func initGL() (err error) { goph, err := os.Open(texturefiles[0]) if err != nil { panic(err) } defer goph.Close() texture, err = createTexture(goph) gl.ShadeModel(gl.SMOOTH) gl.ClearColor(0, 0, 0, 0.5) gl.ClearDepth(1) gl.Hint(gl.PERSPECTIVE_CORRECTION_HINT, gl.NICEST) gl.BlendFunc(gl.SRC_ALPHA, gl.ONE) // 设置混色函数取得半透明效果 gl.Enable(gl.BLEND) gl.Enable(gl.TEXTURE_2D) rand.Seed(time.Now().Unix()) for loop = 0; loop < num; loop++ { star[loop].angle = 0.0 star[loop].dist = float32(loop) / num * 5 //fmt.Println(loop, star[loop].dist) star[loop].r = uint8(rand.Int() % 256) star[loop].g = uint8(rand.Int() % 256) star[loop].b = uint8(rand.Int() % 256) } return }
func initGL() (err error) { if err = loadTextures(); err != nil { return } gl.ShadeModel(gl.SMOOTH) /// 启用阴影平滑,设置平滑着色,阴影平滑通过多边形精细的混合色彩,并对外部光进行平滑 /* 色彩值的范围从0.0f到1.0f。0.0f代表最黑的情况,1.0f就是最亮的情况。 glClearColor 后的第一个参数是Red Intensity(红色分量),第二个是绿色,第三个是蓝色。最大值也是1.0f,代表特定颜色分量的最亮情况。 最后一个参数是Alpha值。当它用来清除屏幕的时候,我们不用关心第四个数字。现在让它为0.0f. */ gl.ClearColor(0, 0, 0, 0) ///设置清除屏幕时所用的颜色,黑色背景 /* 接下来的三行必须做的是关于depth buffer(深度缓存)的。将深度缓存设想为屏幕后面的层。 深度缓存不断的对物体进入屏幕内部有多深进行跟踪。 本程序其实没有真正使用深度缓存,但几乎所有在屏幕上显示3D场景OpenGL程序都使用深度缓存。 它的排序决定那个物体先画。这样您就不会将一个圆形后面的正方形画到圆形上来。深度缓存是OpenGL十分重要的部分。 */ gl.ClearDepth(1) ///设置深度缓存 gl.DepthFunc(gl.LEQUAL) ///所作深度测试的类型 gl.Hint(gl.PERSPECTIVE_CORRECTION_HINT, gl.NICEST) ///告诉系统对透视进行修正,这会十分轻微的影响性能。但使得透视图看起来好一点 gl.Enable(gl.DEPTH_TEST) ///启用深度测试 gl.Enable(gl.TEXTURE_2D) ///启用纹理映射 return }
func initGL() (err error) { if err = loadTextures(); err != nil { return } gl.ShadeModel(gl.SMOOTH) gl.ClearColor(0, 0, 0, 0) gl.ClearDepth(1) gl.DepthFunc(gl.LEQUAL) gl.Hint(gl.PERSPECTIVE_CORRECTION_HINT, gl.NICEST) gl.Enable(gl.TEXTURE_2D) gl.Enable(gl.DEPTH_TEST) //alpha通道的值为 0.0意味着物体材质是完全透明的。1.0 则意味着完全不透明 //以全亮度绘制此物体,并对其进行50%的alpha混合(半透明)。 //当混合选项打开时,此物体将会产生50%的透明效果 gl.Color4f(1, 1, 1, 0.5) //全亮度, 50% Alpha 混合 gl.BlendFunc(gl.SRC_ALPHA, gl.ONE) //基于源象素alpha通道值的半透明混合函数 gl.Lightfv(gl.LIGHT1, gl.AMBIENT, ambient) gl.Lightfv(gl.LIGHT1, gl.AMBIENT, diffuse) gl.Lightfv(gl.LIGHT1, gl.POSITION, lightpos) gl.Enable(gl.LIGHT1) return }
// program & OpenGL initialization func Init() { gl.ShadeModel(gl.SMOOTH) // 启用阴影平滑 gl.ClearColor(0.0, 0.0, 0.0, 0.0) // 黑色背景 gl.ClearDepth(1.0) // 设置深度缓存 gl.Enable(gl.DEPTH_TEST) // 启用深度测试 gl.DepthFunc(gl.LEQUAL) // 所作深度测试的类型 gl.Hint(gl.PERSPECTIVE_CORRECTION_HINT, gl.NICEST) // 告诉系统对透视进行修正 }
func initGL() { gl.ShadeModel(gl.SMOOTH) gl.ClearColor(0, 0, 0, 0) gl.ClearDepth(1) gl.Enable(gl.DEPTH_TEST) gl.DepthFunc(gl.LEQUAL) gl.Hint(gl.PERSPECTIVE_CORRECTION_HINT, gl.NICEST) }
