Exemple #1
0
// A convenience function to grab the KeyboardMapping and ModifierMapping
// from X. We need to do this on startup (see Initialize) and whenever we
// get a MappingNotify event.
func MapsGet(xu *xgbutil.XUtil) (*xproto.GetKeyboardMappingReply,
	*xproto.GetModifierMappingReply) {

	min, max := minMaxKeycodeGet(xu)
	queryKeymap, _ := xproto.GetKeyboardMapping(xu.Conn(), nil,
		min, byte(max-min+1))
	newKeymap, keyErr := queryKeymap.Reply()
	queryModmap, _ := xproto.GetModifierMapping(xu.Conn(), nil)
	newModmap, modErr := queryModmap.Reply()

	// If there are errors, we really need to panic. We just can't do
	// any key binding without a mapping from the server.
	if keyErr != nil {
		panic(fmt.Sprintf("COULD NOT GET KEYBOARD MAPPING: %v\n"+
			"THIS IS AN UNRECOVERABLE ERROR.\n",
			keyErr))
	}
	if modErr != nil {
		panic(fmt.Sprintf("COULD NOT GET MODIFIER MAPPING: %v\n"+
			"THIS IS AN UNRECOVERABLE ERROR.\n",
			keyErr))
	}

	return newKeymap, newModmap
}
Exemple #2
0
// PhyiscalHeads returns the list of heads in a physical ordering.
// Namely, left to right then top to bottom. (Defined by (X, Y).)
// Xinerama must have been initialized, otherwise the xinerama.QueryScreens
// request will panic.
// PhysicalHeads also checks to make sure each rectangle has a unique (x, y)
// tuple, so as not to return the geometry of cloned displays.
// (At present moment, xgbutil initializes Xinerama automatically during
// initial connection.)
func PhysicalHeads(xu *xgbutil.XUtil) (Heads, error) {
	query, _ := xinerama.QueryScreens(xu.Conn(), nil)
	xinfo, err := query.Reply()
	if err != nil {
		return nil, err
	}

	hds := make(Heads, 0)
	for _, info := range xinfo.ScreenInfo {
		head := xrect.New(int(info.XOrg), int(info.YOrg),
			int(info.Width), int(info.Height))

		// Maybe Xinerama is enabled, but we have cloned displays...
		unique := true
		for _, h := range hds {
			if h.X() == head.X() && h.Y() == head.Y() {
				unique = false
				break
			}
		}

		if unique {
			hds = append(hds, head)
		}
	}

	sort.Sort(hds)
	return hds, nil
}
Exemple #3
0
// _NET_DESKTOP_LAYOUT set
func DesktopLayoutSet(xu *xgbutil.XUtil, orientation, columns, rows,
	startingCorner uint) error {

	return xprop.ChangeProp32(xu, xu.RootWin(), "_NET_DESKTOP_LAYOUT",
		"CARDINAL", orientation, columns, rows,
		startingCorner)
}
Exemple #4
0
// GrabKeyboard grabs the entire keyboard.
// Returns whether GrabStatus is successful and an error if one is reported by
// XGB. It is possible to not get an error and the grab to be unsuccessful.
// The purpose of 'win' is that after a grab is successful, ALL Key*Events will
// be sent to that window. Make sure you have a callback attached :-)
func GrabKeyboard(xu *xgbutil.XUtil, win xproto.Window) error {
	query, _ := xproto.GrabKeyboard(xu.Conn(), nil, false, win, 0,
		xproto.GrabModeAsync, xproto.GrabModeAsync)
	reply, err := query.Reply()
	if err != nil {
		return fmt.Errorf("GrabKeyboard: Error grabbing keyboard on "+
			"window '%x': %s", win, err)
	}

	switch reply.Status {
	case xproto.GrabStatusSuccess:
		// all is well
	case xproto.GrabStatusAlreadyGrabbed:
		return fmt.Errorf("GrabKeyboard: Could not grab keyboard. " +
			"Status: AlreadyGrabbed.")
	case xproto.GrabStatusInvalidTime:
		return fmt.Errorf("GrabKeyboard: Could not grab keyboard. " +
			"Status: InvalidTime.")
	case xproto.GrabStatusNotViewable:
		return fmt.Errorf("GrabKeyboard: Could not grab keyboard. " +
			"Status: NotViewable.")
	case xproto.GrabStatusFrozen:
		return fmt.Errorf("GrabKeyboard: Could not grab keyboard. " +
			"Status: Frozen.")
	}
	return nil
}
Exemple #5
0
// Ungrab undoes Grab. It will handle all combinations od modifiers found
// in xevent.IgnoreMods.
func Ungrab(xu *xgbutil.XUtil, win xproto.Window,
	mods uint16, key xproto.Keycode) {

