// CheckConnectBlock performs several checks to confirm connecting the passed // block to the main chain does not violate any rules. An example of some of // the checks performed are ensuring connecting the block would not cause any // duplicate transaction hashes for old transactions that aren't already fully // spent, double spends, exceeding the maximum allowed signature operations // per block, invalid values in relation to the expected block subsidy, or fail // transaction script validation. // // This function is NOT safe for concurrent access. func (b *BlockChain) CheckConnectBlock(block *btcutil.Block) error { prevNode := b.bestChain newNode := newBlockNode(&block.MsgBlock().Header, block.Sha(), block.Height()) if prevNode != nil { newNode.parent = prevNode newNode.workSum.Add(prevNode.workSum, newNode.workSum) } return b.checkConnectBlock(newNode, block) }
// submitBlock submits the passed block to network after ensuring it passes all // of the consensus validation rules. func (m *CPUMiner) submitBlock(block *btcutil.Block) bool { m.submitBlockLock.Lock() defer m.submitBlockLock.Unlock() // Ensure the block is not stale since a new block could have shown up // while the solution was being found. Typically that condition is // detected and all work on the stale block is halted to start work on // a new block, but the check only happens periodically, so it is // possible a block was found and submitted in between. latestHash, _ := m.server.blockManager.chainState.Best() msgBlock := block.MsgBlock() if !msgBlock.Header.PrevBlock.IsEqual(latestHash) { minrLog.Debugf("Block submitted via CPU miner with previous "+ "block %s is stale", msgBlock.Header.PrevBlock) return false } // Process this block using the same rules as blocks coming from other // nodes. This will in turn relay it to the network like normal. isOrphan, err := m.server.blockManager.ProcessBlock(block, blockchain.BFNone) if err != nil { // Anything other than a rule violation is an unexpected error, // so log that error as an internal error. if _, ok := err.(blockchain.RuleError); !ok { minrLog.Errorf("Unexpected error while processing "+ "block submitted via CPU miner: %v", err) return false } minrLog.Debugf("Block submitted via CPU miner rejected: %v", err) return false } if isOrphan { minrLog.Debugf("Block submitted via CPU miner is an orphan") return false } // The block was accepted. coinbaseTx := block.MsgBlock().Transactions[0].TxOut[0] minrLog.Infof("Block submitted via CPU miner accepted (hash %s, "+ "amount %v)", block.Sha(), btcutil.Amount(coinbaseTx.Value)) return true }
// addOrphanBlock adds the passed block (which is already determined to be // an orphan prior calling this function) to the orphan pool. It lazily cleans // up any expired blocks so a separate cleanup poller doesn't need to be run. // It also imposes a maximum limit on the number of outstanding orphan // blocks and will remove the oldest received orphan block if the limit is // exceeded. func (b *BlockChain) addOrphanBlock(block *btcutil.Block) { // Remove expired orphan blocks. for _, oBlock := range b.orphans { if time.Now().After(oBlock.expiration) { b.removeOrphanBlock(oBlock) continue } // Update the oldest orphan block pointer so it can be discarded // in case the orphan pool fills up. if b.oldestOrphan == nil || oBlock.expiration.Before(b.oldestOrphan.expiration) { b.oldestOrphan = oBlock } } // Limit orphan blocks to prevent memory exhaustion. if len(b.orphans)+1 > maxOrphanBlocks { // Remove the oldest orphan to make room for the new one. b.removeOrphanBlock(b.oldestOrphan) b.oldestOrphan = nil } // Protect concurrent access. This is intentionally done here instead // of near the top since removeOrphanBlock does its own locking and // the range iterator is not invalidated by removing map entries. b.orphanLock.Lock() defer b.orphanLock.Unlock() // Insert the block into the orphan map with an expiration time // 1 hour from now. expiration := time.Now().Add(time.Hour) oBlock := &orphanBlock{ block: block, expiration: expiration, } b.orphans[*block.Sha()] = oBlock // Add to previous hash lookup index for faster dependency lookups. prevHash := &block.MsgBlock().Header.PrevBlock b.prevOrphans[*prevHash] = append(b.prevOrphans[*prevHash], oBlock) return }
