Exemple #1
0
func (d *dotProduct) EvalTo(dst *data.Slice) {
	A := ValueOf(d.a)
	defer cuda.Recycle(A)
	B := ValueOf(d.b)
	defer cuda.Recycle(B)
	cuda.Zero(dst)
	cuda.AddDotProduct(dst, 1, A, B)
}
Exemple #2
0
// Euler method, can be used as solver.Step.
func (s *BackwardEuler) Step() {
	util.AssertMsg(MaxErr > 0, "Backward euler solver requires MaxErr > 0")

	t0 := Time

	y := M.Buffer()

	y0 := cuda.Buffer(VECTOR, y.Size())
	defer cuda.Recycle(y0)
	data.Copy(y0, y)

	dy0 := cuda.Buffer(VECTOR, y.Size())
	defer cuda.Recycle(dy0)
	if s.dy1 == nil {
		s.dy1 = cuda.Buffer(VECTOR, y.Size())
	}
	dy1 := s.dy1

	Dt_si = FixDt
	dt := float32(Dt_si * GammaLL)
	util.AssertMsg(dt > 0, "Backward Euler solver requires fixed time step > 0")

	// Fist guess
	Time = t0 + 0.5*Dt_si // 0.5 dt makes it implicit midpoint method

	// with temperature, previous torque cannot be used as predictor
	if Temp.isZero() {
		cuda.Madd2(y, y0, dy1, 1, dt) // predictor euler step with previous torque
		M.normalize()
	}

	torqueFn(dy0)
	cuda.Madd2(y, y0, dy0, 1, dt) // y = y0 + dt * dy
	M.normalize()

	// One iteration
	torqueFn(dy1)
	cuda.Madd2(y, y0, dy1, 1, dt) // y = y0 + dt * dy1
	M.normalize()

	Time = t0 + Dt_si

	err := cuda.MaxVecDiff(dy0, dy1) * float64(dt)

	// adjust next time step
	//if err < MaxErr || Dt_si <= MinDt || FixDt != 0 { // mindt check to avoid infinite loop
	// step OK
	NSteps++
	setLastErr(err)
	setMaxTorque(dy1)
	//} else {
	// undo bad step
	//	util.Assert(FixDt == 0)
	//	Time = t0
	//	data.Copy(y, y0)
	//	NUndone++
	//}
}
Exemple #3
0
// vector dot product
func dot(a, b outputField) float64 {
	A, recyA := a.Slice()
	if recyA {
		defer cuda.Recycle(A)
	}
	B, recyB := b.Slice()
	if recyB {
		defer cuda.Recycle(B)
	}
	return float64(cuda.Dot(A, B))
}
Exemple #4
0
func (mini *Minimizer) Step() {
	m := M.Buffer()
	size := m.Size()
	k := mini.k
	h := mini.h

	// save original magnetization
	m0 := cuda.Buffer(3, size)
	defer cuda.Recycle(m0)
	data.Copy(m0, m)

	// make descent
	cuda.Minimize(m, m0, k, h)

	// calculate new torque for next step
	k0 := cuda.Buffer(3, size)
	defer cuda.Recycle(k0)
	data.Copy(k0, k)
	torqueFn(k)
	setMaxTorque(k) // report to user

	// just to make the following readable
	dm := m0
	dk := k0

	// calculate step difference of m and k
	cuda.Madd2(dm, m, m0, 1., -1.)
	cuda.Madd2(dk, k, k0, -1., 1.) // reversed due to LLNoPrecess sign

	// get maxdiff and add to list
	max_dm := cuda.MaxVecNorm(dm)
	mini.lastDm.Add(max_dm)
	setLastErr(mini.lastDm.Max()) // report maxDm to user as LastErr

	// adjust next time step
	var nom, div float32
	if NSteps%2 == 0 {
		nom = cuda.Dot(dm, dm)
		div = cuda.Dot(dm, dk)
	} else {
		nom = cuda.Dot(dm, dk)
		div = cuda.Dot(dk, dk)
	}
	if div != 0. {
		mini.h = nom / div
	} else { // in case of division by zero
		mini.h = 1e-4
	}

	M.normalize()

