Exemple #1
0
// double predict(const struct model *model_, const struct feature_node *x);
func Predict(model *Model, X *mat64.Dense) *mat64.Dense {
	nRows, nCols := X.Dims()
	cX := mapCDouble(X.RawMatrix().Data)
	y := mat64.NewDense(nRows, 1, nil)
	result := doubleToFloats(C.call_predict(
		model.cModel, &cX[0], C.int(nRows), C.int(nCols)), nRows)
	y.SetCol(0, result)
	return y
}
Exemple #2
0
// predictFeaturized multiplies the featureWeights by the featurized input and stores the value. It assumes
// that inMat and outMat already have the correct shape, but will replace the data in them
func predictFeaturized(featurizedInput []float64, output []float64, featureWeights *mat64.Dense, inMat *mat64.Dense, outMat *mat64.Dense) {
	rm := inMat.RawMatrix()
	rmin.Data = featurizedInput
	inMat.LoadRawMatrix(rmin)

	rm = outMat.RawMatrix()
	rm.Data = outMat
	outMat.LoadRawMatrix(rmin)

	// Multiply the feature weights by the featurized input ond store
	outMat.Mul(inMat, featureWeights)
}
Exemple #3
0
// double predict_probability(const struct model *model_, const struct feature_node *x, double* prob_estimates);
func PredictProba(model *Model, X *mat64.Dense) *mat64.Dense {
	nRows, nCols := X.Dims()
	nrClasses := int(C.get_nr_class(model.cModel))

	cX := mapCDouble(X.RawMatrix().Data)
	y := mat64.NewDense(nRows, nrClasses, nil)

	result := doubleToFloats(C.call_predict_proba(
		model.cModel, &cX[0], C.int(nRows), C.int(nCols), C.int(nrClasses)),
		nRows*nrClasses)
	for i := 0; i < nRows; i++ {
		y.SetRow(i, result[i*nrClasses:(i+1)*nrClasses])
	}
	return y
}
Exemple #4
0
// Wrapper for the `train` function in liblinear.
//
// `model* train(const struct problem *prob, const struct parameter *param);`
//
// The explanation of parameters are:
//
// solverType:
//
//   for multi-class classification
//          0 -- L2-regularized logistic regression (primal)
//          1 -- L2-regularized L2-loss support vector classification (dual)
//          2 -- L2-regularized L2-loss support vector classification (primal)
//          3 -- L2-regularized L1-loss support vector classification (dual)
//          4 -- support vector classification by Crammer and Singer
//          5 -- L1-regularized L2-loss support vector classification
//          6 -- L1-regularized logistic regression
//          7 -- L2-regularized logistic regression (dual)
//   for regression
//         11 -- L2-regularized L2-loss support vector regression (primal)
//         12 -- L2-regularized L2-loss support vector regression (dual)
//         13 -- L2-regularized L1-loss support vector regression (dual)
//
// eps is the stopping criterion.
//
// C_ is the cost of constraints violation.
//
// p is the sensitiveness of loss of support vector regression.
//
// classWeights is a map from int to float64, with the key be the class and the
// value be the weight. For example, {1: 10, -1: 0.5} means giving weight=10 for
// class=1 while weight=0.5 for class=-1
//
// If you do not want to change penalty for any of the classes, just set
// classWeights to nil.
func Train(X, y *mat64.Dense, bias float64, solverType int, c_, p, eps float64, classWeights map[int]float64) *Model {
	var weightLabelPtr *C.int
	var weightPtr *C.double

	nRows, nCols := X.Dims()

	cX := mapCDouble(X.RawMatrix().Data)
	cY := mapCDouble(y.ColView(0).RawVector().Data)

	nrWeight := len(classWeights)
	weightLabel := []C.int{}
	weight := []C.double{}

	for key, val := range classWeights {
		weightLabel = append(weightLabel, (C.int)(key))
		weight = append(weight, (C.double)(val))
	}

	if nrWeight > 0 {
		weightLabelPtr = &weightLabel[0]
		weightPtr = &weight[0]
	} else {
		weightLabelPtr = nil
		weightPtr = nil
	}

	model := C.call_train(
		&cX[0], &cY[0],
		C.int(nRows), C.int(nCols), C.double(bias),
		C.int(solverType), C.double(c_), C.double(p), C.double(eps),
		C.int(nrWeight), weightLabelPtr, weightPtr)

	return &Model{
		cModel: model,
	}
}