func initGL() { gl.ShadeModel(gl.SMOOTH) /// 设置平滑着色?(是默认的) //gl.ShadeModel(gl.FLAT); /// 即单色,使用最后一个点所用的颜色 gl.ClearColor(0, 0, 0, 0) gl.ClearDepth(1) gl.Enable(gl.DEPTH_TEST) gl.DepthFunc(gl.LEQUAL) gl.Hint(gl.PERSPECTIVE_CORRECTION_HINT, gl.NICEST) }
func copiedInit() { gl.ClearColor(0, 0, 0, 0) gl.ShadeModel(gl.FLAT) gl.Enable(gl.CULL_FACE) gl.Viewport(320, 240, 640, 480) gl.MatrixMode(gl.PROJECTION) gl.LoadIdentity() gl.Frustum(-1, 1, -1, 1, 1.5, 20) gl.MatrixMode(gl.MODELVIEW) }
func setupGL(w, h int) { gl.Viewport(0, 0, w, h) gl.MatrixMode(gl.PROJECTION) gl.LoadIdentity() gl.Ortho(0, float64(w), float64(h), 0, 0, 1) gl.ShadeModel(gl.SMOOTH) gl.ClearColor(1, 1, 1, 0) gl.Enable(gl.BLEND) gl.BlendFunc(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA) gl.Disable(gl.DEPTH_TEST) gl.Hint(gl.LINE_SMOOTH_HINT|gl.LINE_SMOOTH_HINT, gl.NICEST) }
func initGL() (err error) { if err = loadTextures(); err != nil { return } gl.ShadeModel(gl.SMOOTH) gl.ClearColor(0, 0, 0, 0) gl.ClearDepth(1) gl.DepthFunc(gl.LEQUAL) gl.Hint(gl.PERSPECTIVE_CORRECTION_HINT, gl.NICEST) gl.Enable(gl.DEPTH_TEST) gl.Enable(gl.TEXTURE_2D) return }
func initGL() (err error) { gl.Init() gl.ShadeModel(gl.SMOOTH) gl.ClearColor(0, 0, 0, 0) gl.ClearDepth(1) gl.BlendFunc(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA) gl.Hint(gl.PERSPECTIVE_CORRECTION_HINT, gl.NICEST) gl.DepthFunc(gl.NEVER) gl.Enable(gl.BLEND) gl.DepthMask(true) //loadShader() return }
func InitGL(width, height int) { //enable vertical sync if the card supports it glfw.SetSwapInterval(1) gl.ShadeModel(gl.SMOOTH) gl.ClearColor(0.1, 0.1, 0.1, 1.0) gl.Enable(gl.TEXTURE_2D) gl.Enable(gl.CULL_FACE) gl.Enable(gl.DEPTH_TEST) gl.DepthFunc(gl.LEQUAL) gl.Hint(gl.PERSPECTIVE_CORRECTION_HINT, gl.NICEST) SetViewport(width, height) glfw.SetWindowSizeCallback(SetViewport) glfw.SetKeyCallback(OnKey) }
func initGL() (err error) { goph, err := os.Open(texturefiles[0]) if err != nil { panic(err) } defer goph.Close() texture, err = createTexture(goph) gl.ShadeModel(gl.SMOOTH) gl.ClearColor(0, 0, 0, 0) gl.ClearDepth(1) gl.DepthFunc(gl.LEQUAL) gl.Hint(gl.PERSPECTIVE_CORRECTION_HINT, gl.NICEST) gl.Enable(gl.DEPTH_TEST) gl.Enable(gl.TEXTURE_2D) return }
func initGL() (err error) { if err = loadTextures(); err != nil { return } gl.ShadeModel(gl.SMOOTH) gl.ClearColor(0, 0, 0, 0) gl.ClearDepth(1) gl.DepthFunc(gl.LEQUAL) gl.Hint(gl.PERSPECTIVE_CORRECTION_HINT, gl.NICEST) gl.Enable(gl.DEPTH_TEST) gl.Enable(gl.TEXTURE_2D) gl.Lightfv(gl.LIGHT1, gl.AMBIENT, ambient) gl.Lightfv(gl.LIGHT1, gl.AMBIENT, diffuse) gl.Lightfv(gl.LIGHT1, gl.POSITION, lightpos) gl.Enable(gl.LIGHT1) return }
