func TestRangeStatsInit(t *testing.T) {
	tc := testContext{}
	tc.Start(t)
	defer tc.Stop()
	ms := engine.MVCCStats{
		LiveBytes:       1,
		KeyBytes:        2,
		ValBytes:        3,
		IntentBytes:     4,
		LiveCount:       5,
		KeyCount:        6,
		ValCount:        7,
		IntentCount:     8,
		IntentAge:       9,
		GCBytesAge:      10,
		LastUpdateNanos: 11,
	}
	ms.SetStats(tc.engine, 1)

	s, err := newRangeStats(1, tc.engine)
	if err != nil {
		t.Fatal(err)
	}
	if !reflect.DeepEqual(ms, s.MVCCStats) {
		t.Errorf("mvcc stats mismatch %+v != %+v", ms, s.MVCCStats)
	}
}
Exemple #2
0
// MergeMVCCStats merges the results of an MVCC operation or series of
// MVCC operations into the range's stats. The intent age is augmented
// by multiplying the previous intent count by the elapsed nanos since
// the last update to range stats.
func (rs *rangeStats) MergeMVCCStats(e engine.Engine, ms *engine.MVCCStats, nowNanos int64) {
	// Augment the current intent age.
	diffSeconds := nowNanos/1E9 - rs.LastUpdateNanos/1E9
	ms.LastUpdateNanos = nowNanos - rs.LastUpdateNanos
	ms.IntentAge += rs.IntentCount * diffSeconds
	ms.GCBytesAge += engine.MVCCComputeGCBytesAge(rs.KeyBytes+rs.ValBytes-rs.LiveBytes, diffSeconds)
	ms.MergeStats(e, rs.raftID)
}
Exemple #3
0
// MergeMVCCStats merges the results of an MVCC operation or series of
// MVCC operations into the range's stats. The intent age is augmented
// by multiplying the previous intent count by the elapsed nanos since
// the last update to range stats. Stats are stored to the underlying
// engine and the rangeStats MVCCStats updated to reflect merged totals.
func (rs *rangeStats) MergeMVCCStats(e engine.Engine, ms *engine.MVCCStats, nowNanos int64) error {
	rs.Lock()
	defer rs.Unlock()
	// Augment the current intent age.
	diffSeconds := nowNanos/1E9 - rs.LastUpdateNanos/1E9
	ms.LastUpdateNanos = nowNanos
	ms.IntentAge += rs.IntentCount * diffSeconds
	ms.GCBytesAge += engine.MVCCComputeGCBytesAge(rs.KeyBytes+rs.ValBytes-rs.LiveBytes, diffSeconds)
	rs.MVCCStats.Add(ms)
	return engine.MVCCSetRangeStats(e, rs.rangeID, &rs.MVCCStats)
}
Exemple #4
0
// ComputeStatsForRange computes the stats for a given range by
// iterating over all key ranges for the given range that should
// be accounted for in its stats.
func ComputeStatsForRange(d *roachpb.RangeDescriptor, e engine.Engine, nowNanos int64) (engine.MVCCStats, error) {
	iter := e.NewIterator(nil)
	defer iter.Close()

	ms := engine.MVCCStats{}
	for _, r := range makeReplicatedKeyRanges(d) {
		msDelta, err := iter.ComputeStats(r.start, r.end, nowNanos)
		if err != nil {
			return engine.MVCCStats{}, err
		}
		ms.Add(msDelta)
	}
	return ms, nil
}
Exemple #5
0
// ComputeMVCCStats immediately computes correct total MVCC usage statistics
// for the store, returning the computed values (but without modifying the
// store).
func (s *Store) ComputeMVCCStats() (engine.MVCCStats, error) {
	var totalStats engine.MVCCStats
	var err error

