Exemple #1
0
func Compress32(input []byte) {
	/* compress */
	start, in, data := time.Now(), make(chan []byte, 1), make([]byte, len(input))
	copy(data, input)
	buffer := &bytes.Buffer{}
	in <- data
	close(in)
	compress.BijectiveBurrowsWheelerCoder(in).MoveToFrontRunLengthCoder().AdaptiveCoder32().Code(buffer)
	fmt.Println("adaptive coder 32")
	fmt.Printf("compressed=%v\n", buffer.Len())
	fmt.Printf("ratio=%v\n", float64(buffer.Len())/float64(len(input)))
	fmt.Println(time.Now().Sub(start).String())

	/* decompress */
	start, in = time.Now(), make(chan []byte, 1)
	uncompressed := make([]byte, len(input))
	in <- uncompressed
	close(in)
	compress.BijectiveBurrowsWheelerDecoder(in).MoveToFrontRunLengthDecoder().AdaptiveDecoder32().Decode(buffer)
	if bytes.Compare(input, uncompressed) != 0 {
		fmt.Println("decompression didn't work")
	} else {
		fmt.Println("decompression worked")
	}
	fmt.Println(time.Now().Sub(start).String())

	/* compress */
	start, in = time.Now(), make(chan []byte, 1)
	copy(data, input)
	buffer.Reset()
	in <- data
	close(in)
	compress.BijectiveBurrowsWheelerCoder(in).MoveToFrontRunLengthCoder().AdaptivePredictiveCoder32().Code(buffer)
	fmt.Println("\nadaptive predictive coder 32")
	fmt.Printf("compressed=%v\n", buffer.Len())
	fmt.Printf("ratio=%v\n", float64(buffer.Len())/float64(len(input)))
	fmt.Println(time.Now().Sub(start).String())

	/* decompress */
	start, in = time.Now(), make(chan []byte, 1)
	uncompressed = make([]byte, len(input))
	in <- uncompressed
	close(in)
	compress.BijectiveBurrowsWheelerDecoder(in).MoveToFrontRunLengthDecoder().AdaptivePredictiveDecoder32().Decode(buffer)
	if bytes.Compare(input, uncompressed) != 0 {
		fmt.Println("decompression didn't work")
	} else {
		fmt.Println("decompression worked")
	}
	fmt.Println(time.Now().Sub(start).String())
}
Exemple #2
0
func kc(a []byte) float64 {
	input, in, output := make([]byte, len(a)), make(chan []byte, 1), &bytes.Buffer{}
	copy(input, a)
	in <- input
	close(in)
	compress.BijectiveBurrowsWheelerCoder(in).MoveToFrontRunLengthCoder().AdaptiveCoder().Code(output)
	return float64(output.Len())
}
Exemple #3
0
func KCSmeans(rawData [][]float64, k int, distanceFunction DistanceFunction, threshold int) ([]int, error) {
	var clusteredData []ClusteredObservation
	var err error
	for clusters := 1; clusters <= k; clusters++ {
		data := make([]ClusteredObservation, len(rawData))
		for ii, jj := range rawData {
			data[ii].Observation = jj
		}
		seeds := seed(data, clusters, distanceFunction)
		clusteredData, err = kmeans(data, seeds, distanceFunction, threshold)

		counts := make([]int, clusters)
		for _, jj := range clusteredData {
			counts[jj.ClusterNumber]++
		}

		input, width := &bytes.Buffer{}, len(seeds[0])
		x := make([]float64, width)
		for c := 0; c < clusters; c++ {
			err := binary.Write(input, binary.LittleEndian, rand.Float64())
			if err != nil {
				panic(err)
			}
			err = binary.Write(input, binary.LittleEndian, int64(counts[c]))
			if err != nil {
				panic(err)
			}
			for _, jj := range seeds[c] {
				err = binary.Write(input, binary.LittleEndian, jj)
				if err != nil {
					panic(err)
				}
			}
			for _, j := range clusteredData {
				if j.ClusterNumber == c {
					/*distance, _ := distanceFunction(j.Observation, seeds[c])
					err = binary.Write(input, binary.LittleEndian, distance)
					if err != nil {
						panic(err)
					}*/

					for ii, jj := range j.Observation {
						x[ii] = jj - seeds[c][ii]
					}

					if width == 1 {
						err = binary.Write(input, binary.LittleEndian, x[0])
						if err != nil {
							panic(err)
						}
					} else {
						r := 0.0
						for _, i := range x {
							r += i * i
						}
						err = binary.Write(input, binary.LittleEndian, math.Sqrt(r))
						if err != nil {
							panic(err)
						}