// initGL initializes GLFW and OpenGL. func initGL() error { err := glfw.Init() if err != nil { return err } glfw.OpenWindowHint(glfw.FsaaSamples, 4) glfw.OpenWindowHint(glfw.WindowNoResize, gl.TRUE) err = glfw.OpenWindow(512, 512, 8, 8, 8, 8, 32, 0, glfw.Windowed) if err != nil { glfw.Terminate() return err } glfw.SetWindowTitle("Meshbuffer 3D example") glfw.SetSwapInterval(1) glfw.SetWindowSizeCallback(onResize) glfw.SetKeyCallback(onKey) gl.Init() if err = glh.CheckGLError(); err != nil { return err } gl.Enable(gl.DEPTH_TEST) gl.Enable(gl.MULTISAMPLE) gl.Disable(gl.LIGHTING) //gl.ClearColor(0.2, 0.2, 0.23, 1.0) gl.ClearColor(0, 0, 0, 1.0) gl.ShadeModel(gl.SMOOTH) gl.LineWidth(2) gl.ClearDepth(1) gl.DepthFunc(gl.LEQUAL) gl.Hint(gl.PERSPECTIVE_CORRECTION_HINT, gl.NICEST) gl.ColorMaterial(gl.FRONT_AND_BACK, gl.AMBIENT_AND_DIFFUSE) return nil }
func initGL() (err error) { goph, err := os.Open(texturefiles) if err != nil { panic(err) } defer goph.Close() texture, err = createTexture(goph) gl.Enable(gl.TEXTURE_2D) gl.BlendFunc(gl.SRC_ALPHA, gl.ONE) // 设置混色函数取得半透明效果 gl.ClearColor(0, 0, 0, 0.0) gl.ClearDepth(1) gl.DepthFunc(gl.LESS) gl.Enable(gl.DEPTH_TEST) gl.ShadeModel(gl.SMOOTH) gl.Hint(gl.PERSPECTIVE_CORRECTION_HINT, gl.NICEST) SetupWorld() return }
func initGL() (err error) { if err = loadTextures(); err != nil { return } gl.ShadeModel(gl.SMOOTH) ///阴影模式设为平滑阴影 gl.ClearColor(0, 0, 0, 0) ///背景色设为黑色 gl.ClearDepth(1) gl.DepthFunc(gl.LEQUAL) gl.Hint(gl.PERSPECTIVE_CORRECTION_HINT, gl.NICEST) ///启用优化透视计算 gl.Enable(gl.DEPTH_TEST) ///启用深度测试 gl.Enable(gl.TEXTURE_2D) ///启用2D纹理映射 /* 创建光源的数组。我们将使用两种不同的光。 第一种称为环境光。环境光来自于四面八方。所有场景中的对象都处于环境光的照射中。 第二种类型的光源叫做漫射光。漫射光由特定的光源产生,并在您的场景中的对象表面上产生反射。 处于漫射光直接照射下的任何对象表面都变得很亮,而几乎未被照射到的区域就显得要暗一些。 这样在我们所创建的木板箱的棱边上就会产生的很不错的阴影效果。 创建光源的过程和颜色的创建完全一致。前三个参数分别是RGB三色分量,最后一个是alpha通道参数。 因此,下面的代码我们得到的是半亮(0.5f)的白色环境光。如果没有环境光,未被漫射光照到的地方会变得十分黑暗。 */ gl.Lightfv(gl.LIGHT1, gl.AMBIENT, ambient) //设置环境光(半亮度环境光) //gl.Lightfv(gl.LIGHT1, gl.AMBIENT, diffuse); //设置漫射光 gl.Lightfv(gl.LIGHT1, gl.DIFFUSE, diffuse) //设置漫射光(全亮度白光) gl.Lightfv(gl.LIGHT1, gl.POSITION, lightpos) //设置光源位置 gl.Enable(gl.LIGHT1) //启用一号光源 /* 光源的位置。前三个参数和glTranslate中的一样。依次分别是XYZ轴上的位移。 由于我们想要光线直接照射在木箱的正面,所以XY轴上的位移都是0.0f。 第三个值是Z轴上的位移。为了保证光线总在木箱的前面,所以我们将光源的位置朝着观察者(就是您哪。)挪出屏幕。 我们通常将屏幕也就是显示器的屏幕玻璃所处的位置称作Z轴的0.0f点。所以Z轴上的位移最后定为2.0f。 假如您能够看见光源的话,它就浮在您显示器的前方。当然,如果木箱不在显示器的屏幕玻璃后面的话,您也无法看见箱子。 */ return }