	for _, m := range xevent.IgnoreMods {
		query, _ := xproto.UngrabKeyChecked(xu.Conn(), nil, key, win, mods|m)
		query.Check()
	}
}
Exemple #6
0
// sendClientMessages is a goroutine that sends client messages to the root
// window. We then listen to them later as a demonstration of responding to
// X events. (They are sent with SubstructureNotify and SubstructureRedirect
// masks set. So in order to receive them, we'll have to explicitly listen
// to events of that type on the root window.)
func xSource(X *xgbutil.XUtil) {
	i := 1
	for {
		ewmh.ClientEvent(X, X.RootWin(), "NOOP", i)
		i++
		time.Sleep(200 * time.Millisecond)
	}
}
Exemple #7
0
// Grab grabs a key with mods on a particular window.
// This will also grab all combinations of modifiers found in xevent.IgnoreMods.
func Grab(xu *xgbutil.XUtil, win xproto.Window,
	mods uint16, key xproto.Keycode) {

	for _, m := range xevent.IgnoreMods {
		xproto.GrabKey(xu.Conn(), nil, true, win, mods|m, key,
			xproto.GrabModeAsync, xproto.GrabModeAsync)
	}
}
Exemple #8
0
// Ungrab undoes Grab. It will handle all combinations of modifiers found
// in xevent.IgnoreMods.
func Ungrab(xu *xgbutil.XUtil, win xproto.Window, mods uint16,
	button xproto.Button) {

	for _, m := range xevent.IgnoreMods {
		query, _ := xproto.UngrabButtonChecked(xu.Conn(), nil, byte(button), win, mods|m)
		query.Check()
	}
}
Exemple #9
0
// _NET_SUPPORTED set
// This will create any atoms in the argument if they don't already exist.
func SupportedSet(xu *xgbutil.XUtil, atomNames []string) error {
	atoms, err := xprop.StrToAtoms(xu, atomNames)
	if err != nil {
		return err
	}

	return xprop.ChangeProp32(xu, xu.RootWin(), "_NET_SUPPORTED", "ATOM",
		atoms...)
}
Exemple #10
0
// _NET_SHOWING_DESKTOP req
func ShowingDesktopReq(xu *xgbutil.XUtil, show bool) error {
	var showInt uint
	if show {
		showInt = 1
	} else {
		showInt = 0
	}
	return ClientEvent(xu, xu.RootWin(), "_NET_SHOWING_DESKTOP", showInt)
}
Exemple #11
0
// _NET_DESKTOP_NAMES set
func DesktopNamesSet(xu *xgbutil.XUtil, names []string) error {
	nullterm := make([]byte, 0)
	for _, name := range names {
		nullterm = append(nullterm, name...)
		nullterm = append(nullterm, 0)
	}
	return xprop.ChangeProp(xu, xu.RootWin(), 8, "_NET_DESKTOP_NAMES",
		"UTF8_STRING", nullterm)
}
Exemple #12
0
// _NET_DESKTOP_GEOMETRY get
func DesktopGeometryGet(xu *xgbutil.XUtil) (*DesktopGeometry, error) {
	geom, err := xprop.PropValNums(xprop.GetProperty(xu, xu.RootWin(),
		"_NET_DESKTOP_GEOMETRY"))
	if err != nil {
		return nil, err
	}

	return &DesktopGeometry{Width: int(geom[0]), Height: int(geom[1])}, nil
}
Exemple #13
0
// _NET_WM_HANDLED_ICONS set
func WmHandledIconsSet(xu *xgbutil.XUtil, handle bool) error {
	var handled uint
	if handle {
		handled = 1
	} else {
		handled = 0
	}
	return xprop.ChangeProp32(xu, xu.RootWin(), "_NET_WM_HANDLED_ICONS",
		"CARDINAL", handled)
}
Exemple #14
0
// _NET_SHOWING_DESKTOP set
func ShowingDesktopSet(xu *xgbutil.XUtil, show bool) error {
	var showInt uint
	if show {
		showInt = 1
	} else {
		showInt = 0
	}
	return xprop.ChangeProp32(xu, xu.RootWin(), "_NET_SHOWING_DESKTOP",
		"CARDINAL", showInt)
}
Exemple #15
0
// _NET_DESKTOP_VIEWPORT set
func DesktopViewportSet(xu *xgbutil.XUtil, viewports []DesktopViewport) error {
	coords := make([]uint, len(viewports)*2)
	for i, viewport := range viewports {
		coords[i*2] = uint(viewport.X)
		coords[i*2+1] = uint(viewport.Y)
	}