	// as a convention, time does not advance during relax
	NSteps++
}
Exemple #5
0
func (d *dotProduct) Slice() (*data.Slice, bool) {
	slice := cuda.Buffer(d.NComp(), d.Mesh().Size())
	cuda.Zero(slice)
	A, r := d.a.Slice()
	if r {
		defer cuda.Recycle(A)
	}
	B, r := d.b.Slice()
	if r {
		defer cuda.Recycle(B)
	}
	cuda.AddDotProduct(slice, 1, A, B)
	return slice, true
}
Exemple #6
0
// returns a function that adds to dst the energy density:
// 	prefactor * dot (M_full, field)
func makeEdensAdder(field outputField, prefactor float64) func(*data.Slice) {
	return func(dst *data.Slice) {
		B, r1 := field.Slice()
		if r1 {
			defer cuda.Recycle(B)
		}
		m, r2 := M_full.Slice()
		if r2 {
			defer cuda.Recycle(m)
		}
		factor := float32(prefactor)
		cuda.AddDotProduct(dst, factor, B, m)
	}
}
Exemple #7
0
// Euler method, can be used as solver.Step.
func (_ *Euler) Step() {
	y := M.Buffer()
	dy0 := cuda.Buffer(VECTOR, y.Size())
	defer cuda.Recycle(dy0)

	torqueFn(dy0)
	setMaxTorque(dy0)

	// Adaptive time stepping: treat MaxErr as the maximum magnetization delta
	// (proportional to the error, but an overestimation for sure)
	var dt float32
	if FixDt != 0 {
		Dt_si = FixDt
		dt = float32(Dt_si * GammaLL)
	} else {
		dt = float32(MaxErr / LastTorque)
		Dt_si = float64(dt) / GammaLL
	}
	util.AssertMsg(dt > 0, "Euler solver requires fixed time step > 0")
	setLastErr(float64(dt) * LastTorque)

	cuda.Madd2(y, y, dy0, 1, dt) // y = y + dt * dy
	M.normalize()
	Time += Dt_si
	NSteps++
}
Exemple #8
0
// Gets
func GetMaxTorque() float64 {
	torque, recycle := Torque.Slice()
	if recycle {
		defer cuda.Recycle(torque)
	}
	return cuda.MaxVecNorm(torque)
}
Exemple #9
0
// average of quantity over universe
func qAverageUniverse(q Quantity) []float64 {
	s, recycle := q.Slice()
	if recycle {
		defer cuda.Recycle(s)
	}
	return sAverageUniverse(s)
}
Exemple #10
0
func (g *geom) average() []float64 {
	s, r := g.Slice()
	if r {
		defer cuda.Recycle(s)
	}
	return sAverageUniverse(s)
}
Exemple #11
0
// AddCustomField evaluates the user-defined custom field terms
// and adds the result to dst.
func AddCustomField(dst *data.Slice) {
	for _, term := range customTerms {
		buf := ValueOf(term)
		cuda.Add(dst, dst, buf)
		cuda.Recycle(buf)
	}
}
Exemple #12
0
func (d *pointwiseDiv) EvalTo(dst *data.Slice) {
	a := ValueOf(d.a)
	defer cuda.Recycle(a)
	b := ValueOf(d.b)
	defer cuda.Recycle(b)

	switch {
	case a.NComp() == b.NComp():
		divNN(dst, a, b) // vector*vector, scalar*scalar
	case b.NComp() == 1:
		divN1(dst, a, b)
	default:
		panic(fmt.Sprintf("Cannot point-wise divide %v components by %v components", a.NComp(), b.NComp()))
	}

}
Exemple #13
0
func (r *Regions) average() []float64 {
	s, recycle := r.Slice()
	if recycle {
		defer cuda.Recycle(s)
	}
	return sAverageUniverse(s)
}
Exemple #14
0
func GetMaxAngle() float64 {
	s, recycle := SpinAngle.Slice()
	if recycle {
		defer cuda.Recycle(s)
	}
	return float64(cuda.MaxAbs(s)) // just a max would be fine, but not currently implemented
}
Exemple #15
0
// average of quantity over universe
func qAverageUniverse(q outputField) []float64 {
	s, recycle := q.Slice()
	if recycle {
		defer cuda.Recycle(s)
	}
	return sAverageUniverse(s)
}
Exemple #16
0
func (g *geom) shift(dx int) {
	// empty mask, nothing to do
	if g == nil || g.buffer.IsNil() {
		return
	}

	// allocated mask: shift
	s := g.buffer
	s2 := cuda.Buffer(1, g.Mesh().Size())
	defer cuda.Recycle(s2)
	newv := float32(1) // initially fill edges with 1's
	cuda.ShiftX(s2, s, dx, newv, newv)
	data.Copy(s, s2)

	n := Mesh().Size()
	x1, x2 := shiftDirtyRange(dx)

	for iz := 0; iz < n[Z]; iz++ {
		for iy := 0; iy < n[Y]; iy++ {
			for ix := x1; ix < x2; ix++ {
				r := Index2Coord(ix, iy, iz) // includes shift
				if !g.shape(r[X], r[Y], r[Z]) {
					cuda.SetCell(g.buffer, 0, ix, iy, iz, 0) // a bit slowish, but hardly reached
				}
			}
		}
	}