func gear(inner_radius, outer_radius, width float64, teeth int, tooth_depth float64) { var i int var r0, r1, r2 float64 var angle, da float64 var u, v, len float64 r0 = inner_radius r1 = outer_radius - tooth_depth/2.0 r2 = outer_radius + tooth_depth/2.0 da = 2.0 * math.Pi / float64(teeth) / 4.0 gl.ShadeModel(gl.FLAT) gl.Normal3d(0.0, 0.0, 1.0) /* draw front face */ gl.Begin(gl.QUAD_STRIP) for i = 0; i <= teeth; i++ { angle = float64(i) * 2.0 * math.Pi / float64(teeth) gl.Vertex3d(r0*math.Cos(angle), r0*math.Sin(angle), width*0.5) gl.Vertex3d(r1*math.Cos(angle), r1*math.Sin(angle), width*0.5) if i < teeth { gl.Vertex3d(r0*math.Cos(angle), r0*math.Sin(angle), width*0.5) gl.Vertex3d(r1*math.Cos(angle+3*da), r1*math.Sin(angle+3*da), width*0.5) } } gl.End() /* draw front sides of teeth */ gl.Begin(gl.QUADS) da = 2.0 * math.Pi / float64(teeth) / 4.0 for i = 0; i < teeth; i++ { angle = float64(i) * 2.0 * math.Pi / float64(teeth) gl.Vertex3d(r1*math.Cos(angle), r1*math.Sin(angle), width*0.5) gl.Vertex3d(r2*math.Cos(angle+da), r2*math.Sin(angle+da), width*0.5) gl.Vertex3d(r2*math.Cos(angle+2*da), r2*math.Sin(angle+2*da), width*0.5) gl.Vertex3d(r1*math.Cos(angle+3*da), r1*math.Sin(angle+3*da), width*0.5) } gl.End() gl.Normal3d(0.0, 0.0, -1.0) /* draw back face */ gl.Begin(gl.QUAD_STRIP) for i = 0; i <= teeth; i++ { angle = float64(i) * 2.0 * math.Pi / float64(teeth) gl.Vertex3d(r1*math.Cos(angle), r1*math.Sin(angle), -width*0.5) gl.Vertex3d(r0*math.Cos(angle), r0*math.Sin(angle), -width*0.5) if i < teeth { gl.Vertex3d(r1*math.Cos(angle+3*da), r1*math.Sin(angle+3*da), -width*0.5) gl.Vertex3d(r0*math.Cos(angle), r0*math.Sin(angle), -width*0.5) } } gl.End() /* draw back sides of teeth */ gl.Begin(gl.QUADS) da = 2.0 * math.Pi / float64(teeth) / 4.0 for i = 0; i < teeth; i++ { angle = float64(i) * 2.0 * math.Pi / float64(teeth) gl.Vertex3d(r1*math.Cos(angle+3*da), r1*math.Sin(angle+3*da), -width*0.5) gl.Vertex3d(r2*math.Cos(angle+2*da), r2*math.Sin(angle+2*da), -width*0.5) gl.Vertex3d(r2*math.Cos(angle+da), r2*math.Sin(angle+da), -width*0.5) gl.Vertex3d(r1*math.Cos(angle), r1*math.Sin(angle), -width*0.5) } gl.End() /* draw outward faces of teeth */ gl.Begin(gl.QUAD_STRIP) for i = 0; i < teeth; i++ { angle = float64(i) * 2.0 * math.Pi / float64(teeth) gl.Vertex3d(r1*math.Cos(angle), r1*math.Sin(angle), width*0.5) gl.Vertex3d(r1*math.Cos(angle), r1*math.Sin(angle), -width*0.5) u = r2*math.Cos(angle+da) - r1*math.Cos(angle) v = r2*math.Sin(angle+da) - r1*math.Sin(angle) len = math.Sqrt(u*u + v*v) u /= len v /= len gl.Normal3d(v, -u, 0.0) gl.Vertex3d(r2*math.Cos(angle+da), r2*math.Sin(angle+da), width*0.5) gl.Vertex3d(r2*math.Cos(angle+da), r2*math.Sin(angle+da), -width*0.5) gl.Normal3d(math.Cos(angle), math.Sin(angle), 0.0) gl.Vertex3d(r2*math.Cos(angle+2*da), r2*math.Sin(angle+2*da), width*0.5) gl.Vertex3d(r2*math.Cos(angle+2*da), r2*math.Sin(angle+2*da), -width*0.5) u = r1*math.Cos(angle+3*da) - r2*math.Cos(angle+2*da) v = r1*math.Sin(angle+3*da) - r2*math.Sin(angle+2*da) gl.Normal3d(v, -u, 0.0) gl.Vertex3d(r1*math.Cos(angle+3*da), r1*math.Sin(angle+3*da), width*0.5) gl.Vertex3d(r1*math.Cos(angle+3*da), r1*math.Sin(angle+3*da), -width*0.5) gl.Normal3d(math.Cos(angle), math.Sin(angle), 0.0) } gl.Vertex3d(r1*math.Cos(0), r1*math.Sin(0), width*0.5) gl.Vertex3d(r1*math.Cos(0), r1*math.Sin(0), -width*0.5) gl.End() gl.ShadeModel(gl.SMOOTH) /* draw inside radius cylinder */ gl.Begin(gl.QUAD_STRIP) for i = 0; i <= teeth; i++ { angle = float64(i) * 2.0 * math.Pi / float64(teeth) gl.Normal3d(-math.Cos(angle), -math.Sin(angle), 0.0) gl.Vertex3d(r0*math.Cos(angle), r0*math.Sin(angle), -width*0.5) gl.Vertex3d(r0*math.Cos(angle), r0*math.Sin(angle), width*0.5) } gl.End() }
func main() { if err := glfw.Init(); err != nil { log.Fatal(err.Error()) } if err := glfw.OpenWindow(800, 600, 8, 8, 8, 8, 32, 0, glfw.Windowed); err != nil { glfw.Terminate() log.Fatal(err.Error()) } glfw.SetWindowTitle("Landscapes") glfw.SetSwapInterval(1) m := GenerateMap(160, 160, 16) m.BuildVertices() gl.Enable(gl.LIGHT0) gl.Enable(gl.LIGHTING) gl.Lightfv(gl.LIGHT0, gl.POSITION, []float32{0, 1, 0.2, 0}) gl.Lightfv(gl.LIGHT0, gl.AMBIENT, []float32{0.0, 0.0, 0.0, 1}) gl.Lightfv(gl.LIGHT0, gl.DIFFUSE, []float32{0.75, 0.75, 0.75, 1}) gl.Lightfv(gl.LIGHT0, gl.SPECULAR, []float32{1, 1, 1, 1}) gl.ShadeModel(gl.SMOOTH) gl.ClearColor(0.1, 0.05, 0.0, 1.0) far := 4096.0 fov := 60.0 gl.MatrixMode(gl.PROJECTION) gl.LoadIdentity() glu.Perspective(fov, 800.0/600, 1.0, far) gl.MatrixMode(gl.MODELVIEW) rot := float32(0.0) for glfw.WindowParam(glfw.Opened) == 1 { rot += 0.125 gl.Clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT) gl.LoadIdentity() gl.Enable(gl.DEPTH_TEST) gl.DepthFunc(gl.LEQUAL) cx := float32(m.width*m.gridSize) * 0.5 cy := float32(m.maxHeight) * 0.15 cz := float32(m.depth*m.gridSize) * 0.5 gl.Translatef(0, 0, -2000) gl.Rotatef(30, 1, 0, 0) gl.Rotatef(rot, 0, 1, 0) gl.Translatef(-cx, -cy, -cz) m.Draw() glfw.SwapBuffers() } glfw.Terminate() }