	return xprop.ChangeProp32(xu, xu.RootWin(), "_NET_DESKTOP_VIEWPORT",
		"CARDINAL", coords...)
}
Exemple #16
0
// compressMotionNotify takes a MotionNotify event, and inspects the event
// queue for any future MotionNotify events that can be received without
// blocking. The most recent MotionNotify event is then returned.
// Note that we need to make sure that the Event, Child, Detail, State, Root
// and SameScreen fields are the same to ensure the same window/action is
// generating events. That is, we are only compressing the RootX, RootY,
// EventX and EventY fields.
// This function is not thread safe, since Peek returns a *copy* of the
// event queue---which could be out of date by the time we dequeue events.
func compressMotionNotify(X *xgbutil.XUtil,
	ev xevent.MotionNotifyEvent) xevent.MotionNotifyEvent {

	// We force a round trip request so that we make sure to read all
	// available events.
	X.Sync()
	xevent.Read(X, false)

	// The most recent MotionNotify event that we'll end up returning.
	laste := ev

	// Look through each event in the queue. If it's an event and it matches
	// all the fields in 'ev' that are detailed above, then set it to 'laste'.
	// In which case, we'll also dequeue the event, otherwise it will be
	// processed twice!
	// N.B. If our only goal was to find the most recent relevant MotionNotify
	// event, we could traverse the event queue backwards and simply use
	// the first MotionNotify we see. However, this could potentially leave
	// other MotionNotify events in the queue, which we *don't* want to be
	// processed. So we stride along and just pick off MotionNotify events
	// until we don't see any more.
	for i, ee := range xevent.Peek(X) {
		if ee.Err != nil { // This is an error, skip it.
			continue
		}

		// Use type assertion to make sure this is a MotionNotify event.
		if mn, ok := ee.Event.(xproto.MotionNotifyEvent); ok {
			// Now make sure all appropriate fields are equivalent.
			if ev.Event == mn.Event && ev.Child == mn.Child &&
				ev.Detail == mn.Detail && ev.State == mn.State &&
				ev.Root == mn.Root && ev.SameScreen == mn.SameScreen {

				// Set the most recent/valid motion notify event.
				laste = xevent.MotionNotifyEvent{&mn}

				// We cheat and use the stack semantics of defer to dequeue
				// most recent motion notify events first, so that the indices
				// don't become invalid. (If we dequeued oldest first, we'd
				// have to account for all future events shifting to the left
				// by one.)
				defer func(i int) { xevent.DequeueAt(X, i) }(i)
			}
		}
	}

	// This isn't strictly necessary, but is correct. We should update
	// xgbutil's sense of time with the most recent event processed.
	// This is typically done in the main event loop, but since we are
	// subverting the main event loop, we should take care of it.
	X.TimeSet(laste.Time)

	return laste
}
Exemple #17
0
// _NET_WORKAREA set
func WorkareaSet(xu *xgbutil.XUtil, workareas []Workarea) error {
	rects := make([]uint, len(workareas)*4)
	for i, workarea := range workareas {
		rects[i*4+0] = uint(workarea.X)
		rects[i*4+1] = uint(workarea.Y)
		rects[i*4+2] = workarea.Width
		rects[i*4+3] = workarea.Height
	}

	return xprop.ChangeProp32(xu, xu.RootWin(), "_NET_WORKAREA", "CARDINAL",
		rects...)
}
Exemple #18
0
// newWindow creates a new window with a random background color. It sets the
// WM_PROTOCOLS property to contain the WM_DELETE_WINDOW atom. It also sets
// up a ClientMessage event handler so that we know when to destroy the window.
// We also set up a mouse binding so that clicking inside a window will
// create another one.
func newWindow(X *xgbutil.XUtil) {
	counter++
	win, err := xwindow.Generate(X)
	if err != nil {
		log.Fatal(err)
	}

