounter(metaReservedReplicaCount),
		RaftLeaderCount:               metric.NewGauge(metaRaftLeaderCount),
		RaftLeaderNotLeaseHolderCount: metric.NewGauge(metaRaftLeaderNotLeaseHolderCount),
		LeaseHolderCount:              metric.NewGauge(metaLeaseHolderCount),
		QuiescentCount:                metric.NewGauge(metaQuiescentCount),

		// Replica CommandQueue metrics.
		MaxCommandQueueSize:       metric.NewGauge(metaMaxCommandQueueSize),
		MaxCommandQueueWriteCount: metric.NewGauge(metaMaxCommandQueueWriteCount),
		MaxCommandQueueReadCount:  metric.NewGauge(metaMaxCommandQueueReadCount),
		MaxCommandQueueTreeSize:   metric.NewGauge(metaMaxCommandQueueTreeSize),
		MaxCommandQueueOverlaps:   metric.NewGauge(metaMaxCommandQueueOverlaps),
		CombinedCommandQueueSize:  metric.NewGauge(metaCombinedCommandQueueSize),
		CombinedCommandWriteCount: metric.NewGauge(metaCombinedCommandWriteCount),
		CombinedCommandReadCount:  metric.NewGauge(metaCombinedCommandReadCount),

		// Range metrics.
		RangeCount:                metric.NewGauge(metaRangeCount),
		UnavailableRangeCount:     metric.NewGauge(metaUnavailableRangeCount),
		UnderReplicatedRangeCount: metric.NewGauge(metaUnderReplicatedRangeCount),

		// Lease request metrics.
		LeaseRequestSuccessCount: metric.NewCounter(metaLeaseRequestSuccessCount),
		LeaseRequestErrorCount:   metric.NewCounter(metaLeaseRequestErrorCount),

		// Storage metrics.
		LiveBytes:       metric.NewGauge(metaLiveBytes),
		KeyBytes:        metric.NewGauge(metaKeyBytes),
		ValBytes:        metric.NewGauge(metaValBytes),
		IntentBytes:     metric.NewGauge(metaIntentBytes),
		LiveCount:       metric.NewGauge(metaLiveCount),
		KeyCount:        metric.NewGauge(metaKeyCount),
		ValCount:        metric.NewGauge(metaValCount),
		IntentCount:     metric.NewGauge(metaIntentCount),
		IntentAge:       metric.NewGauge(metaIntentAge),
		GcBytesAge:      metric.NewGauge(metaGcBytesAge),
		LastUpdateNanos: metric.NewGauge(metaLastUpdateNanos),
		Capacity:        metric.NewGauge(metaCapacity),
		Available:       metric.NewGauge(metaAvailable),
		Reserved:        metric.NewCounter(metaReserved),
		SysBytes:        metric.NewGauge(metaSysBytes),
		SysCount:        metric.NewGauge(metaSysCount),

		// RocksDB metrics.
		RdbBlockCacheHits:           metric.NewGauge(metaRdbBlockCacheHits),
		RdbBlockCacheMisses:         metric.NewGauge(metaRdbBlockCacheMisses),
		RdbBlockCacheUsage:          metric.NewGauge(metaRdbBlockCacheUsage),
		RdbBlockCachePinnedUsage:    metric.NewGauge(metaRdbBlockCachePinnedUsage),
		RdbBloomFilterPrefixChecked: metric.NewGauge(metaRdbBloomFilterPrefixChecked),
		RdbBloomFilterPrefixUseful:  metric.NewGauge(metaRdbBloomFilterPrefixUseful),
		RdbMemtableHits:             metric.NewGauge(metaRdbMemtableHits),
		RdbMemtableMisses:           metric.NewGauge(metaRdbMemtableMisses),
		RdbMemtableTotalSize:        metric.NewGauge(metaRdbMemtableTotalSize),
		RdbFlushes:                  metric.NewGauge(metaRdbFlushes),
		RdbCompactions:              metric.NewGauge(metaRdbCompactions),
		RdbTableReadersMemEstimate:  metric.NewGauge(metaRdbTableReadersMemEstimate),
		RdbReadAmplification:        metric.NewGauge(metaRdbReadAmplification),
		RdbNumSSTables:              metric.NewGauge(metaRdbNumSSTables),

		// Range event metrics.
		RangeSplits:                     metric.NewCounter(metaRangeSplits),
		RangeAdds:                       metric.NewCounter(metaRangeAdds),
		RangeRemoves:                    metric.NewCounter(metaRangeRemoves),
		RangeSnapshotsGenerated:         metric.NewCounter(metaRangeSnapshotsGenerated),
		RangeSnapshotsNormalApplied:     metric.NewCounter(metaRangeSnapshotsNormalApplied),
		RangeSnapshotsPreemptiveApplied: metric.NewCounter(metaRangeSnapshotsPreemptiveApplied),

