Exemple #1
0
// ParsePKCS8PrivateKey parses an unencrypted, PKCS#8 private key. See
// http://www.rsa.com/rsalabs/node.asp?id=2130 and RFC5208.
func ParsePKCS8PrivateKey(der []byte) (key interface{}, err error) {
	var privKey pkcs8
	if _, err := asn1.Unmarshal(der, &privKey); err != nil {
		return nil, err
	}
	switch {
	case privKey.Algo.Algorithm.Equal(oidPublicKeyRSA):
		key, err = ParsePKCS1PrivateKey(privKey.PrivateKey)
		if err != nil {
			return nil, errors.New("x509: failed to parse RSA private key embedded in PKCS#8: " + err.Error())
		}
		return key, nil

	case privKey.Algo.Algorithm.Equal(oidPublicKeyECDSA):
		bytes := privKey.Algo.Parameters.FullBytes
		namedCurveOID := new(asn1.ObjectIdentifier)
		if _, err := asn1.Unmarshal(bytes, namedCurveOID); err != nil {
			namedCurveOID = nil
		}
		key, err = parseECPrivateKey(namedCurveOID, privKey.PrivateKey)
		if err != nil {
			return nil, errors.New("x509: failed to parse EC private key embedded in PKCS#8: " + err.Error())
		}
		return key, nil

	default:
		return nil, fmt.Errorf("x509: PKCS#8 wrapping contained private key with unknown algorithm: %v", privKey.Algo.Algorithm)
	}
}
Exemple #2
0
// CheckSignature verifies that signature is a valid signature over signed from
// c's public key.
func (c *Certificate) CheckSignature(algo SignatureAlgorithm, signed, signature []byte) (err error) {
	var hashType crypto.Hash

	switch algo {
	case SHA1WithRSA, DSAWithSHA1, ECDSAWithSHA1:
		hashType = crypto.SHA1
	case SHA256WithRSA, DSAWithSHA256, ECDSAWithSHA256:
		hashType = crypto.SHA256
	case SHA384WithRSA, ECDSAWithSHA384:
		hashType = crypto.SHA384
	case SHA512WithRSA, ECDSAWithSHA512:
		hashType = crypto.SHA512
	default:
		return ErrUnsupportedAlgorithm
	}

	if !hashType.Available() {
		return ErrUnsupportedAlgorithm
	}
	h := hashType.New()

	h.Write(signed)
	digest := h.Sum(nil)

	switch pub := c.PublicKey.(type) {
	case *rsa.PublicKey:
		return rsa.VerifyPKCS1v15(pub, hashType, digest, signature)
	case *dsa.PublicKey:
		dsaSig := new(dsaSignature)
		if _, err := asn1.Unmarshal(signature, dsaSig); err != nil {
			return err
		}
		if dsaSig.R.Sign() <= 0 || dsaSig.S.Sign() <= 0 {
			return errors.New("x509: DSA signature contained zero or negative values")
		}
		if !dsa.Verify(pub, digest, dsaSig.R, dsaSig.S) {
			return errors.New("x509: DSA verification failure")
		}
		return
	case *ecdsa.PublicKey:
		ecdsaSig := new(ecdsaSignature)
		if _, err := asn1.Unmarshal(signature, ecdsaSig); err != nil {
			return err
		}
		if ecdsaSig.R.Sign() <= 0 || ecdsaSig.S.Sign() <= 0 {
			return errors.New("x509: ECDSA signature contained zero or negative values")
		}
		if !ecdsa.Verify(pub, digest, ecdsaSig.R, ecdsaSig.S) {
			return errors.New("x509: ECDSA verification failure")
		}
		return
	}
	return ErrUnsupportedAlgorithm
}
Exemple #3
0
// parseECPrivateKey parses an ASN.1 Elliptic Curve Private Key Structure.
// The OID for the named curve may be provided from another source (such as
// the PKCS8 container) - if it is provided then use this instead of the OID
// that may exist in the EC private key structure.
func parseECPrivateKey(namedCurveOID *asn1.ObjectIdentifier, der []byte) (key *ecdsa.PrivateKey, err error) {
	var privKey ecPrivateKey
	if _, err := asn1.Unmarshal(der, &privKey); err != nil {
		return nil, errors.New("x509: failed to parse EC private key: " + err.Error())
	}
	if privKey.Version != ecPrivKeyVersion {
		return nil, fmt.Errorf("x509: unknown EC private key version %d", privKey.Version)
	}