	// Get a random background color, create the window (ask to receive button
	// release events while we're at it) and map the window.
	bgColor := rand.Intn(0xffffff + 1)
	win.Create(X.RootWin(), 0, 0, 200, 200,
		xproto.CwBackPixel|xproto.CwEventMask,
		uint32(bgColor), xproto.EventMaskButtonRelease)

	// WMGracefulClose does all of the work for us. It sets the appropriate
	// values for WM_PROTOCOLS, and listens for ClientMessages that implement
	// the WM_DELETE_WINDOW protocol. When one is found, the provided callback
	// is executed.
	win.WMGracefulClose(
		func(w *xwindow.Window) {
			// Detach all event handlers.
			// This should always be done when a window can no longer
			// receive events.
			xevent.Detach(w.X, w.Id)
			mousebind.Detach(w.X, w.Id)
			w.Destroy()

			// Exit if there are no more windows left.
			counter--
			if counter == 0 {
				os.Exit(0)
			}
		})

	// It's important that the map comes after setting WMGracefulClose, since
	// the WM isn't obliged to watch updates to the WM_PROTOCOLS property.
	win.Map()

	// A mouse binding so that a left click will spawn a new window.
	// Note that we don't issue a grab here. Typically, window managers will
	// grab a button press on the client window (which usually activates the
	// window), so that we'd end up competing with the window manager if we
	// tried to grab it.
	// Instead, we set a ButtonRelease mask when creating the window and attach
	// a mouse binding *without* a grab.
	err = mousebind.ButtonReleaseFun(
		func(X *xgbutil.XUtil, ev xevent.ButtonReleaseEvent) {
			newWindow(X)
		}).Connect(X, win.Id, "1", false, false)
	if err != nil {
		log.Fatal(err)
	}
}
Exemple #19
0
// _NET_SHOWING_DESKTOP get
func ShowingDesktopGet(xu *xgbutil.XUtil) (bool, error) {
	reply, err := xprop.GetProperty(xu, xu.RootWin(), "_NET_SHOWING_DESKTOP")
	if err != nil {
		return false, err
	}

	val, err := xprop.PropValNum(reply, nil)
	if err != nil {
		return false, err
	}

	return val == 1, nil
}
Exemple #20
0
// Grab grabs a button with mods on a particular window.
// Will also grab all combinations of modifiers found in xevent.IgnoreMods
// If 'sync' is True, then no further events can be processed until the
// grabbing client allows them to be. (Which is done via AllowEvents. Thus,
// if sync is True, you *must* make some call to AllowEvents at some
// point, or else your client will lock.)
func Grab(xu *xgbutil.XUtil, win xproto.Window, mods uint16,
	button xproto.Button, sync bool) {

	var pSync byte = xproto.GrabModeAsync
	if sync {
		pSync = xproto.GrabModeSync
	}

	for _, m := range xevent.IgnoreMods {
		xproto.GrabButton(xu.Conn(), nil, true, win, pointerMasks,
			pSync, xproto.GrabModeAsync, 0, 0, byte(button), mods|m)
	}
}
Exemple #21
0
// GrabChecked Grabs a key with mods on a particular window.
// This is the same as Grab, except that it issue a checked request.
// Which means that an error could be returned and handled on the spot.
// (Checked requests are slower than unchecked requests.)
// This will also grab all combinations of modifiers found in xevent.IgnoreMods.
func GrabChecked(xu *xgbutil.XUtil, win xproto.Window,
	mods uint16, key xproto.Keycode) error {

	var err error
	for _, m := range xevent.IgnoreMods {
		query, _ := xproto.GrabKeyChecked(xu.Conn(), nil, true, win,
			mods|m, key, xproto.GrabModeAsync, xproto.GrabModeAsync)
		err = query.Check()
		if err != nil {
			return err
		}
	}
	return nil
}
Exemple #22
0
// GrabPointer grabs the entire pointer.
// Returns whether GrabStatus is successful and an error if one is reported by
// XGB. It is possible to not get an error and the grab to be unsuccessful.
// The purpose of 'win' is that after a grab is successful, ALL Button*Events
// will be sent to that window. Make sure you have a callback attached :-)
func GrabPointer(xu *xgbutil.XUtil, win xproto.Window, confine xproto.Window,
	cursor xproto.Cursor) (bool, error) {

	query, _ := xproto.GrabPointer(xu.Conn(), nil, false, win,
		pointerMasks, xproto.GrabModeAsync, xproto.GrabModeAsync,
		confine, cursor, 0)
	reply, err := query.Reply()
	if err != nil {
		return false, fmt.Errorf("GrabPointer: Error grabbing pointer on "+
			"window '%x': %s", win, err)
	}

	return reply.Status == xproto.GrabStatusSuccess, nil
}
Exemple #23
0
// updateMaps runs in response to MappingNotify events.
// It is responsible for making sure our view of the world's keyboard
// and modifier maps is correct. (Pointer mappings should be handled in
// a similar callback in the mousebind package.)
func updateMaps(xu *xgbutil.XUtil, e xevent.MappingNotifyEvent) {
	keyMap, modMap := MapsGet(xu)

