func BenchmarkPathPacketConstruction(b *testing.B) {
	route := make([]*btcec.PublicKey, NumMaxHops)
	for i := 0; i < NumMaxHops; i++ {
		privKey, err := btcec.NewPrivateKey(btcec.S256())
		if err != nil {
			b.Fatalf("unable to generate key: %v", privKey)
		}

		route[i] = privKey.PubKey()
	}

	var (
		err          error
		sphinxPacket *OnionPacket
	)

	var hopPayloads [][]byte
	for i := 0; i < len(route); i++ {
		payload := bytes.Repeat([]byte{byte('A' + i)}, HopPayloadSize)
		hopPayloads = append(hopPayloads, payload)
	}

	d, _ := btcec.PrivKeyFromBytes(btcec.S256(), bytes.Repeat([]byte{'A'}, 32))
	for i := 0; i < b.N; i++ {
		sphinxPacket, err = NewOnionPacket(route, d, hopPayloads, nil)
		if err != nil {
			b.Fatalf("unable to create packet: %v", err)
		}
	}

	s = sphinxPacket
}
Exemple #2
0
// This example demonstrates signing a message with a secp256k1 private key that
// is first parsed form raw bytes and serializing the generated signature.
func Example_signMessage() {
	// Decode a hex-encoded private key.
	pkBytes, err := hex.DecodeString("22a47fa09a223f2aa079edf85a7c2d4f87" +
		"20ee63e502ee2869afab7de234b80c")
	if err != nil {
		fmt.Println(err)
		return
	}
	privKey, pubKey := btcec.PrivKeyFromBytes(btcec.S256(), pkBytes)

	// Sign a message using the private key.
	message := "test message"
	messageHash := chainhash.DoubleHashB([]byte(message))
	signature, err := privKey.Sign(messageHash)
	if err != nil {
		fmt.Println(err)
		return
	}

	// Serialize and display the signature.
	fmt.Printf("Serialized Signature: %x\n", signature.Serialize())

	// Verify the signature for the message using the public key.
	verified := signature.Verify(messageHash, pubKey)
	fmt.Printf("Signature Verified? %v\n", verified)

	// Output:
	// Serialized Signature: 304402201008e236fa8cd0f25df4482dddbb622e8a8b26ef0ba731719458de3ccd93805b022032f8ebe514ba5f672466eba334639282616bb3c2f0ab09998037513d1f9e3d6d
	// Signature Verified? true
}
Exemple #3
0
// PrivKey returns the private key for the address.  It can fail if the address
// manager is watching-only or locked, or the address does not have any keys.
//
// This is part of the ManagedPubKeyAddress interface implementation.
func (a *managedAddress) PrivKey() (*btcec.PrivateKey, error) {
	// No private keys are available for a watching-only address manager.
	if a.manager.watchingOnly {
		return nil, managerError(ErrWatchingOnly, errWatchingOnly, nil)
	}

	a.manager.mtx.Lock()
	defer a.manager.mtx.Unlock()

	// Account manager must be unlocked to decrypt the private key.
	if a.manager.locked {
		return nil, managerError(ErrLocked, errLocked, nil)
	}

	// Decrypt the key as needed.  Also, make sure it's a copy since the
	// private key stored in memory can be cleared at any time.  Otherwise
	// the returned private key could be invalidated from under the caller.
	privKeyCopy, err := a.unlock(a.manager.cryptoKeyPriv)
	if err != nil {
		return nil, err
	}

	privKey, _ := btcec.PrivKeyFromBytes(btcec.S256(), privKeyCopy)
	zero.Bytes(privKeyCopy)
	return privKey, nil
}
Exemple #4
0
// This example demonstrates decrypting a message using a private key that is
// first parsed from raw bytes.
func Example_decryptMessage() {
	// Decode the hex-encoded private key.
	pkBytes, err := hex.DecodeString("a11b0a4e1a132305652ee7a8eb7848f6ad" +
		"5ea381e3ce20a2c086a2e388230811")
	if err != nil {
		fmt.Println(err)
		return
	}