	visitor := newStoreRangeSet(s)
	now := s.Clock().PhysicalNow()
	visitor.Visit(func(r *Replica) bool {
		var stats engine.MVCCStats
		stats, err = ComputeStatsForRange(r.Desc(), s.Engine(), now)
		if err != nil {
			return false
		}
		totalStats.Add(stats)
		return true
	})
	return totalStats, err
}
Exemple #6
0
func copySeqCache(
	e engine.Engine,
	ms *engine.MVCCStats,
	srcID, dstID roachpb.RangeID,
	keyMin, keyMax engine.MVCCKey,
) (int, error) {
	var scratch [64]byte
	var count int
	var meta engine.MVCCMetadata
	// TODO(spencer): look into making this an MVCCIteration and writing
	// the values using MVCC so we can avoid the ugliness of updating
	// the MVCCStats by hand below.
	err := e.Iterate(keyMin, keyMax,
		func(kv engine.MVCCKeyValue) (bool, error) {
			// Decode the key, skipping on error. Otherwise, write it to the
			// corresponding key in the new cache.
			txnID, err := decodeAbortCacheMVCCKey(kv.Key, scratch[:0])
			if err != nil {
				return false, util.Errorf("could not decode an abort cache key %s: %s", kv.Key, err)
			}
			key := keys.AbortCacheKey(dstID, txnID)
			encKey := engine.MakeMVCCMetadataKey(key)
			// Decode the MVCCMetadata value.
			if err := proto.Unmarshal(kv.Value, &meta); err != nil {
				return false, util.Errorf("could not decode mvcc metadata %s [% x]: %s", kv.Key, kv.Value, err)
			}
			value := meta.Value()
			value.ClearChecksum()
			value.InitChecksum(key)
			meta.RawBytes = value.RawBytes

			keyBytes, valBytes, err := engine.PutProto(e, encKey, &meta)
			if err != nil {
				return false, err
			}
			count++
			if ms != nil {
				ms.SysBytes += keyBytes + valBytes
				ms.SysCount++
			}
			return false, nil
		})
	return count, err
}
func copySeqCache(
	e engine.Engine,
	ms *engine.MVCCStats,
	srcID, dstID roachpb.RangeID,
	keyMin, keyMax engine.MVCCKey,
) (int, error) {
	var scratch [64]byte
	var count int
	err := e.Iterate(keyMin, keyMax,
		func(kv engine.MVCCKeyValue) (bool, error) {
			// Decode the key into a cmd, skipping on error. Otherwise,
			// write it to the corresponding key in the new cache.
			txnID, epoch, seq, err := decodeSequenceCacheMVCCKey(kv.Key, scratch[:0])
			if err != nil {
				return false, util.Errorf("could not decode a sequence cache key %s: %s",
					kv.Key, err)
			}
			key := keys.SequenceCacheKey(dstID, txnID, epoch, seq)
			encKey := engine.MakeMVCCMetadataKey(key)
			// Decode the value, update the checksum and re-encode.
			meta := &engine.MVCCMetadata{}
			if err := proto.Unmarshal(kv.Value, meta); err != nil {
				return false, util.Errorf("could not decode sequence cache value %s [% x]: %s",
					kv.Key, kv.Value, err)
			}
			value := meta.Value()
			value.ClearChecksum()
			value.InitChecksum(key)
			meta.RawBytes = value.RawBytes

			keyBytes, valBytes, err := engine.PutProto(e, encKey, meta)
			if err != nil {
				return false, err
			}
			count++
			if ms != nil {
				ms.SysBytes += keyBytes + valBytes
				ms.SysCount++
			}
			return false, nil
		})
	return count, err
}
// TestStoreRangeSplitStats starts by splitting the system keys from user-space
// keys and verifying that the user space side of the split (which is empty),
// has all zeros for stats. It then writes random data to the user space side,
// splits it halfway and verifies the two splits have stats exactly equaling
// the pre-split.
func TestStoreRangeSplitStats(t *testing.T) {
	defer leaktest.AfterTest(t)()
	defer config.TestingDisableTableSplits()()
	store, stopper, manual := createTestStore(t)
	defer stopper.Stop()