func main() { var err error if err = glfw.Init(); err != nil { fmt.Fprintf(os.Stderr, "[e] %v\n", err) return } defer glfw.Terminate() w, h := 1980, 1080 // w, h := 1280, 768 if err = glfw.OpenWindow(w, h, 8, 8, 8, 16, 0, 32, glfw.Fullscreen); err != nil { fmt.Fprintf(os.Stderr, "[e] %v\n", err) return } defer glfw.CloseWindow() glfw.SetSwapInterval(1) glfw.SetWindowTitle("Debris") quadric = glu.NewQuadric() gl.Enable(gl.CULL_FACE) gl.Enable(gl.DEPTH_TEST) gl.DepthFunc(gl.LEQUAL) gl.Enable(gl.NORMALIZE) gl.Enable(gl.BLEND) gl.BlendFunc(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA) gl.ShadeModel(gl.SMOOTH) gl.Enable(gl.LIGHTING) var ( ambient = []float32{0.1, 0.3, 0.6, 1} diffuse = []float32{1, 1, 0.5, 1} specular = []float32{0.4, 0.4, 0.4, 1} light_position = []float32{1, 0, 0, 0} // mat_specular []float32 = []float32{1, 1, 0.5, 1} mat_specular = []float32{1, 1, 0.75, 1} mat_shininess = float32(120) // light_position []float32 = []float32{0.0, 0.0, 1.0, 0.0} ) const ( fov = 1.1 // degrees znear = 145 zfar = 155 camera_z_offset = -150 camera_x_rotation = 0 // degrees // camera_x_rotation = 20 // degrees starfield_fov = 45 faces = 1000 earth_radius = 1 ) gl.Lightfv(gl.LIGHT1, gl.AMBIENT, ambient) gl.Lightfv(gl.LIGHT1, gl.DIFFUSE, diffuse) gl.Lightfv(gl.LIGHT1, gl.SPECULAR, specular) gl.Lightfv(gl.LIGHT1, gl.POSITION, light_position) gl.Enable(gl.LIGHT1) mat_emission := []float32{0, 0, 0.1, 1} gl.Materialfv(gl.FRONT_AND_BACK, gl.EMISSION, mat_emission) gl.Materialfv(gl.FRONT_AND_BACK, gl.SPECULAR, mat_specular) gl.Materialf(gl.FRONT_AND_BACK, gl.SHININESS, mat_shininess) gl.ClearColor(0.02, 0.02, 0.02, 1) gl.ClearDepth(1) gl.ClearStencil(0) gl.Clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT) b := createBuffer() planetoids := []*Planetoid{} for i := 0; i < 1000; i++ { p := &Planetoid{ apogee: 1.2 + rand.Float64()*0.7, perigee: 1.5, // inclination: 45, inclination: rand.Float64()*20 - 10, // inclination: 0, phase0: rand.Float64() * 360, rising_node: rand.Float64() * 10, phase: 0, // radius: rand.Float32()*0.05 + 0.01, //float32(r), radius: rand.Float32()*0.0125 + 0.005, //float32(r), // quadric: glu.NewQuadric(), circle: b, } planetoids = append(planetoids, p) } // Initial projection matrix: var aspect float64 glfw.SetWindowSizeCallback(func(w, h int) { gl.Viewport(0, 0, w, h) gl.MatrixMode(gl.PROJECTION) gl.LoadIdentity() aspect = float64(w) / float64(h) glu.Perspective(fov, aspect, znear, zfar) }) d := float64(0) wireframe := false atmosphere := false polar := false rotating := false front := false earth := true cone := true shadowing := true tilt := false running := true glfw.SetKeyCallback(func(key, state int) { if state != glfw.KeyPress { // Don't act on key coming up return } switch key { case 'A': atmosphere = !atmosphere case 'C': cone = !cone case 'E': earth = !earth case 'R': rotating = !rotating case 'F': front = !front if front { gl.FrontFace(gl.CW) } else { gl.FrontFace(gl.CCW) } case 'S': shadowing = !shadowing case 'T': tilt = !tilt case 'W': wireframe = !wireframe method := gl.GLenum(gl.FILL) if wireframe { method = gl.LINE } gl.PolygonMode(gl.FRONT_AND_BACK, method) case glfw.KeyF2: println("Screenshot captured") // glh.CaptureToPng("screenshot.png") w, h := glh.GetViewportWH() im := image.NewRGBA(image.Rect(0, 0, w, h)) glh.ClearAlpha(1) gl.Flush() glh.CaptureRGBA(im) go func() { fd, err := os.Create("screenshot.png") if err != nil { panic("Unable to open file") } defer fd.Close() png.Encode(fd, im) }() case 'Q', glfw.KeyEsc: running = !running case glfw.KeySpace: polar = !polar } }) _ = rand.Float64 stars := glh.NewMeshBuffer( glh.RenderArrays, glh.NewPositionAttr(3, gl.DOUBLE, gl.STATIC_DRAW), glh.NewColorAttr(3, gl.DOUBLE, gl.STATIC_DRAW)) const Nstars = 50000 points := make([]float64, 3*Nstars) colors := make([]float64, 3*Nstars) for i := 0; i < Nstars; i++ { const R = 1 phi := rand.Float64() * 2 * math.Pi z := R * (2*rand.Float64() - 1) theta := math.Asin(z / R) points[i*3+0] = R * math.Cos(theta) * math.Cos(phi) points[i*3+1] = R * math.Cos(theta) * math.Sin(phi) points[i*3+2] = z const r = 0.8 v := rand.Float64()*r + (1 - r) colors[i*3+0] = v colors[i*3+1] = v colors[i*3+2] = v } stars.Add(points, colors) render_stars := func() { glh.With(glh.Attrib{gl.DEPTH_BUFFER_BIT | gl.ENABLE_BIT}, func() { gl.Disable(gl.LIGHTING) gl.PointSize(1) gl.Color4f(1, 1, 1, 1) gl.Disable(gl.DEPTH_TEST) gl.DepthMask(false) stars.Render(gl.POINTS) }) } render_scene := func() { // Update light position (sensitive to current modelview matrix) gl.Lightfv(gl.LIGHT1, gl.POSITION, light_position) gl.Lightfv(gl.LIGHT2, gl.POSITION, light_position) if earth { Sphere(earth_radius, faces) } unlit_points := glh.Compound(glh.Disable(gl.LIGHTING), glh.Primitive{gl.POINTS}) glh.With(unlit_points, func() { gl.Vertex3d(1, 0, 0) }) for _, p := range planetoids { const dt = 0.1 // TODO: Frame update p.Render(dt) } glh.With(glh.Disable(gl.LIGHTING), func() { // Atmosphere gl.Color4f(0.25, 0.25, 1, 0.1) if atmosphere && earth { Sphere(earth_radius*1.025, 100) } gl.PointSize(10) glh.With(glh.Primitive{gl.POINTS}, func() { gl.Color4f(1.75, 