	privKey, _ := btcec.PrivKeyFromBytes(btcec.S256(), pkBytes)

	ciphertext, err := hex.DecodeString("35f644fbfb208bc71e57684c3c8b437402ca" +
		"002047a2f1b38aa1a8f1d5121778378414f708fe13ebf7b4a7bb74407288c1958969" +
		"00207cf4ac6057406e40f79961c973309a892732ae7a74ee96cd89823913b8b8d650" +
		"a44166dc61ea1c419d47077b748a9c06b8d57af72deb2819d98a9d503efc59fc8307" +
		"d14174f8b83354fac3ff56075162")

	// Try decrypting the message.
	plaintext, err := btcec.Decrypt(privKey, ciphertext)
	if err != nil {
		fmt.Println(err)
		return
	}

	fmt.Println(string(plaintext))

	// Output:
	// test message
}
Exemple #5
0
// This example demonstrates encrypting a message for a public key that is first
// parsed from raw bytes, then decrypting it using the corresponding private key.
func Example_encryptMessage() {
	// Decode the hex-encoded pubkey of the recipient.
	pubKeyBytes, err := hex.DecodeString("04115c42e757b2efb7671c578530ec191a1" +
		"359381e6a71127a9d37c486fd30dae57e76dc58f693bd7e7010358ce6b165e483a29" +
		"21010db67ac11b1b51b651953d2") // uncompressed pubkey
	if err != nil {
		fmt.Println(err)
		return
	}
	pubKey, err := btcec.ParsePubKey(pubKeyBytes, btcec.S256())
	if err != nil {
		fmt.Println(err)
		return
	}

	// Encrypt a message decryptable by the private key corresponding to pubKey
	message := "test message"
	ciphertext, err := btcec.Encrypt(pubKey, []byte(message))
	if err != nil {
		fmt.Println(err)
		return
	}

	// Decode the hex-encoded private key.
	pkBytes, err := hex.DecodeString("a11b0a4e1a132305652ee7a8eb7848f6ad" +
		"5ea381e3ce20a2c086a2e388230811")
	if err != nil {
		fmt.Println(err)
		return
	}
	// note that we already have corresponding pubKey
	privKey, _ := btcec.PrivKeyFromBytes(btcec.S256(), pkBytes)

	// Try decrypting and verify if it's the same message.
	plaintext, err := btcec.Decrypt(privKey, ciphertext)
	if err != nil {
		fmt.Println(err)
		return
	}

	fmt.Println(string(plaintext))

	// Output:
	// test message
}
Exemple #6
0
// DeriveRevocationPrivKey derives the revocation private key given a node's
// commitment private key, and the pre-image to a previously seen revocation
// hash. Using this derived private key, a node is able to claim the output
// within the commitment transaction of a node in the case that they broadcast
// a previously revoked commitment transaction.
//
// The private key is derived as follwos:
//   revokePriv := commitPriv + revokePreimage mod N
//
// Where N is the order of the sub-group.
func DeriveRevocationPrivKey(commitPrivKey *btcec.PrivateKey,
	revokePreimage []byte) *btcec.PrivateKey {

	// Convert the revocation pre-image into a scalar value so we can
	// manipulate it within the curve's defined finite field.
	revokeScalar := new(big.Int).SetBytes(revokePreimage)

	// To derive the revocation private key, we simply add the revocation
	// pre-image to the commitment private key.
	//
	// This works since:
	//  P = G*a + G*b
	//    = G*(a+b)
	//    = G*p
	revokePriv := revokeScalar.Add(revokeScalar, commitPrivKey.D)
	revokePriv = revokePriv.Mod(revokePriv, btcec.S256().N)

	privRevoke, _ := btcec.PrivKeyFromBytes(btcec.S256(), revokePriv.Bytes())
	return privRevoke
}
// TestRevocationKeyDerivation tests that given a public key, and a revocation
// hash, the homomorphic revocation public and private key derivation work
// properly.
func TestRevocationKeyDerivation(t *testing.T) {
	revocationPreimage := testHdSeed[:]