						t := math.Acos(x[1] / math.Sqrt(x[0]*x[0]+x[1]*x[1]))
						if t < 0 {
							t = 2*math.Pi - t
						}
						err = binary.Write(input, binary.LittleEndian, t)
						if err != nil {
							panic(err)
						}

						for i := 2; i < width; i++ {
							r = 0.0
							for _, j := range x[:i+1] {
								r += j * j
							}
							err = binary.Write(input, binary.LittleEndian, math.Acos(x[i]/math.Sqrt(r)))
							if err != nil {
								panic(err)
							}
						}
					}
				}
			}
		}

		in, output := make(chan []byte, 1), &bytes.Buffer{}
		in <- input.Bytes()
		close(in)
		compress.BijectiveBurrowsWheelerCoder(in).MoveToFrontRunLengthCoder().AdaptiveCoder().Code(output)
		fmt.Printf("%v %v\n", clusters, output.Len())
	}

	labels := make([]int, len(clusteredData))
	for ii, jj := range clusteredData {
		labels[ii] = jj.ClusterNumber
	}
	return labels, err
}
Exemple #4
0
func KCMmeans(rawData [][]float64, k int, distanceFunction DistanceFunction, threshold int) ([]int, []Observation, error) {
	var minClusteredData []ClusteredObservation
	var means []Observation
	var err error
	max, trace := int64(0), make([]float64, k)
	for clusters := 1; clusters <= k; clusters++ {
		data := make([]ClusteredObservation, len(rawData))
		for ii, jj := range rawData {
			data[ii].Observation = jj
		}
		seeds := seed(data, clusters, distanceFunction)
		clusteredData, _ := kmeans(data, seeds, distanceFunction, threshold)

		counts := make([]int, clusters)
		for _, jj := range clusteredData {
			counts[jj.ClusterNumber]++
		}

		input := &bytes.Buffer{}
		for c := 0; c < clusters; c++ {
			/*err := binary.Write(input, binary.LittleEndian, rand.Float64())
			if err != nil {
				panic(err)
			}*/

			err := binary.Write(input, binary.LittleEndian, int64(counts[c]))
			if err != nil {
				panic(err)
			}

			for _, jj := range seeds[c] {
				err = binary.Write(input, binary.LittleEndian, jj)
				if err != nil {
					panic(err)
				}
			}

			for _, j := range clusteredData {
				if j.ClusterNumber == c {
					for ii, jj := range j.Observation {
						err = binary.Write(input, binary.LittleEndian, jj-seeds[c][ii])
						if err != nil {
							panic(err)
						}
					}
				}
			}
		}

		in, output := make(chan []byte, 1), &bytes.Buffer{}
		in <- input.Bytes()
		close(in)
		compress.BijectiveBurrowsWheelerCoder(in).MoveToFrontRunLengthCoder().AdaptiveCoder().Code(output)

		/*output := &bytes.Buffer{}
		writer := lzma.NewWriterLevel(output, lzma.BestCompression)
		writer.Write(input.Bytes())
		writer.Close()*/

		complexity := int64(output.Len())
		trace[clusters-1] = float64(complexity)
		fmt.Printf("%v %v\n", clusters, complexity)
		if complexity > max {
			max, minClusteredData, means = complexity, clusteredData, make([]Observation, len(seeds))
			for ii := range seeds {
				means[ii] = make([]float64, len(seeds[ii]))
				for jj := range seeds[ii] {
					means[ii][jj] = seeds[ii][jj]
				}
			}
		}
	}

	f := fft.FFTReal(trace)
	points, phase, complex := make(plotter.XYs, len(f)-1), make(plotter.XYs, len(f)-1), make(plotter.XYs, len(f))
	for i, j := range f[1:] {
		points[i].X, points[i].Y = float64(i), cmplx.Abs(j)
		phase[i].X, phase[i].Y = float64(i), cmplx.Phase(j)
		complex[i].X, complex[i].Y = real(j), imag(j)
	}

	p, err := plot.New()
	if err != nil {
		panic(err)
	}
	p.Title.Text = "FFT Real"
	p.X.Label.Text = "X"
	p.Y.Label.Text = "Y"
	scatter, err := plotter.NewScatter(points)
	if err != nil {
		panic(err)
	}
	scatter.Shape = draw.CircleGlyph{}
	scatter.Radius = vg.Points(1)
	p.Add(scatter)
	if err := p.Save(8, 8, "fft_real.png"); err != nil {
		panic(err)
	}