}
Exemple #17
0
func AddAnisotropyEnergyDensity(dst *data.Slice) {
	haveUnixial := ku1_red.nonZero() || ku2_red.nonZero()
	haveCubic := kc1_red.nonZero() || kc2_red.nonZero() || kc3_red.nonZero()

	if !haveUnixial && !haveCubic {
		return
	}

	buf := cuda.Buffer(B_anis.NComp(), B_anis.Mesh().Size())
	defer cuda.Recycle(buf)

	// unnormalized magnetization:
	Mf, r := M_full.Slice()
	if r {
		defer cuda.Recycle(Mf)
	}

	if haveUnixial {
		// 1st
		cuda.Zero(buf)
		cuda.AddUniaxialAnisotropy(buf, M.Buffer(), ku1_red.gpuLUT1(), zero.gpuLUT1(), AnisU.gpuLUT(), regions.Gpu())
		cuda.AddDotProduct(dst, -1./2., buf, Mf)

		// 2nd
		cuda.Zero(buf)
		cuda.AddUniaxialAnisotropy(buf, M.Buffer(), zero.gpuLUT1(), ku2_red.gpuLUT1(), AnisU.gpuLUT(), regions.Gpu())
		cuda.AddDotProduct(dst, -1./4., buf, Mf)
	}

	if haveCubic {
		// 1st
		cuda.Zero(buf)
		cuda.AddCubicAnisotropy(buf, M.Buffer(), kc1_red.gpuLUT1(), zero.gpuLUT1(), zero.gpuLUT1(), AnisC1.gpuLUT(), AnisC2.gpuLUT(), regions.Gpu())
		cuda.AddDotProduct(dst, -1./4., buf, Mf)

		// 2nd
		cuda.Zero(buf)
		cuda.AddCubicAnisotropy(buf, M.Buffer(), zero.gpuLUT1(), kc2_red.gpuLUT1(), zero.gpuLUT1(), AnisC1.gpuLUT(), AnisC2.gpuLUT(), regions.Gpu())
		cuda.AddDotProduct(dst, -1./6., buf, Mf)

		// 3nd
		cuda.Zero(buf)
		cuda.AddCubicAnisotropy(buf, M.Buffer(), zero.gpuLUT1(), zero.gpuLUT1(), kc3_red.gpuLUT1(), AnisC1.gpuLUT(), AnisC2.gpuLUT(), regions.Gpu())
		cuda.AddDotProduct(dst, -1./8., buf, Mf)
	}
}
Exemple #18
0
// Returns anisotropy energy in joules.
func GetAnisotropyEnergy() float64 {
	buf := cuda.Buffer(1, Edens_anis.Mesh().Size())
	defer cuda.Recycle(buf)

	cuda.Zero(buf)
	AddAnisotropyEnergyDensity(buf)
	return cellVolume() * float64(cuda.Sum(buf))
}
Exemple #19
0
func AddAnisotropyEnergyDensity(dst *data.Slice) {
	haveUnixial := Ku1.nonZero() || Ku2.nonZero()
	haveCubic := Kc1.nonZero() || Kc2.nonZero() || Kc3.nonZero()

	if !haveUnixial && !haveCubic {
		return
	}

	buf := cuda.Buffer(B_anis.NComp(), B_anis.Mesh().Size())
	defer cuda.Recycle(buf)

	// unnormalized magnetization:
	Mf, r := M_full.Slice()
	if r {
		defer cuda.Recycle(Mf)
	}

	if haveUnixial {
		// 1st
		cuda.Zero(buf)
		addUniaxialAnisotropyFrom(buf, M, Msat, Ku1, sZero, AnisU)
		cuda.AddDotProduct(dst, -1./2., buf, Mf)

		// 2nd
		cuda.Zero(buf)
		addUniaxialAnisotropyFrom(buf, M, Msat, sZero, Ku2, AnisU)
		cuda.AddDotProduct(dst, -1./4., buf, Mf)
	}

	if haveCubic {
		// 1st
		cuda.Zero(buf)
		addCubicAnisotropyFrom(buf, M, Msat, Kc1, sZero, sZero, AnisC1, AnisC2)
		cuda.AddDotProduct(dst, -1./4., buf, Mf)