0.75, 0.75, 1) gl.Vertex3d(-1.04, 0, 0) }) }) } render_shadow_volume := func() { glh.With(glh.Attrib{ gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT | gl.ENABLE_BIT | gl.POLYGON_BIT | gl.STENCIL_BUFFER_BIT, }, func() { gl.Disable(gl.LIGHTING) if shadowing { // gl.Disable(gl.DEPTH_TEST) gl.DepthMask(false) gl.DepthFunc(gl.LEQUAL) gl.Enable(gl.STENCIL_TEST) gl.ColorMask(false, false, false, false) gl.StencilFunc(gl.ALWAYS, 1, 0xffffffff) } shadow_volume := func() { const sv_length = 2 const sv_granularity = 100 const sv_radius = earth_radius * 1.001 // Shadow cone glh.With(glh.Matrix{gl.MODELVIEW}, func() { gl.Rotatef(90, 1, 0, 0) gl.Rotatef(90, 0, -1, 0) gl.Color4f(0.5, 0.5, 0.5, 1) glu.Cylinder(quadric, sv_radius, sv_radius*1.05, sv_length, sv_granularity, 1) glu.Disk(quadric, 0, sv_radius, sv_granularity, 1) glh.With(glh.Matrix{gl.MODELVIEW}, func() { gl.Translated(0, 0, sv_length) glu.Disk(quadric, 0, sv_radius*1.05, sv_granularity, 1) }) }) for _, p := range planetoids { p.RenderShadowVolume() } } if cone { gl.FrontFace(gl.CCW) gl.StencilOp(gl.KEEP, gl.KEEP, gl.INCR) shadow_volume() gl.FrontFace(gl.CW) gl.StencilOp(gl.KEEP, gl.KEEP, gl.DECR) shadow_volume() } if shadowing { gl.StencilFunc(gl.NOTEQUAL, 0, 0xffffffff) gl.StencilOp(gl.KEEP, gl.KEEP, gl.KEEP) gl.ColorMask(true, true, true, true) // gl.Disable(gl.STENCIL_TEST) gl.Disable(gl.DEPTH_TEST) gl.FrontFace(gl.CCW) // gl.Color4f(1, 0, 0, 0.75) gl.Color4f(0, 0, 0, 0.75) // gl.Color4f(1, 1, 1, 0.75) gl.LoadIdentity() gl.Translated(0, 0, camera_z_offset) // TODO: Figure out why this doesn't draw over the whole screen glh.With(glh.Disable(gl.LIGHTING), func() { glh.DrawQuadd(-10, -10, 20, 20) }) // gl.FrontFace(gl.CW) // gl.Enable(gl.LIGHTING) // gl.Disable(gl.LIGHT1) // render_scene() // gl.Enable(gl.LIGHT1) } }) } _ = render_stars for running { running = glfw.WindowParam(glfw.Opened) == 1 glfw.SwapBuffers() gl.Clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT | gl.STENCIL_BUFFER_BIT) rotation := func() { if tilt { gl.Rotated(20, 1, 0, 0) } if polar { gl.Rotated(90, 1, 0, 0) } gl.Rotated(d, 0, -1, 0) } // Star field glh.With(glh.Matrix{gl.PROJECTION}, func() { gl.LoadIdentity() glu.Perspective(starfield_fov, aspect, 0, 1) glh.With(glh.Matrix{gl.MODELVIEW}, func() { gl.LoadIdentity() rotation() render_stars() }) }) gl.MatrixMode(gl.MODELVIEW) gl.LoadIdentity() gl.Translated(0, 0, camera_z_offset) rotation() if rotating { d += 0.2 } _ = render_scene render_scene() _ = render_shadow_volume render_shadow_volume() } }