	var curve elliptic.Curve
	if namedCurveOID != nil {
		curve = namedCurveFromOID(*namedCurveOID)
	} else {
		curve = namedCurveFromOID(privKey.NamedCurveOID)
	}
	if curve == nil {
		return nil, errors.New("x509: unknown elliptic curve")
	}

	k := new(big.Int).SetBytes(privKey.PrivateKey)
	if k.Cmp(curve.Params().N) >= 0 {
		return nil, errors.New("x509: invalid elliptic curve private key value")
	}
	priv := new(ecdsa.PrivateKey)
	priv.Curve = curve
	priv.D = k
	priv.X, priv.Y = curve.ScalarBaseMult(privKey.PrivateKey)

	return priv, nil
}
Exemple #4
0
// ParseDERCRL parses a DER encoded CRL from the given bytes.
func ParseDERCRL(derBytes []byte) (certList *pkix.CertificateList, err error) {
	certList = new(pkix.CertificateList)
	_, err = asn1.Unmarshal(derBytes, certList)
	if err != nil {
		certList = nil
	}
	return
}
Exemple #5
0
// ParsePKIXPublicKey parses a DER encoded public key. These values are
// typically found in PEM blocks with "BEGIN PUBLIC KEY".
func ParsePKIXPublicKey(derBytes []byte) (pub interface{}, err error) {
	var pki publicKeyInfo
	if _, err = asn1.Unmarshal(derBytes, &pki); err != nil {
		return
	}
	algo := getPublicKeyAlgorithmFromOID(pki.Algorithm.Algorithm)
	if algo == UnknownPublicKeyAlgorithm {
		return nil, errors.New("x509: unknown public key algorithm")
	}
	return parsePublicKey(algo, &pki)
}
Exemple #6
0
// ParseCertificate parses a single certificate from the given ASN.1 DER data.
func ParseCertificate(asn1Data []byte) (*Certificate, error) {
	var cert certificate
	rest, err := asn1.Unmarshal(asn1Data, &cert)
	if err != nil {
		return nil, err
	}
	if len(rest) > 0 {
		return nil, asn1.SyntaxError{Msg: "trailing data"}
	}

	return parseCertificate(&cert)
}
Exemple #7
0
// ParseTBSCertificate parses a single TBSCertificate from the given ASN.1 DER data.
// The parsed data is returned in a Certificate struct for ease of access.
func ParseTBSCertificate(asn1Data []byte) (*Certificate, error) {
	var tbsCert tbsCertificate
	rest, err := asn1.Unmarshal(asn1Data, &tbsCert)
	if err != nil {
		return nil, err
	}
	if len(rest) > 0 {
		return nil, asn1.SyntaxError{Msg: "trailing data"}
	}
	return parseCertificate(&certificate{
		Raw:            tbsCert.Raw,
		TBSCertificate: tbsCert})
}
Exemple #8
0
// ParsePKCS1PrivateKey returns an RSA private key from its ASN.1 PKCS#1 DER encoded form.
func ParsePKCS1PrivateKey(der []byte) (key *rsa.PrivateKey, err error) {
	var priv pkcs1PrivateKey
	rest, err := asn1.Unmarshal(der, &priv)
	if len(rest) > 0 {
		err = asn1.SyntaxError{Msg: "trailing data"}
		return
	}
	if err != nil {
		return
	}

	if priv.Version > 1 {
		return nil, errors.New("x509: unsupported private key version")
	}

	if priv.N.Sign() <= 0 || priv.D.Sign() <= 0 || priv.P.Sign() <= 0 || priv.Q.Sign() <= 0 {
		return nil, errors.New("x509: private key contains zero or negative value")
	}

	key = new(rsa.PrivateKey)
	key.PublicKey = rsa.PublicKey{
		E: priv.E,
		N: priv.N,
	}

	key.D = priv.D
	key.Primes = make([]*big.Int, 2+len(priv.AdditionalPrimes))
	key.Primes[0] = priv.P
	key.Primes[1] = priv.Q
	for i, a := range priv.AdditionalPrimes {
		if a.Prime.Sign() <= 0 {
			return nil, errors.New("x509: private key contains zero or negative prime")
		}
		key.Primes[i+2] = a.Prime
		// We ignore the other two values because rsa will calculate
		// them as needed.
	}

	err = key.Validate()
	if err != nil {
		return nil, err
	}
	key.Precompute()