// IsCheckpointCandidate returns whether or not the passed block is a good // checkpoint candidate. // // The factors used to determine a good checkpoint are: // - The block must be in the main chain // - The block must be at least 'CheckpointConfirmations' blocks prior to the // current end of the main chain // - The timestamps for the blocks before and after the checkpoint must have // timestamps which are also before and after the checkpoint, respectively // (due to the median time allowance this is not always the case) // - The block must not contain any strange transaction such as those with // nonstandard scripts // // The intent is that candidates are reviewed by a developer to make the final // decision and then manually added to the list of checkpoints for a network. func (b *BlockChain) IsCheckpointCandidate(block *btcutil.Block) (bool, error) { // Checkpoints must be enabled. if b.noCheckpoints { return false, fmt.Errorf("checkpoints are disabled") } // A checkpoint must be in the main chain. exists, err := b.db.ExistsSha(block.Sha()) if err != nil { return false, err } if !exists { return false, nil } // A checkpoint must be at least CheckpointConfirmations blocks before // the end of the main chain. blockHeight := block.Height() _, mainChainHeight, err := b.db.NewestSha() if err != nil { return false, err } if blockHeight > (mainChainHeight - CheckpointConfirmations) { return false, nil } // Get the previous block. prevHash := &block.MsgBlock().Header.PrevBlock prevBlock, err := b.db.FetchBlockBySha(prevHash) if err != nil { return false, err } // Get the next block. nextHash, err := b.db.FetchBlockShaByHeight(blockHeight + 1) if err != nil { return false, err } nextBlock, err := b.db.FetchBlockBySha(nextHash) if err != nil { return false, err } // A checkpoint must have timestamps for the block and the blocks on // either side of it in order (due to the median time allowance this is // not always the case). prevTime := prevBlock.MsgBlock().Header.Timestamp curTime := block.MsgBlock().Header.Timestamp nextTime := nextBlock.MsgBlock().Header.Timestamp if prevTime.After(curTime) || nextTime.Before(curTime) { return false, nil } // A checkpoint must have transactions that only contain standard // scripts. for _, tx := range block.Transactions() { if isNonstandardTransaction(tx) { return false, nil } } return true, nil }
// InsertBlock inserts raw block and transaction data from a block into the // database. The first block inserted into the database will be treated as the // genesis block. Every subsequent block insert requires the referenced parent // block to already exist. This is part of the database.Db interface // implementation. func (db *MemDb) InsertBlock(block *btcutil.Block) (int32, error) { db.Lock() defer db.Unlock() if db.closed { return 0, ErrDbClosed } // Reject the insert if the previously reference block does not exist // except in the case there are no blocks inserted yet where the first // inserted block is assumed to be a genesis block. msgBlock := block.MsgBlock() if _, exists := db.blocksBySha[msgBlock.Header.PrevBlock]; !exists { if len(db.blocks) > 0 { return 0, database.ErrPrevShaMissing } } // Build a map of in-flight transactions because some of the inputs in // this block could be referencing other transactions earlier in this // block which are not yet in the chain. txInFlight := map[wire.ShaHash]int{} transactions := block.Transactions() for i, tx := range transactions { txInFlight[*tx.Sha()] = i } // Loop through all transactions and inputs to ensure there are no error // conditions that would prevent them from be inserted into the db. // Although these checks could could be done in the loop below, checking // for error conditions up front means the code below doesn't have to // deal with rollback on errors. newHeight := int32(len(db.blocks)) for i, tx := range transactions { // Two old blocks contain duplicate transactions due to being // mined by faulty miners and accepted by the origin Satoshi // client. Rules have since been added to the ensure this // problem can no longer