	priv, pub := btcec.PrivKeyFromBytes(btcec.S256(), testWalletPrivKey)

	revocationPub := DeriveRevocationPubkey(pub, revocationPreimage)

	revocationPriv := DeriveRevocationPrivKey(priv, revocationPreimage)
	x, y := btcec.S256().ScalarBaseMult(revocationPriv.D.Bytes())
	derivedRevPub := &btcec.PublicKey{
		Curve: btcec.S256(),
		X:     x,
		Y:     y,
	}

	// The the revocation public key derived from the original public key,
	// and the one derived from the private key should be identical.
	if !revocationPub.IsEqual(derivedRevPub) {
		t.Fatalf("derived public keys don't match!")
	}
}
func newTestRoute(numHops int) ([]*Router, *OnionPacket, error) {
	nodes := make([]*Router, numHops)

	// Create numMaxHops random sphinx nodes.
	for i := 0; i < len(nodes); i++ {
		privKey, err := btcec.NewPrivateKey(btcec.S256())
		if err != nil {
			return nil, nil, fmt.Errorf("Unable to generate random "+
				"key for sphinx node: %v", err)
		}

		nodes[i] = NewRouter(privKey, &chaincfg.MainNetParams)
	}

	// Gather all the pub keys in the path.
	route := make([]*btcec.PublicKey, len(nodes))
	for i := 0; i < len(nodes); i++ {
		route[i] = nodes[i].onionKey.PubKey()
	}

	var hopPayloads [][]byte
	for i := 0; i < len(nodes); i++ {
		payload := bytes.Repeat([]byte{byte('A' + i)}, HopPayloadSize)
		hopPayloads = append(hopPayloads, payload)
	}

	// Generate a forwarding message to route to the final node via the
	// generated intermdiates nodes above.  Destination should be Hash160,
	// adding padding so parsing still works.
	sessionKey, _ := btcec.PrivKeyFromBytes(btcec.S256(), bytes.Repeat([]byte{'A'}, 32))
	fwdMsg, err := NewOnionPacket(route, sessionKey, hopPayloads, nil)
	if err != nil {
		return nil, nil, fmt.Errorf("Unable to create forwarding "+
			"message: %#v", err)
	}

	return nodes, fwdMsg, nil
}
Exemple #9
0
func TestWatchingWalletExport(t *testing.T) {
	createdAt := makeBS(0)
	w, err := New(dummyDir, "A wallet for testing.",
		[]byte("banana"), tstNetParams, createdAt)
	if err != nil {
		t.Error("Error creating new wallet: " + err.Error())
		return
	}

	// Maintain a set of the active addresses in the wallet.
	activeAddrs := make(map[addressKey]struct{})

	// Add root address.
	activeAddrs[getAddressKey(w.LastChainedAddress())] = struct{}{}

	// Create watching wallet from w.
	ww, err := w.ExportWatchingWallet()
	if err != nil {
		t.Errorf("Could not create watching wallet: %v", err)
		return
	}

	// Verify correctness of wallet flags.
	if ww.flags.useEncryption {
		t.Errorf("Watching wallet marked as using encryption (but nothing to encrypt).")
		return
	}
	if !ww.flags.watchingOnly {
		t.Errorf("Wallet should be watching-only but is not marked so.")
		return
	}

