Exemple #1
0
// DrawGraphTools creates a file filename and draws an SPN spn in graph-tools. The resulting file
// is a python source code that outputs a PNG image of the graph.
func DrawGraphTools(filename string, s spn.SPN) {
	file, err := os.Create(filename)

	if err != nil {
		fmt.Printf("Error. Could not create file [%s].\n", filename)
		panic(err)
	}
	defer file.Close()

	outname := utils.StringConcat(filename[0:len(filename)-len(filepath.Ext(filename))], ".png")

	fmt.Fprintf(file, "from graph_tool.all import *\n\n")
	fmt.Fprintf(file, "g = Graph(directed=True)\n")
	fmt.Fprintf(file, "vcolors = g.new_vertex_property(\"string\")\n")
	fmt.Fprintf(file, "vnames = g.new_vertex_property(\"string\")\n")
	fmt.Fprintf(file, "enames = g.new_edge_property(\"string\")\n\n")
	fmt.Fprintf(file, "def add_node(name, type):\n\tv=g.add_vertex()\n\tvnames[v]=name\n\t"+
		"vcolors[v]=type\n\treturn v\n\n")
	fmt.Fprintf(file, "def add_edge(o, t, name):\n\te=g.add_edge(o, t)\n\tenames[e]=name\n\treturn e\n\n")
	fmt.Fprintf(file, "def add_edge_nameless(o, t):\n\te=g.add_edge(o, t)\n\treturn e\n\n\n")

	// If the SPN is itself an univariate distribution, create a graph with a single node.
	if s.Type() == "leaf" {
		fmt.Fprintf(file, "add_node(\"X\")\n\n")
		fmt.Fprintf(file, "g.vertex_properties[\"name\"]=vnames\n")
		fmt.Fprintf(file, "g.vertex_properties[\"color\"]=vcolors\n")
		fmt.Fprintf(file, "\ngraph_draw(g, vertex_text=g.vertex_properties[\"name\"], "+
			"edge_text=enames, vertex_fill_color=g.vertex_properties[\"color\"], output=\"%s\")\n",
			outname)
		return
	}

	// Else, BFS the SPN and write nodes to filename.
	nvars, nsums, nprods := 0, 0, 0
	queue := common.Queue{}
	queue.Enqueue(&BFSPair{Spn: s, Pname: "", Weight: -1.0})
	for !queue.Empty() {
		currpair := queue.Dequeue().(*BFSPair)
		curr, pname, pw := currpair.Spn, currpair.Pname, currpair.Weight
		ch := curr.Ch()
		nch := len(ch)

		name := "N"
		currt := curr.Type()

		// In case it is a sum node. Else product node.
		if currt == "sum" {
			name = fmt.Sprintf("S%d", nsums)
			fmt.Fprintf(file, "%s = add_node(\"+\", \"#ff3300\")\n", name)
			nsums++
		} else if currt == "product" {
			name = fmt.Sprintf("P%d", nprods)
			fmt.Fprintf(file, "%s = add_node(\"*\", \"#669900\")\n", name)
			nprods++
		}

		// If pname is empty, then it is the root node. Else, link parent node to current node.
		if pname != "" {
			if pw >= 0 {
				fmt.Fprintf(file, "add_edge(%s, %s, \"%.3f\")\n", pname, name, pw)
			} else {
				fmt.Fprintf(file, "add_edge_nameless(%s, %s)\n", pname, name)
			}
		}

		var w []float64
		if curr.Type() == "sum" {
			w = (curr.(*spn.Sum).Weights())
		}
		// For each children, run the BFS.
		for i := 0; i < nch; i++ {
			c := ch[i]