	// So we used to go through the old mapping and the new mapping and pick
	// out precisely where there are changes. But after allowing for a
	// one-to-many mapping from keysym to keycodes, this process became too
	// complex. So we're going to bust out our hammer and rebind everything
	// based on the initial key strings.
	if e.Request == xproto.MappingKeyboard {
		// We must ungrab everything first, in case two keys are being swapped.
		keys := keyKeys(xu)
		for _, key := range keys {
			Ungrab(xu, key.Win, key.Mod, key.Code)
			detach(xu, key.Evtype, key.Win)
		}

		// Wipe the slate clean.
		xu.KeybindsLck.Lock()
		xu.Keybinds = make(map[xgbutil.KeyKey][]xgbutil.CallbackKey, len(keys))
		xu.Keygrabs = make(map[xgbutil.KeyKey]int, len(keys))
		keyStrs := xu.Keystrings
		xu.KeybindsLck.Unlock()

		// Update our mappings before rebinding.
		KeyMapSet(xu, keyMap)
		ModMapSet(xu, modMap)

		// Now rebind everything in Keystrings
		for _, ks := range keyStrs {
			err := connect(xu,
				ks.Callback, ks.Evtype, ks.Win, ks.Str, ks.Grab, true)
			if err != nil {
				xgbutil.Logger.Println(err)
			}
		}
	} else {
		// We don't have to do something with MappingModifier like we do with
		// MappingKeyboard. This is due to us requiring that key strings use
		// modifier names built into X. (i.e., the names seen in the output of
		// `xmodmap`.) This means that the modifier mappings happen on the X
		// server side, so we don't *typically* have to care what key is
		// actually being pressed to trigger a modifier. (There are some
		// exceptional cases, and when that happens, we simply query on-demand
		// which keys are modifiers. See the RunKey{Press,Release}Callbacks
		// functions in keybind/callback.go for the deets.)
		KeyMapSet(xu, keyMap)
		ModMapSet(xu, modMap)
	}
}
Exemple #24
0
// dragStep executes the "step" function registered for the current drag.
// It also compresses the MotionNotify events.
func dragStep(xu *xgbutil.XUtil, ev xevent.MotionNotifyEvent) {
	// If for whatever reason we don't have any *piece* of a grab,
	// we've gotta back out.
	if !mouseDrag(xu) || mouseDragStep(xu) == nil || mouseDragEnd(xu) == nil {
		dragUngrab(xu)
		mouseDragStepSet(xu, nil)
		mouseDragEndSet(xu, nil)
		return
	}

	// The most recent MotionNotify event that we'll end up returning.
	laste := ev

	// We force a round trip request so that we make sure to read all
	// available events.
	xu.Sync()
	xevent.Read(xu, false)

	// Compress MotionNotify events.
	for i, ee := range xevent.Peek(xu) {
		if ee.Err != nil { // This is an error, skip it.
			continue
		}

		// Use type assertion to make sure this is a MotionNotify event.
		if mn, ok := ee.Event.(xproto.MotionNotifyEvent); ok {
			// Now make sure all appropriate fields are equivalent.
			if ev.Event == mn.Event && ev.Child == mn.Child &&
				ev.Detail == mn.Detail && ev.State == mn.State &&
				ev.Root == mn.Root && ev.SameScreen == mn.SameScreen {

				// Set the most recent/valid motion notify event.
				laste = xevent.MotionNotifyEvent{&mn}

				// We cheat and use the stack semantics of defer to dequeue
				// most recent motion notify events first, so that the indices
				// don't become invalid. (If we dequeued oldest first, we'd
				// have to account for all future events shifting to the left
				// by one.)
				defer func(i int) { xevent.DequeueAt(xu, i) }(i)
			}
		}
	}
	xu.TimeSet(laste.Time)