	// Split the range after the last table data key.
	keyPrefix := keys.MakeTablePrefix(keys.MaxReservedDescID + 1)
	keyPrefix = keys.MakeNonColumnKey(keyPrefix)
	args := adminSplitArgs(roachpb.KeyMin, keyPrefix)
	if _, pErr := client.SendWrapped(rg1(store), nil, &args); pErr != nil {
		t.Fatal(pErr)
	}
	// Verify empty range has empty stats.
	rng := store.LookupReplica(keyPrefix, nil)
	// NOTE that this value is expected to change over time, depending on what
	// we store in the sys-local keyspace. Update it accordingly for this test.
	if err := verifyRangeStats(store.Engine(), rng.RangeID, engine.MVCCStats{LastUpdateNanos: manual.UnixNano()}); err != nil {
		t.Fatal(err)
	}

	// Write random data.
	writeRandomDataToRange(t, store, rng.RangeID, keyPrefix)

	// Get the range stats now that we have data.
	snap := store.Engine().NewSnapshot()
	defer snap.Close()
	var ms engine.MVCCStats
	if err := engine.MVCCGetRangeStats(context.Background(), snap, rng.RangeID, &ms); err != nil {
		t.Fatal(err)
	}
	if err := verifyRecomputedStats(snap, rng.Desc(), ms, manual.UnixNano()); err != nil {
		t.Fatalf("failed to verify range's stats before split: %v", err)
	}

	manual.Increment(100)

	// Split the range at approximate halfway point ("Z" in string "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz").
	midKey := append([]byte(nil), keyPrefix...)
	midKey = append(midKey, []byte("Z")...)
	midKey = keys.MakeNonColumnKey(midKey)
	args = adminSplitArgs(keyPrefix, midKey)
	if _, pErr := client.SendWrappedWith(rg1(store), nil, roachpb.Header{
		RangeID: rng.RangeID,
	}, &args); pErr != nil {
		t.Fatal(pErr)
	}

	snap = store.Engine().NewSnapshot()
	defer snap.Close()
	var msLeft, msRight engine.MVCCStats
	if err := engine.MVCCGetRangeStats(context.Background(), snap, rng.RangeID, &msLeft); err != nil {
		t.Fatal(err)
	}
	rngRight := store.LookupReplica(midKey, nil)
	if err := engine.MVCCGetRangeStats(context.Background(), snap, rngRight.RangeID, &msRight); err != nil {
		t.Fatal(err)
	}

	// The stats should be exactly equal when added.
	expMS := engine.MVCCStats{
		LiveBytes:   msLeft.LiveBytes + msRight.LiveBytes,
		KeyBytes:    msLeft.KeyBytes + msRight.KeyBytes,
		ValBytes:    msLeft.ValBytes + msRight.ValBytes,
		IntentBytes: msLeft.IntentBytes + msRight.IntentBytes,
		LiveCount:   msLeft.LiveCount + msRight.LiveCount,
		KeyCount:    msLeft.KeyCount + msRight.KeyCount,
		ValCount:    msLeft.ValCount + msRight.ValCount,
		IntentCount: msLeft.IntentCount + msRight.IntentCount,
	}
	ms.SysBytes, ms.SysCount = 0, 0
	ms.LastUpdateNanos = 0
	if expMS != ms {
		t.Errorf("expected left and right ranges to equal original: %+v + %+v != %+v", msLeft, msRight, ms)
	}

	// Stats should both have the new timestamp.
	now := manual.UnixNano()
	if lTs := msLeft.LastUpdateNanos; lTs != now {
		t.Errorf("expected left range stats to have new timestamp, want %d, got %d", now, lTs)
	}
	if rTs := msRight.LastUpdateNanos; rTs != now {
		t.Errorf("expected right range stats to have new timestamp, want %d, got %d", now, rTs)
	}

	// Stats should agree with recomputation.
	if err := verifyRecomputedStats(snap, rng.Desc(), msLeft, now); err != nil {
		t.Fatalf("failed to verify left range's stats after split: %v", err)
	}
	if err := verifyRecomputedStats(snap, rngRight.Desc(), msRight, now); err != nil {
		t.Fatalf("failed to verify right range's stats after split: %v", err)
	}
}
Exemple #9
0
// SetStats sets stats wholesale.
func (rs *rangeStats) SetMVCCStats(e engine.Engine, ms engine.MVCCStats) {
	rs.Lock()
	defer rs.Unlock()
	rs.MVCCStats = ms
	ms.SetStats(e, rs.raftID)
}