		// Raft processing metrics.
		RaftTicks:                metric.NewCounter(metaRaftTicks),
		RaftWorkingDurationNanos: metric.NewCounter(metaRaftWorkingDurationNanos),
		RaftTickingDurationNanos: metric.NewCounter(metaRaftTickingDurationNanos),

		// Raft message metrics.
		RaftRcvdMsgProp:           metric.NewCounter(metaRaftRcvdProp),
		RaftRcvdMsgApp:            metric.NewCounter(metaRaftRcvdApp),
		RaftRcvdMsgAppResp:        metric.NewCounter(metaRaftRcvdAppResp),
		RaftRcvdMsgVote:           metric.NewCounter(metaRaftRcvdVote),
		RaftRcvdMsgVoteResp:       metric.NewCounter(metaRaftRcvdVoteResp),
		RaftRcvdMsgPreVote:        metric.NewCounter(metaRaftRcvdPreVote),
		RaftRcvdMsgPreVoteResp:    metric.NewCounter(metaRaftRcvdPreVoteResp),
		RaftRcvdMsgSnap:           metric.NewCounter(metaRaftRcvdSnap),
		RaftRcvdMsgHeartbeat:      metric.NewCounter(metaRaftRcvdHeartbeat),
		RaftRcvdMsgHeartbeatResp:  metric.NewCounter(metaRaftRcvdHeartbeatResp),
		RaftRcvdMsgTransferLeader: metric.NewCounter(metaRaftRcvdTransferLeader),
		RaftRcvdMsgTimeoutNow:     metric.NewCounter(metaRaftRcvdTimeoutNow),
		RaftRcvdMsgDropped:        metric.NewCounter(metaRaftRcvdDropped),
		raftRcvdMessages:          make(map[raftpb.MessageType]*metric.Counter, len(raftpb.MessageType_name)),

		RaftEnqueuedPending: metric.NewGauge(metaRaftEnqueuedPending),

		// This Gauge measures the number of heartbeats queued up just before
		// the queue is cleared, to avoid flapping wildly.
		RaftCoalescedHeartbeatsPending: metric.NewGauge(metaRaftCoalescedHeartbeatsPending),

		// Replica queue metrics.
		GCQueueSuccesses:                          metric.NewCounter(metaGCQueueSuccesses),
		GCQueueFailures:                           metric.NewCounter(metaGCQueueFailures),
		GCQueuePending:                            metric.NewGauge(metaGCQueuePending),
		GCQueueProcessingNanos:                    metric.NewCounter(metaGCQueueProcessingNanos),
		RaftLogQueueSuccesses:                     metric.NewCounter(metaRaftLogQueueSuccesses),
		RaftLogQueueFailures:                      metric.NewCounter(metaRaftLogQueueFailures),
		RaftLogQueuePending:                       metric.NewGauge(metaRaftLogQueuePending),
		RaftLogQueueProcessingNanos:               metric.NewCounter(metaRaftLogQueueProcessingNanos),
		ConsistencyQueueSuccesses:                 metric.NewCounter(metaConsistencyQueueSuccesses),
		ConsistencyQueueFailures:                  metric.NewCounter(metaConsistencyQueueFailures),
		ConsistencyQueuePending:                   metric.NewGauge(metaConsistencyQueuePending),
		ConsistencyQueueProcessingNanos:           metric.NewCounter(metaConsistencyQueueProcessingNanos),
		ReplicaGCQueueSuccesses:                   metric.NewCounter(metaReplicaGCQueueSuccesses),
		ReplicaGCQueueFailures:                    metric.NewCounter(metaReplicaGCQueueFailures),
		ReplicaGCQueuePending:                     metric.NewGauge(metaReplicaGCQueuePending),
		ReplicaGCQueueProcessingNanos:             metric.NewCounter(metaReplicaGCQueueProcessingNanos),
		ReplicateQueueSuccesses:                   metric.NewCounter(metaReplicateQueueSuccesses),
		ReplicateQueueFailures:                    metric.NewCounter(metaReplicateQueueFailures),
		ReplicateQueuePending:                     metric.NewGauge(metaReplicateQueuePending),
		ReplicateQueueProcessingNanos:             metric.NewCounter(metaReplicateQueueProcessingNanos),
		ReplicateQueuePurgatory:                   metric.NewGauge(metaReplicateQueuePurgatory),
		SplitQueueSuccesses:                       metric.NewCounter(metaSplitQueueSuccesses),
		SplitQueueFailures:                        metric.NewCounter(metaSplitQueueFailures),
		SplitQueuePending:                         metric.NewGauge(metaSplitQueuePending),
		SplitQueueProcessingNanos:                 metric.NewCounter(metaSplitQueueProcessingNanos),
		TimeSeriesMaintenanceQueueSuccesses:       metric.NewCounter(metaTimeSeriesMaintenanceQueueFailures),
		TimeSeriesMaintenanceQueueFailures:        metric.NewCounter(metaTimeSeriesMaintenanceQueueSuccesses),
		TimeSeriesMaintenanceQueuePending:         metric.NewGauge(metaTimeSeriesMaintenanceQueuePending),
		TimeSeriesMaintenanceQueueProcessingNanos: metric.NewCounter(metaTimeSeriesMaintenanceQueueProcessingNanos),