	// now actually run the step
	mouseDragStep(xu)(xu, int(laste.RootX), int(laste.RootY),
		int(laste.EventX), int(laste.EventY))
}
Exemple #25
0
// _NET_DESKTOP_VIEWPORT get
func DesktopViewportGet(xu *xgbutil.XUtil) ([]DesktopViewport, error) {
	coords, err := xprop.PropValNums(xprop.GetProperty(xu, xu.RootWin(),
		"_NET_DESKTOP_VIEWPORT"))
	if err != nil {
		return nil, err
	}

	viewports := make([]DesktopViewport, len(coords)/2)
	for i, _ := range viewports {
		viewports[i] = DesktopViewport{
			X: int(coords[i*2]),
			Y: int(coords[i*2+1]),
		}
	}
	return viewports, nil
}
Exemple #26
0
// newWindow creates a new window that listens to MotionNotify events with
// the given backgroundcolor.
func newWindow(X *xgbutil.XUtil, color uint32) *xwindow.Window {
	win, err := xwindow.Generate(X)
	if err != nil {
		log.Fatal(err)
	}

	err = win.CreateChecked(X.RootWin(), 0, 0, 400, 400,
		xproto.CwBackPixel|xproto.CwEventMask,
		color, xproto.EventMaskPointerMotion)
	if err != nil {
		log.Fatal(err)
	}

	win.Map()
	return win
}
Exemple #27
0
// Dequeue pops an event/error from the queue and returns it.
// The queue item is unwrapped and returned as multiple return values.
// Only one of the return values can be nil.
func Dequeue(xu *xgbutil.XUtil) (xgb.Event, xgb.Error) {
	xu.EvqueueLck.Lock()
	defer xu.EvqueueLck.Unlock()

	everr := xu.Evqueue[0]
	xu.Evqueue = xu.Evqueue[1:]
	return everr.Event, everr.Err
}
Exemple #28
0
// Drag is the public interface that will make the appropriate connections
// to register a drag event for three functions: the begin function, the
// step function and the end function.
// The 'grabwin' is the window that the grab is placed on (and therefore the
// window where all button events are redirected to after the drag has started),
// and the 'win' is the window that the initial 'begin' callback is set on.
// In typical use cases, these windows should be the same.
// If 'grab' is false, then no pointer grab is issued.
func Drag(xu *xgbutil.XUtil, grabwin xproto.Window, win xproto.Window,
	buttonStr string, grab bool,
	begin xgbutil.MouseDragBeginFun, step xgbutil.MouseDragFun,
	end xgbutil.MouseDragFun) {

	ButtonPressFun(
		func(xu *xgbutil.XUtil, ev xevent.ButtonPressEvent) {
			dragBegin(xu, ev, grabwin, win, begin, step, end)
		}).Connect(xu, win, buttonStr, false, grab)

	// If the grab win isn't the dummy, then setup event handlers for the
	// grab window.
	if grabwin != xu.Dummy() {
		xevent.MotionNotifyFun(dragStep).Connect(xu, grabwin)
		xevent.ButtonReleaseFun(dragEnd).Connect(xu, grabwin)
	}
}
Exemple #29
0
// Enqueue queues up an event read from X.
// Note that an event read may return an error, in which case, this queue
// entry will be an error and not an event.
//
//	ev, err := XUtilValue.Conn().WaitForEvent()
//	xevent.Enqueue(XUtilValue, ev, err)
//
// You probably shouldn't have to enqueue events yourself. This is done
// automatically if you're using xevent.Main{Ping} and/or xevent.Read.
func Enqueue(xu *xgbutil.XUtil, ev xgb.Event, err xgb.Error) {
	xu.EvqueueLck.Lock()
	defer xu.EvqueueLck.Unlock()

	xu.Evqueue = append(xu.Evqueue, xgbutil.EventOrError{
		Event: ev,
		Err:   err,
	})
}
Exemple #30
0
// dragGrab is a shortcut for grabbing the pointer for a drag.
func dragGrab(xu *xgbutil.XUtil, grabwin xproto.Window, win xproto.Window,
	cursor xproto.Cursor) bool {

	status, err := GrabPointer(xu, grabwin, xu.RootWin(), cursor)
	if err != nil {
		xgbutil.Logger.Printf("Mouse dragging was unsuccessful because: %v",
			err)
		return false
	}
	if !status {
		xgbutil.Logger.Println("Mouse dragging was unsuccessful because " +
			"we could not establish a pointer grab.")
		return false
	}

	mouseDragSet(xu, true)
	return true
}