func writeHC(b *bytes.Buffer, hc *HostConfig, p *sign.Node) error { // Node{name, pubkey, x_hat, children} if p == nil { return errors.New("node does not exist") } prk, _ := p.PrivKey.MarshalBinary() pbk, _ := p.PubKey.MarshalBinary() fmt.Fprint(b, "{\"name\":", "\""+p.Name()+"\",") fmt.Fprint(b, "\"prikey\":", "\""+string(hex.EncodeToString(prk))+"\",") fmt.Fprint(b, "\"pubkey\":", "\""+string(hex.EncodeToString(pbk))+"\",") // recursively format children fmt.Fprint(b, "\"children\":[") i := 0 for _, n := range p.Children(0) { if i != 0 { b.WriteString(", ") } c := hc.Hosts[n.Name()] err := writeHC(b, hc, c) if err != nil { b.WriteString("\"" + n.Name() + "\"") } i++ } fmt.Fprint(b, "]}") return nil }
// dijkstra is actually implemented as BFS right now because it is equivalent // when edge weights are all 1. func dijkstra(m map[string]*sign.Node, root *sign.Node) { l := list.New() visited := make(map[string]bool) l.PushFront(root) visited[root.Name()] = true for e := l.Front(); e != nil; e = l.Front() { l.Remove(e) sn := e.Value.(*sign.Node) // make all unvisited peers children // and mark them as visited for name, conn := range sn.Peers() { // visited means it is already on the tree. if visited[name] { continue } visited[name] = true // add the associated peer/connection as a child sn.AddChildren(0, conn.Name()) cn, ok := m[name] if !ok { panic("error getting connection from map") } peers := cn.Peers() pconn, ok := peers[sn.Name()] if !ok { panic("parent connection doesn't exist: not bi-directional") } cn.AddParent(0, pconn.Name()) l.PushFront(cn) } } }
func traverseTree(p *sign.Node, hc *HostConfig, f func(*sign.Node, *HostConfig) error) error { if err := f(p, hc); err != nil { return err } for _, cn := range p.Children(0) { c := hc.Hosts[cn.Name()] err := traverseTree(c, hc, f) if err != nil { return err } } return nil }
// ConstructTree does a depth-first construction of the tree specified in the // config file. ConstructTree must be called AFTER populating the HostConfig with // ALL the possible hosts. func ConstructTree( n *Node, hc *HostConfig, parent string, suite abstract.Suite, rand cipher.Stream, hosts map[string]coconet.Host, nameToAddr map[string]string, opts ConfigOptions) (int, error) { // passes up its X_hat, and/or an error // get the name associated with this address name, ok := nameToAddr[n.Name] if !ok { fmt.Println("unknown name in address book:", n.Name) return 0, errors.New("unknown name in address book") } // generate indicates whether we should generate the signing // node for this hostname generate := opts.Host == "" || opts.Host == name // check to make sure the this hostname is in the tree // it can be backed by a nil pointer h, ok := hosts[name] if !ok { fmt.Println("unknown host in tree:", name) return 0, errors.New("unknown host in tree") } var prikey abstract.Secret var pubkey abstract.Point var sn *sign.Node // if the JSON holds the fields field is set load from there if len(n.PubKey) != 0 { // log.Println("decoding point") encoded, err := hex.DecodeString(string(n.PubKey)) if err != nil { log.Print("failed to decode hex from encoded") return 0, err } pubkey = suite.Point() err = pubkey.UnmarshalBinary(encoded) if err != nil { log.Print("failed to decode point from hex") return 0, err } // log.Println("decoding point") encoded, err = hex.DecodeString(string(n.PriKey)) if err != nil { log.Print("failed to decode hex from encoded") return 0, err } prikey = suite.Secret() err = prikey.UnmarshalBinary(encoded) if err != nil { log.Print("failed to decode point from hex") return 0, err } } if generate { if prikey != nil { // if we have been given a private key load that aux := sign.NewKeyedNode(h, suite, prikey) aux.GenSetPool() hc.SNodes = append(hc.SNodes, aux) h.SetPubKey(pubkey) } else { // otherwise generate a random new one sn := sign.NewNode(h, suite, rand) sn.GenSetPool() hc.SNodes = append(hc.SNodes, sn) h.SetPubKey(sn.PubKey) } sn = hc.SNodes[len(hc.SNodes)-1] hc.Hosts[name] = sn if prikey == nil { prikey = sn.PrivKey pubkey = sn.PubKey } // log.Println("pubkey:", sn.PubKey) // log.Println("given: ", pubkey) } // if the parent of this call is empty then this must be the root node if parent != "" && generate { h.AddParent(0, parent) } // log.Println("name: ", n.Name) // log.Println("prikey: ", prikey) // log.Println("pubkey: ", pubkey) height := 0 for _, c := range n.Children { // connect this node to its children cname, ok := nameToAddr[c.Name] if !ok { fmt.Println("unknown name in address book:", n.Name) return 0, errors.New("unknown name in address book") } if generate { h.AddChildren(0, cname) } // recursively construct the children // log.Print("ConstructTree:", h, suite, rand, hosts, nameToAddr, opts) h, err := ConstructTree(c, hc, name, suite, rand, hosts, nameToAddr, opts) if err != nil { return 0, err } height = max(h+1, height) // if generating all csn will be availible } if generate { sn.Height = height } // log.Println("name: ", n.Name) // log.Println("final x_hat: ", x_hat) // log.Println("final pubkey: ", pubkey) return height, nil }