		// GCInfo cumulative totals.
		GCNumKeysAffected:            metric.NewCounter(metaGCNumKeysAffected),
		GCIntentsConsidered:          metric.NewCounter(metaGCIntentsConsidered),
		GCIntentTxns:                 metric.NewCounter(metaGCIntentTxns),
		GCTransactionSpanScanned:     metric.NewCounter(metaGCTransactionSpanScanned),
		GCTransactionSpanGCAborted:   metric.NewCounter(metaGCTransactionSpanGCAborted),
		GCTransactionSpanGCCommitted: metric.NewCounter(metaGCTransactionSpanGCCommitted),
		GCTransactionSpanGCPending:   metric.NewCounter(metaGCTransactionSpanGCPending),
		GCAbortSpanScanned:           metric.NewCounter(metaGCAbortSpanScanned),
		GCAbortSpanConsidered:        metric.NewCounter(metaGCAbortSpanConsidered),
		GCAbortSpanGCNum:             metric.NewCounter(metaGCAbortSpanGCNum),
		GCPushTxn:                    metric.NewCounter(metaGCPushTxn),
		GCResolveTotal:               metric.NewCounter(metaGCResolveTotal),
		GCResolveSuccess:             metric.NewCounter(metaGCResolveSuccess),

		// Mutex timing.
		//
		// TODO(tschottdorf): Histograms don't work very well as they were
		// inherently built in a windowed (i.e. events-discarding) way, which
		// is not at all the correct way. Discard at one-minute interval which
		// gives sane (though mathematically nonsensical) results when exposed
		// at the moment.
		MuReplicaNanos: metric.NewHistogram(
			metaMuReplicaNanos, sampleInterval,
			time.Second.Nanoseconds(), 1,
		),
		MuCommandQueueNanos: metric.NewHistogram(
			metaMuCommandQueueNanos, sampleInterval,
			time.Second.Nanoseconds(), 1,
		),
		MuRaftNanos: metric.NewHistogram(
			metaMuRaftNanos, sampleInterval,
			time.Second.Nanoseconds(), 1,
		),
		MuStoreNanos: metric.NewHistogram(
			metaMuStoreNanos, sampleInterval,
			time.Second.Nanoseconds(), 1,
		),
		MuSchedulerNanos: metric.NewHistogram(
			metaMuSchedulerNanos, time.Minute,
			time.Second.Nanoseconds(), 1,
		),
	}

	sm.raftRcvdMessages[raftpb.MsgProp] = sm.RaftRcvdMsgProp
	sm.raftRcvdMessages[raftpb.MsgApp] = sm.RaftRcvdMsgApp
	sm.raftRcvdMessages[raftpb.MsgAppResp] = sm.RaftRcvdMsgAppResp
	sm.raftRcvdMessages[raftpb.MsgVote] = sm.RaftRcvdMsgVote
	sm.raftRcvdMessages[raftpb.MsgVoteResp] = sm.RaftRcvdMsgVoteResp
	sm.raftRcvdMessages[raftpb.MsgPreVote] = sm.RaftRcvdMsgPreVote
	sm.raftRcvdMessages[raftpb.MsgPreVoteResp] = sm.RaftRcvdMsgPreVoteResp
	sm.raftRcvdMessages[raftpb.MsgSnap] = sm.RaftRcvdMsgSnap
	sm.raftRcvdMessages[raftpb.MsgHeartbeat] = sm.RaftRcvdMsgHeartbeat
	sm.raftRcvdMessages[raftpb.MsgHeartbeatResp] = sm.RaftRcvdMsgHeartbeatResp
	sm.raftRcvdMessages[raftpb.MsgTransferLeader] = sm.RaftRcvdMsgTransferLeader
	sm.raftRcvdMessages[raftpb.MsgTimeoutNow] = sm.RaftRcvdMsgTimeoutNow

	storeRegistry.AddMetricStruct(sm)

	return sm
}