	return
}
Exemple #9
0
// ParseCertificates parses one or more certificates from the given ASN.1 DER
// data. The certificates must be concatenated with no intermediate padding.
func ParseCertificates(asn1Data []byte) ([]*Certificate, error) {
	var v []*certificate

	for len(asn1Data) > 0 {
		cert := new(certificate)
		var err error
		asn1Data, err = asn1.Unmarshal(asn1Data, cert)
		if err != nil {
			return nil, err
		}
		v = append(v, cert)
	}

	ret := make([]*Certificate, len(v))
	for i, ci := range v {
		cert, err := parseCertificate(ci)
		if err != nil {
			return nil, err
		}
		ret[i] = cert
	}

	return ret, nil
}
Exemple #10
0
func parseCertificate(in *certificate) (*Certificate, error) {
	// START CT CHANGES
	var nfe NonFatalErrors
	// END CT CHANGES

	out := new(Certificate)
	out.Raw = in.Raw
	out.RawTBSCertificate = in.TBSCertificate.Raw
	out.RawSubjectPublicKeyInfo = in.TBSCertificate.PublicKey.Raw
	out.RawSubject = in.TBSCertificate.Subject.FullBytes
	out.RawIssuer = in.TBSCertificate.Issuer.FullBytes

	out.Signature = in.SignatureValue.RightAlign()
	out.SignatureAlgorithm =
		getSignatureAlgorithmFromOID(in.TBSCertificate.SignatureAlgorithm.Algorithm)

	out.PublicKeyAlgorithm =
		getPublicKeyAlgorithmFromOID(in.TBSCertificate.PublicKey.Algorithm.Algorithm)
	var err error
	out.PublicKey, err = parsePublicKey(out.PublicKeyAlgorithm, &in.TBSCertificate.PublicKey)
	if err != nil {
		return nil, err
	}

	if in.TBSCertificate.SerialNumber.Sign() < 0 {
		// START CT CHANGES
		nfe.AddError(errors.New("x509: negative serial number"))
		// END CT CHANGES
	}

	out.Version = in.TBSCertificate.Version + 1
	out.SerialNumber = in.TBSCertificate.SerialNumber

	var issuer, subject pkix.RDNSequence
	if _, err := asn1.Unmarshal(in.TBSCertificate.Subject.FullBytes, &subject); err != nil {
		return nil, err
	}
	if _, err := asn1.Unmarshal(in.TBSCertificate.Issuer.FullBytes, &issuer); err != nil {
		return nil, err
	}

	out.Issuer.FillFromRDNSequence(&issuer)
	out.Subject.FillFromRDNSequence(&subject)

	out.NotBefore = in.TBSCertificate.Validity.NotBefore
	out.NotAfter = in.TBSCertificate.Validity.NotAfter

	for _, e := range in.TBSCertificate.Extensions {
		out.Extensions = append(out.Extensions, e)

		if len(e.Id) == 4 && e.Id[0] == 2 && e.Id[1] == 5 && e.Id[2] == 29 {
			switch e.Id[3] {
			case 15:
				// RFC 5280, 4.2.1.3
				var usageBits asn1.BitString
				_, err := asn1.Unmarshal(e.Value, &usageBits)

				if err == nil {
					var usage int
					for i := 0; i < 9; i++ {
						if usageBits.At(i) != 0 {
							usage |= 1 << uint(i)
						}
					}
					out.KeyUsage = KeyUsage(usage)
					continue
				}
			case 19:
				// RFC 5280, 4.2.1.9
				var constraints basicConstraints
				_, err := asn1.Unmarshal(e.Value, &constraints)

				if err == nil {
					out.BasicConstraintsValid = true
					out.IsCA = constraints.IsCA
					out.MaxPathLen = constraints.MaxPathLen
					continue
				}
			case 17:
				// RFC 5280, 4.2.1.6

				// SubjectAltName ::= GeneralNames
				//
				// GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName
				//
				// GeneralName ::= CHOICE {
				//      otherName                       [0]     OtherName,
				//      rfc822Name                      [1]     IA5String,
				//      dNSName                         [2]     IA5String,
				//      x400Address                     [3]     ORAddress,
				//      directoryName                   [4]     Name,
				//      ediPartyName                    [5]     EDIPartyName,
				//      uniformResourceIdentifier       [6]     IA5String,
				//      iPAddress                       [7]     OCTET STRING,
				//      registeredID                    [8]     OBJECT IDENTIFIER }
				var seq asn1.RawValue
				_, err := asn1.Unmarshal(e.Value, &seq)
				if err != nil {
					return nil, err
				}
				if !seq.IsCompound || seq.Tag != 16 || seq.Class != 0 {
					return nil, asn1.StructuralError{Msg: "bad SAN sequence"}
				}