	// Verify that all flags are set as expected.
	if ww.keyGenerator.flags.encrypted {
		t.Errorf("Watching root address should not be encrypted (nothing to encrypt)")
		return
	}
	if ww.keyGenerator.flags.hasPrivKey {
		t.Errorf("Watching root address marked as having a private key.")
		return
	}
	if !ww.keyGenerator.flags.hasPubKey {
		t.Errorf("Watching root address marked as missing a public key.")
		return
	}
	if ww.keyGenerator.flags.createPrivKeyNextUnlock {
		t.Errorf("Watching root address marked as needing a private key to be generated later.")
		return
	}
	for apkh, waddr := range ww.addrMap {
		switch addr := waddr.(type) {
		case *btcAddress:
			if addr.flags.encrypted {
				t.Errorf("Chained address should not be encrypted (nothing to encrypt)")
				return
			}
			if addr.flags.hasPrivKey {
				t.Errorf("Chained address marked as having a private key.")
				return
			}
			if !addr.flags.hasPubKey {
				t.Errorf("Chained address marked as missing a public key.")
				return
			}
			if addr.flags.createPrivKeyNextUnlock {
				t.Errorf("Chained address marked as needing a private key to be generated later.")
				return
			}
		case *scriptAddress:
			t.Errorf("Chained address was a script!")
			return
		default:
			t.Errorf("Chained address unknown type!")
			return
		}

		if _, ok := activeAddrs[apkh]; !ok {
			t.Errorf("Address from watching wallet not found in original wallet.")
			return
		}
		delete(activeAddrs, apkh)
	}
	if len(activeAddrs) != 0 {
		t.Errorf("%v address(es) were not exported to watching wallet.", len(activeAddrs))
		return
	}

	// Check that the new addresses created by each wallet match.  The
	// original wallet is unlocked so addresses are chained with privkeys.
	if err := w.Unlock([]byte("banana")); err != nil {
		t.Errorf("Unlocking original wallet failed: %v", err)
	}

	// Test that ExtendActiveAddresses for the watching wallet match
	// manually requested addresses of the original wallet.
	var newAddrs []btcutil.Address
	for i := 0; i < 10; i++ {
		addr, err := w.NextChainedAddress(createdAt)
		if err != nil {
			t.Errorf("Cannot get next chained address for original wallet: %v", err)
			return
		}
		newAddrs = append(newAddrs, addr)
	}
	newWWAddrs, err := ww.ExtendActiveAddresses(10)
	if err != nil {
		t.Errorf("Cannot extend active addresses for watching wallet: %v", err)
		return
	}
	for i := range newAddrs {
		if newAddrs[i].EncodeAddress() != newWWAddrs[i].EncodeAddress() {
			t.Errorf("Extended active addresses do not match manually requested addresses.")
			return
		}
	}

	// Test ExtendActiveAddresses for the original wallet after manually
	// requesting addresses for the watching wallet.
	newWWAddrs = nil
	for i := 0; i < 10; i++ {
		addr, err := ww.NextChainedAddress(createdAt)
		if err != nil {
			t.Errorf("Cannot get next chained address for watching wallet: %v", err)
			return
		}
		newWWAddrs = append(newWWAddrs, addr)
	}
	newAddrs, err = w.ExtendActiveAddresses(10)
	if err != nil {
		t.Errorf("Cannot extend active addresses for original wallet: %v", err)
		return
	}
	for i := range newAddrs {
		if newAddrs[i].EncodeAddress() != newWWAddrs[i].EncodeAddress() {
			t.Errorf("Extended active addresses do not match manually requested addresses.")
			return
		}
	}

	// Test (de)serialization of watching wallet.
	buf := new(bytes.Buffer)
	_, err = ww.WriteTo(buf)
	if err != nil {
		t.Errorf("Cannot write watching wallet: %v", err)
		return
	}
	ww2 := new(Store)
	_, err = ww2.ReadFrom(buf)
	if err != nil {
		t.Errorf("Cannot read watching wallet: %v", err)
		return
	}

	// Check that (de)serialized watching wallet matches the exported wallet.
	if !reflect.DeepEqual(ww, ww2) {
		t.Error("Exported and read-in watching wallets do not match.")
		return
	}

