Exemple #1
0
func writeHC(b *bytes.Buffer, hc *HostConfig, p *sign.Node) error {
	// Node{name, pubkey, x_hat, children}
	if p == nil {
		return errors.New("node does not exist")
	}
	prk, _ := p.PrivKey.MarshalBinary()
	pbk, _ := p.PubKey.MarshalBinary()
	fmt.Fprint(b, "{\"name\":", "\""+p.Name()+"\",")
	fmt.Fprint(b, "\"prikey\":", "\""+string(hex.EncodeToString(prk))+"\",")
	fmt.Fprint(b, "\"pubkey\":", "\""+string(hex.EncodeToString(pbk))+"\",")

	// recursively format children
	fmt.Fprint(b, "\"children\":[")
	i := 0
	for _, n := range p.Children(0) {
		if i != 0 {
			b.WriteString(", ")
		}
		c := hc.Hosts[n.Name()]
		err := writeHC(b, hc, c)
		if err != nil {
			b.WriteString("\"" + n.Name() + "\"")
		}
		i++
	}
	fmt.Fprint(b, "]}")
	return nil
}
Exemple #2
0
// dijkstra is actually implemented as BFS right now because it is equivalent
// when edge weights are all 1.
func dijkstra(m map[string]*sign.Node, root *sign.Node) {
	l := list.New()
	visited := make(map[string]bool)
	l.PushFront(root)
	visited[root.Name()] = true
	for e := l.Front(); e != nil; e = l.Front() {
		l.Remove(e)
		sn := e.Value.(*sign.Node)
		// make all unvisited peers children
		// and mark them as visited
		for name, conn := range sn.Peers() {
			// visited means it is already on the tree.
			if visited[name] {
				continue
			}
			visited[name] = true
			// add the associated peer/connection as a child
			sn.AddChildren(0, conn.Name())
			cn, ok := m[name]
			if !ok {
				panic("error getting connection from map")
			}
			peers := cn.Peers()
			pconn, ok := peers[sn.Name()]
			if !ok {
				panic("parent connection doesn't exist: not bi-directional")
			}
			cn.AddParent(0, pconn.Name())
			l.PushFront(cn)
		}
	}
}
Exemple #3
0
func traverseTree(p *sign.Node,
	hc *HostConfig,
	f func(*sign.Node, *HostConfig) error) error {
	if err := f(p, hc); err != nil {
		return err
	}
	for _, cn := range p.Children(0) {
		c := hc.Hosts[cn.Name()]
		err := traverseTree(c, hc, f)
		if err != nil {
			return err
		}
	}
	return nil
}
Exemple #4
0
// ConstructTree does a depth-first construction of the tree specified in the
// config file. ConstructTree must be called AFTER populating the HostConfig with
// ALL the possible hosts.
func ConstructTree(
	n *Node,
	hc *HostConfig,
	parent string,
	suite abstract.Suite,
	rand cipher.Stream,
	hosts map[string]coconet.Host,
	nameToAddr map[string]string,
	opts ConfigOptions) (int, error) {
	// passes up its X_hat, and/or an error

	// get the name associated with this address
	name, ok := nameToAddr[n.Name]
	if !ok {
		fmt.Println("unknown name in address book:", n.Name)
		return 0, errors.New("unknown name in address book")
	}

	// generate indicates whether we should generate the signing
	// node for this hostname
	generate := opts.Host == "" || opts.Host == name

	// check to make sure the this hostname is in the tree
	// it can be backed by a nil pointer
	h, ok := hosts[name]
	if !ok {
		fmt.Println("unknown host in tree:", name)
		return 0, errors.New("unknown host in tree")
	}

	var prikey abstract.Secret
	var pubkey abstract.Point
	var sn *sign.Node

	// if the JSON holds the fields field is set load from there
	if len(n.PubKey) != 0 {
		// log.Println("decoding point")
		encoded, err := hex.DecodeString(string(n.PubKey))
		if err != nil {
			log.Print("failed to decode hex from encoded")
			return 0, err
		}
		pubkey = suite.Point()
		err = pubkey.UnmarshalBinary(encoded)
		if err != nil {
			log.Print("failed to decode point from hex")
			return 0, err
		}
		// log.Println("decoding point")
		encoded, err = hex.DecodeString(string(n.PriKey))
		if err != nil {
			log.Print("failed to decode hex from encoded")
			return 0, err
		}
		prikey = suite.Secret()
		err = prikey.UnmarshalBinary(encoded)
		if err != nil {
			log.Print("failed to decode point from hex")
			return 0, err
		}
	}
	if generate {
		if prikey != nil {
			// if we have been given a private key load that
			aux := sign.NewKeyedNode(h, suite, prikey)
			aux.GenSetPool()
			hc.SNodes = append(hc.SNodes, aux)
			h.SetPubKey(pubkey)
		} else {
			// otherwise generate a random new one
			sn := sign.NewNode(h, suite, rand)
			sn.GenSetPool()
			hc.SNodes = append(hc.SNodes, sn)
			h.SetPubKey(sn.PubKey)
		}
		sn = hc.SNodes[len(hc.SNodes)-1]
		hc.Hosts[name] = sn
		if prikey == nil {
			prikey = sn.PrivKey
			pubkey = sn.PubKey
		}
		// log.Println("pubkey:", sn.PubKey)
		// log.Println("given: ", pubkey)
	}
	// if the parent of this call is empty then this must be the root node
	if parent != "" && generate {
		h.AddParent(0, parent)
	}
	// log.Println("name: ", n.Name)
	// log.Println("prikey: ", prikey)
	// log.Println("pubkey: ", pubkey)
	height := 0
	for _, c := range n.Children {
		// connect this node to its children
		cname, ok := nameToAddr[c.Name]
		if !ok {
			fmt.Println("unknown name in address book:", n.Name)
			return 0, errors.New("unknown name in address book")
		}

		if generate {
			h.AddChildren(0, cname)
		}

		// recursively construct the children
		// log.Print("ConstructTree:", h, suite, rand, hosts, nameToAddr, opts)
		h, err := ConstructTree(c, hc, name, suite, rand, hosts, nameToAddr, opts)
		if err != nil {
			return 0, err
		}
		height = max(h+1, height)
		// if generating all csn will be availible
	}
	if generate {
		sn.Height = height
	}
	// log.Println("name: ", n.Name)
	// log.Println("final x_hat: ", x_hat)
	// log.Println("final pubkey: ", pubkey)
	return height, nil
}