				parsedName := false

				rest := seq.Bytes
				for len(rest) > 0 {
					var v asn1.RawValue
					rest, err = asn1.Unmarshal(rest, &v)
					if err != nil {
						return nil, err
					}
					switch v.Tag {
					case 1:
						out.EmailAddresses = append(out.EmailAddresses, string(v.Bytes))
						parsedName = true
					case 2:
						out.DNSNames = append(out.DNSNames, string(v.Bytes))
						parsedName = true
					case 7:
						switch len(v.Bytes) {
						case net.IPv4len, net.IPv6len:
							out.IPAddresses = append(out.IPAddresses, v.Bytes)
						default:
							// START CT CHANGES
							nfe.AddError(fmt.Errorf("x509: certificate contained IP address of length %d : %v", len(v.Bytes), v.Bytes))
							// END CT CHANGES
						}
					}
				}

				if parsedName {
					continue
				}
				// If we didn't parse any of the names then we
				// fall through to the critical check below.

			case 30:
				// RFC 5280, 4.2.1.10

				// NameConstraints ::= SEQUENCE {
				//      permittedSubtrees       [0]     GeneralSubtrees OPTIONAL,
				//      excludedSubtrees        [1]     GeneralSubtrees OPTIONAL }
				//
				// GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree
				//
				// GeneralSubtree ::= SEQUENCE {
				//      base                    GeneralName,
				//      minimum         [0]     BaseDistance DEFAULT 0,
				//      maximum         [1]     BaseDistance OPTIONAL }
				//
				// BaseDistance ::= INTEGER (0..MAX)

				var constraints nameConstraints
				_, err := asn1.Unmarshal(e.Value, &constraints)
				if err != nil {
					return nil, err
				}

				if len(constraints.Excluded) > 0 && e.Critical {
					// START CT CHANGES
					nfe.AddError(UnhandledCriticalExtension{e.Id})
					// END CT CHANGES
				}

				for _, subtree := range constraints.Permitted {
					if len(subtree.Name) == 0 {
						if e.Critical {
							// START CT CHANGES
							nfe.AddError(UnhandledCriticalExtension{e.Id})
							// END CT CHANGES
						}
						continue
					}
					out.PermittedDNSDomains = append(out.PermittedDNSDomains, subtree.Name)
				}
				continue

			case 31:
				// RFC 5280, 4.2.1.14

				// CRLDistributionPoints ::= SEQUENCE SIZE (1..MAX) OF DistributionPoint
				//
				// DistributionPoint ::= SEQUENCE {
				//     distributionPoint       [0]     DistributionPointName OPTIONAL,
				//     reasons                 [1]     ReasonFlags OPTIONAL,
				//     cRLIssuer               [2]     GeneralNames OPTIONAL }
				//
				// DistributionPointName ::= CHOICE {
				//     fullName                [0]     GeneralNames,
				//     nameRelativeToCRLIssuer [1]     RelativeDistinguishedName }

				var cdp []distributionPoint
				_, err := asn1.Unmarshal(e.Value, &cdp)
				if err != nil {
					return nil, err
				}

				for _, dp := range cdp {
					var n asn1.RawValue
					_, err = asn1.Unmarshal(dp.DistributionPoint.FullName.Bytes, &n)
					if err != nil {
						return nil, err
					}

					if n.Tag == 6 {
						out.CRLDistributionPoints = append(out.CRLDistributionPoints, string(n.Bytes))
					}
				}
				continue

			case 35:
				// RFC 5280, 4.2.1.1
				var a authKeyId
				_, err = asn1.Unmarshal(e.Value, &a)
				if err != nil {
					return nil, err
				}
				out.AuthorityKeyId = a.Id
				continue

			case 37:
				// RFC 5280, 4.2.1.12.  Extended Key Usage

				// id-ce-extKeyUsage OBJECT IDENTIFIER ::= { id-ce 37 }
				//
				// ExtKeyUsageSyntax ::= SEQUENCE SIZE (1..MAX) OF KeyPurposeId
				//
				// KeyPurposeId ::= OBJECT IDENTIFIER

				var keyUsage []asn1.ObjectIdentifier
				_, err = asn1.Unmarshal(e.Value, &keyUsage)
				if err != nil {
					return nil, err
				}