	// Verify that nonsensical functions fail with correct error.
	if err := ww.Lock(); err != ErrWatchingOnly {
		t.Errorf("Nonsensical func Lock returned no or incorrect error: %v", err)
		return
	}
	if err := ww.Unlock([]byte("banana")); err != ErrWatchingOnly {
		t.Errorf("Nonsensical func Unlock returned no or incorrect error: %v", err)
		return
	}
	generator, err := ww.Address(w.keyGenerator.Address())
	if err != nil {
		t.Errorf("generator isnt' present in wallet")
	}
	gpk := generator.(PubKeyAddress)
	if _, err := gpk.PrivKey(); err != ErrWatchingOnly {
		t.Errorf("Nonsensical func AddressKey returned no or incorrect error: %v", err)
		return
	}
	if _, err := ww.ExportWatchingWallet(); err != ErrWatchingOnly {
		t.Errorf("Nonsensical func ExportWatchingWallet returned no or incorrect error: %v", err)
		return
	}
	pk, _ := btcec.PrivKeyFromBytes(btcec.S256(), make([]byte, 32))
	wif, err := btcutil.NewWIF(pk, tstNetParams, true)
	if err != nil {
		t.Fatal(err)
	}
	if _, err := ww.ImportPrivateKey(wif, createdAt); err != ErrWatchingOnly {
		t.Errorf("Nonsensical func ImportPrivateKey returned no or incorrect error: %v", err)
		return
	}
}
Exemple #10
0
					0xe1, 0x81, 0x75, 0xe8, 0x51, 0xc9, 0x6b, 0x97,
					0x3d, 0x81, 0xb0, 0x1c, 0xc3, 0x1f, 0x04, 0x78,
					0x34, 0xbc, 0x06, 0xd6, 0xd6, 0xed, 0xf6, 0x20,
					0xd1, 0x84, 0x24, 0x1a, 0x6a, 0xed, 0x8b, 0x63,
					0xa6, // 65-byte signature
					0xac, // OP_CHECKSIG
				},
			},
		},
		LockTime: 5,
	}
	testOutpoint = &wire.OutPoint{
		Hash:  key,
		Index: 0,
	}
	privKey, pubKey = btcec.PrivKeyFromBytes(btcec.S256(), key[:])
)

// makeTestDB creates a new instance of the ChannelDB for testing purposes. A
// callback which cleans up the created temporary directories is also returned
// and intended to be executed after the test completes.
func makeTestDB() (*DB, func(), error) {
	// First, create a temporary directory to be used for the duration of
	// this test.
	tempDirName, err := ioutil.TempDir("", "channeldb")
	if err != nil {
		return nil, nil, err
	}

	// Next, create channeldb for the first time, also setting a mock
	// EncryptorDecryptor implementation for testing purposes.
func main() {
	args := os.Args

	assocData := bytes.Repeat([]byte{'B'}, 32)

	if len(args) == 1 {
		fmt.Printf("Usage: %s (generate|decode) <private-keys>\n", args[0])
	} else if args[1] == "generate" {
		var privKeys []*btcec.PrivateKey
		var route []*btcec.PublicKey
		for i, hexKey := range args[2:] {
			binKey, err := hex.DecodeString(hexKey)
			if err != nil || len(binKey) != 32 {
				log.Fatalf("%s is not a valid hex privkey %s", hexKey, err)
			}
			privkey, pubkey := btcec.PrivKeyFromBytes(btcec.S256(), binKey)
			route = append(route, pubkey)
			privKeys = append(privKeys, privkey)
			fmt.Fprintf(os.Stderr, "Node %d pubkey %x\n", i, pubkey.SerializeCompressed())
		}

		sessionKey, _ := btcec.PrivKeyFromBytes(btcec.S256(), bytes.Repeat([]byte{'A'}, 32))

		var hopPayloads [][]byte
		for i := 0; i < len(route); i++ {
			payload := bytes.Repeat([]byte{'A'}, 20)
			hopPayloads = append(hopPayloads, payload)
		}

		msg, err := sphinx.NewOnionPacket(route, sessionKey, hopPayloads, assocData)
		if err != nil {
			log.Fatalf("Error creating message: %v", err)
		}

		w := bytes.NewBuffer([]byte{})
		err = msg.Encode(w)