		// 2nd
		cuda.Zero(buf)
		addCubicAnisotropyFrom(buf, M, Msat, sZero, Kc2, sZero, AnisC1, AnisC2)
		cuda.AddDotProduct(dst, -1./6., buf, Mf)

		// 3nd
		cuda.Zero(buf)
		addCubicAnisotropyFrom(buf, M, Msat, sZero, sZero, Kc3, AnisC1, AnisC2)
		cuda.AddDotProduct(dst, -1./8., buf, Mf)
	}
}
Exemple #20
0
// Adds the current spin transfer torque to dst
func AddSTTorque(dst *data.Slice) {
	if J.isZero() {
		return
	}
	util.AssertMsg(!Pol.isZero(), "spin polarization should not be 0")
	jspin, rec := J.Slice()
	if rec {
		defer cuda.Recycle(jspin)
	}
	fl, rec := FixedLayer.Slice()
	if rec {
		defer cuda.Recycle(fl)
	}
	if !DisableZhangLiTorque {
		msat := Msat.MSlice()
		defer msat.Recycle()
		j := J.MSlice()
		defer j.Recycle()
		alpha := Alpha.MSlice()
		defer alpha.Recycle()
		xi := Xi.MSlice()
		defer xi.Recycle()
		pol := Pol.MSlice()
		defer pol.Recycle()
		cuda.AddZhangLiTorque(dst, M.Buffer(), msat, j, alpha, xi, pol, Mesh())
	}
	if !DisableSlonczewskiTorque && !FixedLayer.isZero() {
		msat := Msat.MSlice()
		defer msat.Recycle()
		j := J.MSlice()
		defer j.Recycle()
		fixedP := FixedLayer.MSlice()
		defer fixedP.Recycle()
		alpha := Alpha.MSlice()
		defer alpha.Recycle()
		pol := Pol.MSlice()
		defer pol.Recycle()
		lambda := Lambda.MSlice()
		defer lambda.Recycle()
		epsPrime := EpsilonPrime.MSlice()
		defer epsPrime.Recycle()
		cuda.AddSlonczewskiTorque2(dst, M.Buffer(),
			msat, j, fixedP, alpha, pol, lambda, epsPrime, Mesh())
	}
}
Exemple #21
0
func (q *oneReg) average() []float64 {
	slice, r := q.Slice()
	if r {
		defer cuda.Recycle(slice)
	}
	avg := sAverageUniverse(slice)
	sDiv(avg, regions.volume(q.region))
	return avg
}
Exemple #22
0
func GetTopologicalCharge() float64 {
	s, recycle := Ext_TopologicalChargeDensity.Slice()
	if recycle {
		defer cuda.Recycle(s)
	}
	c := Mesh().CellSize()
	N := Mesh().Size()
	return (0.25 * c[X] * c[Y] / math.Pi / float64(N[Z])) * float64(cuda.Sum(s))
}
Exemple #23
0
func (d *pointwiseMul) EvalTo(dst *data.Slice) {
	cuda.Zero(dst)
	a := ValueOf(d.a)
	defer cuda.Recycle(a)
	b := ValueOf(d.b)
	defer cuda.Recycle(b)

	switch {
	case a.NComp() == b.NComp():
		mulNN(dst, a, b) // vector*vector, scalar*scalar
	case a.NComp() == 1:
		mul1N(dst, a, b)
	case b.NComp() == 1:
		mul1N(dst, b, a)
	default:
		panic(fmt.Sprintf("Cannot point-wise multiply %v components by %v components", a.NComp(), b.NComp()))
	}
}
Exemple #24
0
func shiftMag(m *data.Slice, dx int) {
	m2 := cuda.Buffer(1, m.Size())
	defer cuda.Recycle(m2)
	for c := 0; c < m.NComp(); c++ {
		comp := m.Comp(c)
		cuda.ShiftX(m2, comp, dx, float32(ShiftMagL[c]), float32(ShiftMagR[c]))
		data.Copy(comp, m2) // str0 ?
	}
}
Exemple #25
0
// returns a new slice equal to q in the given region, 0 outside.
func (q *oneReg) Slice() (*data.Slice, bool) {
	src, r := q.parent.Slice()
	if r {
		defer cuda.Recycle(src)
	}
	out := cuda.Buffer(q.NComp(), q.Mesh().Size())
	cuda.RegionSelect(out, src, regions.Gpu(), byte(q.region))
	return out, true
}
Exemple #26
0
func (q *cropped) Slice() (*data.Slice, bool) {
	src, r := q.parent.Slice()
	if r {
		defer cuda.Recycle(src)
	}
	dst := cuda.Buffer(q.NComp(), q.Mesh().Size())
	cuda.Crop(dst, src, q.x1, q.y1, q.z1)
	return dst, true
}
Exemple #27
0
func (b *thermField) update() {
	// we need to fix the time step here because solver will not yet have done it before the first step.
	// FixDt as an lvalue that sets Dt_si on change might be cleaner.
	if FixDt != 0 {
		Dt_si = FixDt
	}