	p, err = plot.New()
	if err != nil {
		panic(err)
	}
	p.Title.Text = "FFT Phase"
	p.X.Label.Text = "X"
	p.Y.Label.Text = "Y"
	scatter, err = plotter.NewScatter(phase)
	if err != nil {
		panic(err)
	}
	scatter.Shape = draw.CircleGlyph{}
	scatter.Radius = vg.Points(1)
	scatter.Color = color.RGBA{0, 0, 255, 255}
	p.Add(scatter)
	if err := p.Save(8, 8, "fft_phase.png"); err != nil {
		panic(err)
	}

	p, err = plot.New()
	if err != nil {
		panic(err)
	}
	p.Title.Text = "FFT Complex"
	p.X.Label.Text = "X"
	p.Y.Label.Text = "Y"
	scatter, err = plotter.NewScatter(complex)
	if err != nil {
		panic(err)
	}
	scatter.Shape = draw.CircleGlyph{}
	scatter.Radius = vg.Points(1)
	scatter.Color = color.RGBA{0, 0, 255, 255}
	p.Add(scatter)
	if err := p.Save(8, 8, "fft_complex.png"); err != nil {
		panic(err)
	}

	labels := make([]int, len(minClusteredData))
	for ii, jj := range minClusteredData {
		labels[ii] = jj.ClusterNumber
	}
	return labels, means, err
}
Exemple #5
0
func KCmeans(rawData [][]float64, k int, distanceFunction DistanceFunction, threshold, gain int) ([]int, []Observation, error) {
	var minClusteredData []ClusteredObservation
	var means []Observation
	var err error
	min := int64(math.MaxInt64)
	for clusters := 1; clusters <= k; clusters++ {
		data := make([]ClusteredObservation, len(rawData))
		for ii, jj := range rawData {
			data[ii].Observation = jj
		}
		seeds := seed(data, clusters, distanceFunction)
		clusteredData, _ := kmeans(data, seeds, distanceFunction, threshold)

		counts := make([]int, clusters)
		for _, jj := range clusteredData {
			counts[jj.ClusterNumber]++
		}

		input := &bytes.Buffer{}
		for c := 0; c < clusters; c++ {
			err := binary.Write(input, binary.LittleEndian, rand.Float64())
			if err != nil {
				panic(err)
			}

			err = binary.Write(input, binary.LittleEndian, int64(counts[c]))
			if err != nil {
				panic(err)
			}

			for _, jj := range seeds[c] {
				err = binary.Write(input, binary.LittleEndian, jj)
				if err != nil {
					panic(err)
				}
			}

			/*sigma := make([]float64, len(seeds[c]))*/
			for _, j := range clusteredData {
				if j.ClusterNumber == c {
					for ii, jj := range j.Observation {
						x := jj - seeds[c][ii]
						//sigma[ii] += x * x
						err = binary.Write(input, binary.LittleEndian, x)
						if err != nil {
							panic(err)
						}
					}

					for ii, jj := range j.Observation {
						x := math.Exp(jj - seeds[c][ii])
						for i := 0; i < gain; i++ {
							err = binary.Write(input, binary.LittleEndian, x*rand.Float64())
							if err != nil {
								panic(err)
							}
						}
					}
				}
			}

			/*N := float64(counts[c])
			for i, j := range sigma {
				sigma[i] = math.Sqrt(j / N)
			}

			for i := 0; i < gain * counts[c]; i++ {
				for _, jj := range sigma {
					err = binary.Write(input, binary.LittleEndian, 3 * jj * rand.NormFloat64())
					if err != nil {
						panic(err)
					}
				}
			}*/
		}

		in, output := make(chan []byte, 1), &bytes.Buffer{}
		in <- input.Bytes()
		close(in)
		compress.BijectiveBurrowsWheelerCoder(in).MoveToFrontRunLengthCoder().AdaptiveCoder().Code(output)

		/*output := &bytes.Buffer{}
		writer := lzma.NewWriterLevel(output, lzma.BestCompression)
		writer.Write(input.Bytes())
		writer.Close()*/

		complexity := int64(output.Len())
		fmt.Printf("%v %v\n", clusters, complexity)
		if complexity < min {
			min, minClusteredData, means = complexity, clusteredData, make([]Observation, len(seeds))
			for ii := range seeds {
				means[ii] = make([]float64, len(seeds[ii]))
				for jj := range seeds[ii] {
					means[ii][jj] = seeds[ii][jj]
				}
			}
		}
	}

	labels := make([]int, len(minClusteredData))
	for ii, jj := range minClusteredData {
		labels[ii] = jj.ClusterNumber
	}
	return labels, means, err
}