happen, but the two duplicate // transactions which were originally accepted are forever in // the block chain history and must be dealth with specially. // http://blockexplorer.com/b/91842 // http://blockexplorer.com/b/91880 if newHeight == 91842 && tx.Sha().IsEqual(dupTxHash91842) { continue } if newHeight == 91880 && tx.Sha().IsEqual(dupTxHash91880) { continue } for _, txIn := range tx.MsgTx().TxIn { if isCoinbaseInput(txIn) { continue } // It is acceptable for a transaction input to reference // the output of another transaction in this block only // if the referenced transaction comes before the // current one in this block. prevOut := &txIn.PreviousOutPoint if inFlightIndex, ok := txInFlight[prevOut.Hash]; ok { if i <= inFlightIndex { log.Warnf("InsertBlock: requested hash "+ " of %s does not exist in-flight", tx.Sha()) return 0, database.ErrTxShaMissing } } else { originTxns, exists := db.txns[prevOut.Hash] if !exists { log.Warnf("InsertBlock: requested hash "+ "of %s by %s does not exist", prevOut.Hash, tx.Sha()) return 0, database.ErrTxShaMissing } originTxD := originTxns[len(originTxns)-1] if prevOut.Index > uint32(len(originTxD.spentBuf)) { log.Warnf("InsertBlock: requested hash "+ "of %s with index %d does not "+ "exist", tx.Sha(), prevOut.Index) return 0, database.ErrTxShaMissing } } } // Prevent duplicate transactions in the same block. if inFlightIndex, exists := txInFlight[*tx.Sha()]; exists && inFlightIndex < i { log.Warnf("Block contains duplicate transaction %s", tx.Sha()) return 0, database.ErrDuplicateSha } // Prevent duplicate transactions unless the old one is fully // spent. if txns, exists := db.txns[*tx.Sha()]; exists { txD := txns[len(txns)-1] if !isFullySpent(txD) { log.Warnf("Attempt to insert duplicate "+ "transaction %s", tx.Sha()) return 0, database.ErrDuplicateSha } } } db.blocks = append(db.blocks, msgBlock) db.blocksBySha[*block.Sha()] = newHeight // Insert information about eacj transaction and spend all of the // outputs referenced by the inputs to the transactions. for i, tx := range block.Transactions() { // Insert the transaction data. txD := tTxInsertData{ blockHeight: newHeight, offset: i, spentBuf: make([]bool, len(tx.MsgTx().TxOut)), } db.txns[*tx.Sha()] = append(db.txns[*tx.Sha()], &txD) // Spend all of the inputs. for _, txIn := range tx.MsgTx().TxIn { // Coinbase transaction has no inputs. if isCoinbaseInput(txIn) { continue } // Already checked for existing and valid ranges above. prevOut := &txIn.PreviousOutPoint originTxns := db.txns[prevOut.Hash] originTxD := originTxns[len(originTxns)-1] originTxD.spentBuf[prevOut.Index] = true } } return newHeight, nil }
// InsertBlock inserts raw block and transaction data from a block into the // database. The first block inserted into the database will be treated as the // genesis block. Every subsequent block insert requires the referenced parent // block to already exist. func (db *LevelDb) InsertBlock(block *btcutil.Block) (height int32, rerr error) { db.dbLock.Lock() defer db.dbLock.Unlock() defer func() { if rerr == nil { rerr = db.processBatches() } else { db.lBatch().Reset() } }() blocksha := block.Sha() mblock := block.MsgBlock() rawMsg, err := block.Bytes() if err != nil { log.Warnf("Failed to obtain raw block sha %v", blocksha) return 0, err } txloc, err := block.TxLoc() if err != nil { log.Warnf("Failed to obtain raw block sha %v", blocksha) return 0, err } // Insert block into database newheight, err := db.insertBlockData(blocksha, &mblock.Header.PrevBlock, rawMsg) if err != nil { log.Warnf("Failed to insert block %v %v %v", blocksha, &mblock.Header.PrevBlock, err) return 0, err } // At least two blocks in the long past were generated by faulty // miners, the sha of the transaction exists in a previous block, // detect this condition and 'accept' the block. for txidx, tx := range mblock.Transactions { txsha, err := block.TxSha(txidx) if err != nil { log.Warnf("failed to compute tx name block %v idx %v err %v", blocksha, txidx, err) return 0, err } spentbuflen := (len(tx.TxOut) + 7) / 8 spentbuf := make([]byte, spentbuflen, spentbuflen) if len(tx.TxOut)%8 != 0 { for i := uint(len(tx.TxOut) % 8); i < 8; i++ { spentbuf[spentbuflen-1] |= (byte(1) << i) } } err = db.insertTx(txsha, newheight, txloc[txidx].TxStart, txloc[txidx].TxLen, spentbuf) if err != nil { log.Warnf("block %v idx %v failed to insert tx %v %v err %v", blocksha, newheight, &txsha, txidx, err) return 0, err } // Some old blocks contain duplicate transactions // Attempt to cleanly bypass this problem by marking the // first as fully spent. // http://blockexplorer.com/b/91812 dup in 91842 // http://blockexplorer.com/b/91722 dup in 91880 if newheight == 91812 { dupsha, err := wire.NewShaHashFromStr("d5d27987d2a3dfc724e359870c6644b40e497bdc0589a033220fe15429d88599") if err != nil { panic("invalid sha string in source") } if txsha.IsEqual(dupsha) { // marking TxOut[0] as spent po := wire.NewOutPoint(dupsha, 0) txI := wire.NewTxIn(po, []byte("garbage")) var spendtx wire.MsgTx spendtx.AddTxIn(txI) err = db.doSpend(&spendtx) if err != nil { log.Warnf("block %v idx %v failed to spend tx %v %v err %v", blocksha, newheight, &txsha, txidx, err) } } } if newheight == 91722 { dupsha, err := wire.NewShaHashFromStr("e3bf3d07d4b0375638d5f1db5255fe07ba2c4cb067cd81b84ee974b6585fb468") if err != nil { panic("invalid sha string in source") } if txsha.IsEqual(dupsha) { // marking TxOut[0] as spent po := wire.NewOutPoint(dupsha, 0) txI := wire.NewTxIn(po, []byte("garbage")) var spendtx wire.MsgTx spendtx.AddTxIn(txI) err = db.doSpend(&spendtx) if err != nil { log.Warnf("block %v idx %v failed to spend tx %v %v err %v", blocksha, newheight, &txsha, txidx, err) } } } err = db.doSpend(tx) if err != nil { log.Warnf("block %v idx %v failed to spend tx %v %v err %v", blocksha, newheight, txsha, txidx, err) return 0, err } } return newheight, nil }
// maybeAcceptBlock potentially accepts a block into the memory block chain. // It performs several validation checks which depend on its position within // the block chain before adding it. The block is expected to have already gone // through ProcessBlock before calling this function with it. // // The flags modify the behavior of this function as follows: // - BFDryRun: The memory chain index will not be pruned and no accept // notification will be sent since the block is not being accepted. // // The flags are also passed to checkBlockContext and connectBestChain. See // their documentation for how the flags modify their behavior. func (b *BlockChain) maybeAcceptBlock(block *btcutil.Block, flags BehaviorFlags) error { dryRun := flags&BFDryRun == BFDryRun // Get a block node for the block previous to this one. Will be nil // if this is the genesis block. prevNode, err := b.getPrevNodeFromBlock(block) if err != nil { log.Errorf("getPrevNodeFromBlock: %v", err) return err } // The height of this block is one more than the referenced previous // block. blockHeight := int32(0) if prevNode != nil { blockHeight = prevNode.height + 1 } block.SetHeight(blockHeight) // The block must pass all of the validation rules which depend on the // position of the block within the block chain. err = b.checkBlockContext(block, prevNode, flags) if err != nil { return err } // Prune block nodes which are no longer needed before creating // a new node. if !dryRun { err = b.pruneBlockNodes() if err != nil { return err } } // Create a new block node for the block and add it to the in-memory // block chain (could be either a side chain or the main chain). blockHeader := &block.MsgBlock().Header newNode := newBlockNode(blockHeader, block.Sha(), blockHeight) if prevNode != nil { newNode.parent = prevNode newNode.height = blockHeight newNode.workSum.Add(prevNode.workSum, newNode.workSum) } // Connect the passed block to the chain while respecting proper chain // selection according to the chain with the most proof of work. This // also handles validation of the transaction scripts. err = b.connectBestChain(newNode, block, flags) if err != nil { return err } // Notify the caller that the new block was accepted into the block // chain. The caller would typically want to react by relaying the // inventory to other peers. if !dryRun { b.sendNotification(NTBlockAccepted, block) } return nil }