		if err != nil {
			log.Fatalf("Error serializing message: %v", err)
		}

		fmt.Printf("%x\n", w.Bytes())
	} else if args[1] == "decode" {
		binKey, err := hex.DecodeString(args[2])
		if len(binKey) != 32 || err != nil {
			log.Fatalf("Argument not a valid hex private key")
		}

		hexBytes, _ := ioutil.ReadAll(os.Stdin)
		binMsg, err := hex.DecodeString(strings.TrimSpace(string(hexBytes)))
		if err != nil {
			log.Fatalf("Error decoding message: %s", err)
		}

		privkey, _ := btcec.PrivKeyFromBytes(btcec.S256(), binKey)
		s := sphinx.NewRouter(privkey, &chaincfg.TestNet3Params)

		var packet sphinx.OnionPacket
		err = packet.Decode(bytes.NewBuffer(binMsg))

		if err != nil {
			log.Fatalf("Error parsing message: %v", err)
		}
		p, err := s.ProcessOnionPacket(&packet, assocData)
		if err != nil {
			log.Fatalf("Failed to decode message: %s", err)
		}

		w := bytes.NewBuffer([]byte{})
		err = p.Packet.Encode(w)

		if err != nil {
			log.Fatalf("Error serializing message: %v", err)
		}
		fmt.Printf("%x\n", w.Bytes())
	}
}
// TestCommitmentSpendValidation test the spendability of both outputs within
// the commitment transaction.
//
// The following spending cases are covered by this test:
//   * Alice's spend from the delayed output on her commitment transaction.
//   * Bob's spend from Alice's delayed output when she broadcasts a revoked
//     commitment transaction.
//   * Bob's spend from his unencumbered output within Alice's commitment
//     transaction.
func TestCommitmentSpendValidation(t *testing.T) {
	// We generate a fake output, and the corresponding txin. This output
	// doesn't need to exist, as we'll only be validating spending from the
	// transaction that references this.
	fundingOut := &wire.OutPoint{
		Hash:  testHdSeed,
		Index: 50,
	}
	fakeFundingTxIn := wire.NewTxIn(fundingOut, nil, nil)

	// We also set up set some resources for the commitment transaction.
	// Each side currently has 1 BTC within the channel, with a total
	// channel capacity of 2BTC.
	aliceKeyPriv, aliceKeyPub := btcec.PrivKeyFromBytes(btcec.S256(),
		testWalletPrivKey)
	bobKeyPriv, bobKeyPub := btcec.PrivKeyFromBytes(btcec.S256(),
		bobsPrivKey)
	channelBalance := btcutil.Amount(1 * 10e8)
	csvTimeout := uint32(5)
	revocationPreimage := testHdSeed[:]
	revokePubKey := DeriveRevocationPubkey(bobKeyPub, revocationPreimage)

	aliceSelfOutputSigner := &mockSigner{aliceKeyPriv}

	// With all the test data set up, we create the commitment transaction.
	// We only focus on a single party's transactions, as the scripts are
	// identical with the roles reversed.
	//
	// This is Alice's commitment transaction, so she must wait a CSV delay
	// of 5 blocks before sweeping the output, while bob can spend
	// immediately with either the revocation key, or his regular key.
	commitmentTx, err := CreateCommitTx(fakeFundingTxIn, aliceKeyPub,
		bobKeyPub, revokePubKey, csvTimeout, channelBalance, channelBalance)
	if err != nil {
		t.Fatalf("unable to create commitment transaction: %v", nil)
	}

	delayOutput := commitmentTx.TxOut[0]
	regularOutput := commitmentTx.TxOut[1]

	// We're testing an uncooperative close, output sweep, so construct a
	// transaction which sweeps the funds to a random address.
	targetOutput, err := commitScriptUnencumbered(aliceKeyPub)
	if err != nil {
		t.Fatalf("unable to create target output: %v")
	}
	sweepTx := wire.NewMsgTx()
	sweepTx.Version = 2
	sweepTx.AddTxIn(wire.NewTxIn(&wire.OutPoint{commitmentTx.TxSha(), 0}, nil, nil))
	sweepTx.AddTxOut(&wire.TxOut{
		PkScript: targetOutput,
		Value:    0.5 * 10e8,
	})