			// If leaf, then simply write to the graphviz dot file. Else, recurse the BFS.
			if c.Type() == "leaf" {
				cname := fmt.Sprintf("X%d", nvars)
				fmt.Fprintf(file, "%s = add_node(\"X_%d\", \"#0066ff\")\n", cname, c.Sc()[0])
				nvars++
				if currt == "sum" {
					fmt.Fprintf(file, "add_edge(%s, %s, \"%.3f\")\n", name, cname, w[i])
				} else {
					fmt.Fprintf(file, "add_edge_nameless(%s, %s)\n", name, cname)
				}
			} else {
				tw := -1.0
				if w != nil {
					tw = w[i]
				}
				queue.Enqueue(&BFSPair{Spn: c, Pname: name, Weight: tw})
			}
		}
	}

	fmt.Fprintf(file, "g.vertex_properties[\"name\"]=vnames\n")
	fmt.Fprintf(file, "g.vertex_properties[\"color\"]=vcolors\n")
	//fmt.Fprintf(file, "\ngraph_draw(g, vertex_text=g.vertex_properties[\"name\"], "+
	//"edge_text=enames, vertex_fill_color=g.vertex_properties[\"color\"], "+
	//"output_size=[16384, 16384], output=\"%s\", bg_color=[1, 1, 1, 1])\n", outname)
	fmt.Fprintf(file, "\ngraph_draw(g, "+
		"edge_text=enames, vertex_fill_color=g.vertex_properties[\"color\"], "+
		"output_size=[16384, 16384], output=\"%s\", bg_color=[1, 1, 1, 1])\n", outname)
}
Exemple #2
0
// Compile takes a plain text filename tfile and compiles it into a vocabulary file vfile. We
// treat punctuation as words and letters with accent marks as different characters (é != e). A
// vocabulary file contains K lines of word mapping where, for each line a number (which signals
// the id of a word) is followed by the word in question. Next we have a series of numbers that
// represent the id of each word in the order they appear in tfile.
func Compile(tfile, vfile string) {
	text, err := os.Open(io.GetPath(tfile))
	if err != nil {
		fmt.Printf("Error. Could not open file [%s].\n", tfile)
		panic(err)
	}
	defer text.Close()

	vocab := make(map[string]int)
	vc := 0
	match := regexp.MustCompile(rex)

	var block []string
	cblock := 0
	nwords := 0

	// Read contents and store them into vocab and block.
	in := bufio.NewScanner(text)
	for in.Scan() {
		//fmt.Printf("Text: \"%s\"\nMatches:\n", in.Text())
		v := match.FindAllString(in.Text(), -1)
		nv := len(v)

		//for i := 0; i < nv; i++ {
		//fmt.Printf(" <%s>", v[i])
		//}
		//fmt.Printf("\n")

		if nv == 0 {
			continue
		}
		block = append(block, "")
		for i := 0; i < nv; i++ {
			str := strings.ToLower(v[i])
			_, ok := vocab[str]
			if !ok {
				vocab[str] = vc
				vc++
			}
			//fmt.Printf("%s -> %d\n", str, vocab[str])
			block[cblock] = utils.StringConcat(block[cblock], strconv.Itoa(vocab[str]))
			if i < nv-1 {
				block[cblock] = utils.StringConcat(block[cblock], " ")
			}
			nwords++
		}
		cblock++
	}

	if err := in.Err(); err != nil {
		fmt.Printf("Error parsing file [%s].\n", tfile)
		panic(err)
	}

	// Write contents into vfile.
	vocf, err := os.Create(io.GetPath(vfile))

	if err != nil {
		fmt.Printf("Error. Could not open file [%s].\n", vfile)
		panic(err)
	}
	defer vocf.Close()

	// Number of vocabulary entries.
	fmt.Fprintf(vocf, "%d\n", len(vocab))
	for k, v := range vocab {
		// Write each entry as a pair (id, word).
		fmt.Fprintf(vocf, "%d %s\n", v, k)
	}
	// Number of words in block.
	fmt.Fprintf(vocf, "%d\n", nwords)
	for i := 0; i < cblock; i++ {
		// Write all lines as a list of ids.
		fmt.Fprintln(vocf, block[i])
	}
}