// connectBestChain handles connecting the passed block to the chain while // respecting proper chain selection according to the chain with the most // proof of work. In the typical case, the new block simply extends the main // chain. However, it may also be extending (or creating) a side chain (fork) // which may or may not end up becoming the main chain depending on which fork // cumulatively has the most proof of work. // // The flags modify the behavior of this function as follows: // - BFFastAdd: Avoids the call to checkConnectBlock which does several // expensive transaction validation operations. // - BFDryRun: Prevents the block from being connected and avoids modifying the // state of the memory chain index. Also, any log messages related to // modifying the state are avoided. func (b *BlockChain) connectBestChain(node *blockNode, block *btcutil.Block, flags BehaviorFlags) error { fastAdd := flags&BFFastAdd == BFFastAdd dryRun := flags&BFDryRun == BFDryRun // We haven't selected a best chain yet or we are extending the main // (best) chain with a new block. This is the most common case. if b.bestChain == nil || node.parent.hash.IsEqual(b.bestChain.hash) { // Perform several checks to verify the block can be connected // to the main chain (including whatever reorganization might // be necessary to get this node to the main chain) without // violating any rules and without actually connecting the // block. if !fastAdd { err := b.checkConnectBlock(node, block) if err != nil { return err } } // Don't connect the block if performing a dry run. if dryRun { return nil } // Connect the block to the main chain. err := b.connectBlock(node, block) if err != nil { return err } // Connect the parent node to this node. if node.parent != nil { node.parent.children = append(node.parent.children, node) } return nil } if fastAdd { log.Warnf("fastAdd set in the side chain case? %v\n", block.Sha()) } // We're extending (or creating) a side chain which may or may not // become the main chain, but in either case we need the block stored // for future processing, so add the block to the side chain holding // cache. if !dryRun { log.Debugf("Adding block %v to side chain cache", node.hash) } b.blockCache[*node.hash] = block b.index[*node.hash] = node // Connect the parent node to this node. node.inMainChain = false node.parent.children = append(node.parent.children, node) // Remove the block from the side chain cache and disconnect it from the // parent node when the function returns when running in dry run mode. if dryRun { defer func() { children := node.parent.children children = removeChildNode(children, node) node.parent.children = children delete(b.index, *node.hash) delete(b.blockCache, *node.hash) }() } // We're extending (or creating) a side chain, but the cumulative // work for this new side chain is not enough to make it the new chain. if node.workSum.Cmp(b.bestChain.workSum) <= 0 { // Skip Logging info when the dry run flag is set. if dryRun { return nil } // Find the fork point. fork := node for ; fork.parent != nil; fork = fork.parent { if fork.inMainChain { break } } // Log information about how the block is forking the chain. if fork.hash.IsEqual(node.parent.hash) { log.Infof("FORK: Block %v forks the chain at height %d"+ "/block %v, but does not cause a reorganize", node.hash, fork.height, fork.hash) } else { log.Infof("EXTEND FORK: Block %v extends a side chain "+ "which forks the chain at height %d/block %v", node.hash, fork.height, fork.hash) } return nil } // We're extending (or creating) a side chain and the cumulative work // for this new side chain is more than the old best chain, so this side // chain needs to become the main chain. In order to accomplish that, // find the common ancestor of both sides of the fork, disconnect the // blocks that form the (now) old fork from the main chain, and attach // the blocks that form the new chain to the main chain starting at the // common ancenstor (the point where the chain forked). detachNodes, attachNodes := b.getReorganizeNodes(node) // Reorganize the chain. if !dryRun { log.Infof("REORGANIZE: Block %v is causing a reorganize.", node.hash) } err := b.reorganizeChain(detachNodes, attachNodes, flags) if err != nil { return err } return nil }