	// First, we'll test spending with Alice's key after the timeout.
	delayScript, err := commitScriptToSelf(csvTimeout, aliceKeyPub, revokePubKey)
	if err != nil {
		t.Fatalf("unable to generate alice delay script: %v")
	}
	sweepTx.TxIn[0].Sequence = lockTimeToSequence(false, csvTimeout)
	signDesc := &SignDescriptor{
		WitnessScript: delayScript,
		SigHashes:     txscript.NewTxSigHashes(sweepTx),
		Output: &wire.TxOut{
			Value: int64(channelBalance),
		},
		HashType:   txscript.SigHashAll,
		InputIndex: 0,
	}
	aliceWitnessSpend, err := CommitSpendTimeout(aliceSelfOutputSigner,
		signDesc, sweepTx)
	if err != nil {
		t.Fatalf("unable to generate delay commit spend witness :%v")
	}
	sweepTx.TxIn[0].Witness = aliceWitnessSpend
	vm, err := txscript.NewEngine(delayOutput.PkScript,
		sweepTx, 0, txscript.StandardVerifyFlags, nil,
		nil, int64(channelBalance))
	if err != nil {
		t.Fatalf("unable to create engine: %v", err)
	}
	if err := vm.Execute(); err != nil {
		t.Fatalf("spend from delay output is invalid: %v", err)
	}

	// Next, we'll test bob spending with the derived revocation key to
	// simulate the scenario when alice broadcasts this commitmen
	// transaction after it's been revoked.
	revokePrivKey := DeriveRevocationPrivKey(bobKeyPriv, revocationPreimage)
	bobWitnessSpend, err := commitSpendRevoke(delayScript, channelBalance,
		revokePrivKey, sweepTx)
	if err != nil {
		t.Fatalf("unable to generate revocation witness: %v", err)
	}
	sweepTx.TxIn[0].Witness = bobWitnessSpend
	vm, err = txscript.NewEngine(delayOutput.PkScript,
		sweepTx, 0, txscript.StandardVerifyFlags, nil,
		nil, int64(channelBalance))
	if err != nil {
		t.Fatalf("unable to create engine: %v", err)
	}
	if err := vm.Execute(); err != nil {
		t.Fatalf("revocation spend is invalid: %v", err)
	}

	// Finally, we test bob sweeping his output as normal in the case that
	// alice broadcasts this commitment transaction.
	bobScriptp2wkh, err := commitScriptUnencumbered(bobKeyPub)
	if err != nil {
		t.Fatalf("unable to create bob p2wkh script: %v", err)
	}
	bobRegularSpend, err := commitSpendNoDelay(bobScriptp2wkh,
		channelBalance, bobKeyPriv, sweepTx)
	if err != nil {
		t.Fatalf("unable to create bob regular spend: %v", err)
	}
	sweepTx.TxIn[0].Witness = bobRegularSpend
	vm, err = txscript.NewEngine(regularOutput.PkScript,
		sweepTx, 0, txscript.StandardVerifyFlags, nil,
		nil, int64(channelBalance))
	if err != nil {
		t.Fatalf("unable to create engine: %v", err)
	}
	if err := vm.Execute(); err != nil {
		t.Fatalf("bob p2wkh spend is invalid: %v", err)
	}
}
// TestHTLCReceiverSpendValidation tests all possible valid+invalid redemption
// paths in the script used within the reciever's commitment transaction for an
// incoming HTLC.
//
// The following cases are exercised by this test:
//  * reciever spends
//     * HTLC redemption w/ invalid preimage size
//     * HTLC redemption w/ invalid sequence
//     * HTLC redemption w/ valid preimage size
//  * sender spends
//     * revoke w/ sig
//     * refund w/ invalid lock time
//     * refund w/ valid lock time
func TestHTLCReceiverSpendValidation(t *testing.T) {
	// We generate a fake output, and the coresponding txin. This output
	// doesn't need to exist, as we'll only be validating spending from the
	// transaction that references this.
	fundingOut := &wire.OutPoint{
		Hash:  testHdSeed,
		Index: 50,
	}
	fakeFundingTxIn := wire.NewTxIn(fundingOut, nil, nil)