				for _, u := range keyUsage {
					if extKeyUsage, ok := extKeyUsageFromOID(u); ok {
						out.ExtKeyUsage = append(out.ExtKeyUsage, extKeyUsage)
					} else {
						out.UnknownExtKeyUsage = append(out.UnknownExtKeyUsage, u)
					}
				}

				continue

			case 14:
				// RFC 5280, 4.2.1.2
				var keyid []byte
				_, err = asn1.Unmarshal(e.Value, &keyid)
				if err != nil {
					return nil, err
				}
				out.SubjectKeyId = keyid
				continue

			case 32:
				// RFC 5280 4.2.1.4: Certificate Policies
				var policies []policyInformation
				if _, err = asn1.Unmarshal(e.Value, &policies); err != nil {
					return nil, err
				}
				out.PolicyIdentifiers = make([]asn1.ObjectIdentifier, len(policies))
				for i, policy := range policies {
					out.PolicyIdentifiers[i] = policy.Policy
				}
			}
		} else if e.Id.Equal(oidExtensionAuthorityInfoAccess) {
			// RFC 5280 4.2.2.1: Authority Information Access
			var aia []authorityInfoAccess
			if _, err = asn1.Unmarshal(e.Value, &aia); err != nil {
				return nil, err
			}

			for _, v := range aia {
				// GeneralName: uniformResourceIdentifier [6] IA5String
				if v.Location.Tag != 6 {
					continue
				}
				if v.Method.Equal(oidAuthorityInfoAccessOcsp) {
					out.OCSPServer = append(out.OCSPServer, string(v.Location.Bytes))
				} else if v.Method.Equal(oidAuthorityInfoAccessIssuers) {
					out.IssuingCertificateURL = append(out.IssuingCertificateURL, string(v.Location.Bytes))
				}
			}
		}

		if e.Critical {
			// START CT CHANGES
			nfe.AddError(UnhandledCriticalExtension{e.Id})
			// END CT CHANGES
		}
	}
	// START CT CHANGES
	if nfe.HasError() {
		return out, nfe
	}
	// END CT CHANGES
	return out, nil
}
Exemple #11
0
func parsePublicKey(algo PublicKeyAlgorithm, keyData *publicKeyInfo) (interface{}, error) {
	asn1Data := keyData.PublicKey.RightAlign()
	switch algo {
	case RSA:
		p := new(rsaPublicKey)
		_, err := asn1.Unmarshal(asn1Data, p)
		if err != nil {
			return nil, err
		}

		if p.N.Sign() <= 0 {
			return nil, errors.New("x509: RSA modulus is not a positive number")
		}
		if p.E <= 0 {
			return nil, errors.New("x509: RSA public exponent is not a positive number")
		}

		pub := &rsa.PublicKey{
			E: p.E,
			N: p.N,
		}
		return pub, nil
	case DSA:
		var p *big.Int
		_, err := asn1.Unmarshal(asn1Data, &p)
		if err != nil {
			return nil, err
		}
		paramsData := keyData.Algorithm.Parameters.FullBytes
		params := new(dsaAlgorithmParameters)
		_, err = asn1.Unmarshal(paramsData, params)
		if err != nil {
			return nil, err
		}
		if p.Sign() <= 0 || params.P.Sign() <= 0 || params.Q.Sign() <= 0 || params.G.Sign() <= 0 {
			return nil, errors.New("x509: zero or negative DSA parameter")
		}
		pub := &dsa.PublicKey{
			Parameters: dsa.Parameters{
				P: params.P,
				Q: params.Q,
				G: params.G,
			},
			Y: p,
		}
		return pub, nil
	case ECDSA:
		paramsData := keyData.Algorithm.Parameters.FullBytes
		namedCurveOID := new(asn1.ObjectIdentifier)
		_, err := asn1.Unmarshal(paramsData, namedCurveOID)
		if err != nil {
			return nil, err
		}
		namedCurve := namedCurveFromOID(*namedCurveOID)
		if namedCurve == nil {
			return nil, errors.New("x509: unsupported elliptic curve")
		}
		x, y := elliptic.Unmarshal(namedCurve, asn1Data)
		if x == nil {
			return nil, errors.New("x509: failed to unmarshal elliptic curve point")
		}
		pub := &ecdsa.PublicKey{
			Curve: namedCurve,
			X:     x,
			Y:     y,
		}
		return pub, nil
	default:
		return nil, nil
	}
}