	if b.generator == 0 {
		b.generator = curand.CreateGenerator(curand.PSEUDO_DEFAULT)
		b.generator.SetSeed(b.seed)
	}
	if b.noise == nil {
		b.noise = cuda.NewSlice(b.NComp(), b.Mesh().Size())
		// when noise was (re-)allocated it's invalid for sure.
		B_therm.step = -1
		B_therm.dt = -1
	}

	if Temp.isZero() {
		cuda.Memset(b.noise, 0, 0, 0)
		b.step = NSteps
		b.dt = Dt_si
		return
	}

	// keep constant during time step
	if NSteps == b.step && Dt_si == b.dt {
		return
	}

	if FixDt == 0 {
		util.Fatal("Finite temperature requires fixed time step. Set FixDt != 0.")
	}

	N := Mesh().NCell()
	k2_VgammaDt := 2 * mag.Kb / (GammaLL * cellVolume() * Dt_si)
	noise := cuda.Buffer(1, Mesh().Size())
	defer cuda.Recycle(noise)

	const mean = 0
	const stddev = 1
	dst := b.noise
	ms := Msat.MSlice()
	defer ms.Recycle()
	temp := Temp.MSlice()
	defer temp.Recycle()
	alpha := Alpha.MSlice()
	defer alpha.Recycle()
	for i := 0; i < 3; i++ {
		b.generator.GenerateNormal(uintptr(noise.DevPtr(0)), int64(N), mean, stddev)
		cuda.SetTemperature(dst.Comp(i), noise, k2_VgammaDt, ms, temp, alpha)
	}

	b.step = NSteps
	b.dt = Dt_si
}
Exemple #28
0
// Save image once, with auto file name
func Snapshot(q outputField) {
	fname := fmt.Sprintf(OD()+FilenameFormat+"."+SnapshotFormat, q.Name(), autonum[q])
	s, r := q.Slice()
	if r {
		defer cuda.Recycle(s)
	}
	data := s.HostCopy() // must be copy (asyncio)
	queOutput(func() { snapshot_sync(fname, data) })
	autonum[q]++
}
Exemple #29
0
func SetMFM(dst *data.Slice) {
	buf := cuda.Buffer(3, Mesh().Size())
	defer cuda.Recycle(buf)
	if mfmconv_ == nil {
		reinitmfmconv()
	}

	mfmconv_.Exec(buf, M.Buffer(), geometry.Gpu(), Bsat.gpuLUT1(), regions.Gpu())
	cuda.Madd3(dst, buf.Comp(0), buf.Comp(1), buf.Comp(2), 1, 1, 1)
}
Exemple #30
0
// Adaptive Heun method, can be used as solver.Step
func (_ *Heun) Step() {
	y := M.Buffer()
	dy0 := cuda.Buffer(VECTOR, y.Size())
	defer cuda.Recycle(dy0)

	if FixDt != 0 {
		Dt_si = FixDt
	}

	dt := float32(Dt_si * GammaLL)
	util.Assert(dt > 0)

	// stage 1
	torqueFn(dy0)
	cuda.Madd2(y, y, dy0, 1, dt) // y = y + dt * dy

	// stage 2
	dy := cuda.Buffer(3, y.Size())
	defer cuda.Recycle(dy)
	Time += Dt_si
	torqueFn(dy)

	err := cuda.MaxVecDiff(dy0, dy) * float64(dt)

	// adjust next time step
	if err < MaxErr || Dt_si <= MinDt || FixDt != 0 { // mindt check to avoid infinite loop
		// step OK
		cuda.Madd3(y, y, dy, dy0, 1, 0.5*dt, -0.5*dt)
		M.normalize()
		NSteps++
		adaptDt(math.Pow(MaxErr/err, 1./2.))
		setLastErr(err)
		setMaxTorque(dy)
	} else {
		// undo bad step
		util.Assert(FixDt == 0)
		Time -= Dt_si
		cuda.Madd2(y, y, dy0, 1, -dt)
		NUndone++
		adaptDt(math.Pow(MaxErr/err, 1./3.))
	}
}