	// Generate a payment and revocation pre-image to be used below.
	revokePreimage := testHdSeed[:]
	revokeHash := fastsha256.Sum256(revokePreimage)
	paymentPreimage := revokeHash
	paymentPreimage[0] ^= 1
	paymentHash := fastsha256.Sum256(paymentPreimage[:])

	// We'll also need some tests keys for alice and bob, and meta-data of
	// the HTLC output.
	aliceKeyPriv, aliceKeyPub := btcec.PrivKeyFromBytes(btcec.S256(),
		testWalletPrivKey)
	bobKeyPriv, bobKeyPub := btcec.PrivKeyFromBytes(btcec.S256(),
		bobsPrivKey)
	paymentAmt := btcutil.Amount(1 * 10e8)
	cltvTimeout := uint32(8)
	csvTimeout := uint32(5)

	// Generate the raw HTLC redemption scripts, and its p2wsh counterpart.
	htlcScript, err := receiverHTLCScript(cltvTimeout, csvTimeout,
		aliceKeyPub, bobKeyPub, revokeHash[:], paymentHash[:])
	if err != nil {
		t.Fatalf("unable to create htlc sender script: %v", err)
	}
	htlcWitnessScript, err := witnessScriptHash(htlcScript)
	if err != nil {
		t.Fatalf("unable to create p2wsh htlc script: %v", err)
	}

	// This will be Bob's commitment transaction. In this scenario Alice
	// is sending an HTLC to a node she has a a path to (could be Bob,
	// could be multiple hops down, it doesn't really matter).
	recieverCommitTx := wire.NewMsgTx()
	recieverCommitTx.AddTxIn(fakeFundingTxIn)
	recieverCommitTx.AddTxOut(&wire.TxOut{
		Value:    int64(paymentAmt),
		PkScript: htlcWitnessScript,
	})

	prevOut := &wire.OutPoint{
		Hash:  recieverCommitTx.TxSha(),
		Index: 0,
	}

	sweepTx := wire.NewMsgTx()
	sweepTx.AddTxIn(wire.NewTxIn(prevOut, nil, nil))
	sweepTx.AddTxOut(
		&wire.TxOut{
			PkScript: []byte("doesn't matter"),
			Value:    1 * 10e8,
		},
	)

	testCases := []struct {
		witness func() wire.TxWitness
		valid   bool
	}{
		{
			// HTLC redemption w/ invalid preimage size
			makeWitnessTestCase(t, func() (wire.TxWitness, error) {
				return receiverHtlcSpendRedeem(htlcScript,
					paymentAmt, bobKeyPriv, sweepTx,
					bytes.Repeat([]byte{1}, 45), csvTimeout,
				)
			}),
			false,
		},
		{
			// HTLC redemption w/ invalid sequence
			makeWitnessTestCase(t, func() (wire.TxWitness, error) {
				return receiverHtlcSpendRedeem(htlcScript,
					paymentAmt, bobKeyPriv, sweepTx,
					paymentPreimage[:], csvTimeout-2,
				)
			}),
			false,
		},
		{
			// HTLC redemption w/ valid preimage size
			makeWitnessTestCase(t, func() (wire.TxWitness, error) {
				return receiverHtlcSpendRedeem(htlcScript,
					paymentAmt, bobKeyPriv, sweepTx,
					paymentPreimage[:], csvTimeout,
				)
			}),
			true,
		},
		{
			// revoke w/ sig
			makeWitnessTestCase(t, func() (wire.TxWitness, error) {
				return receiverHtlcSpendRevoke(htlcScript, paymentAmt,
					aliceKeyPriv, sweepTx, revokePreimage[:],
				)
			}),
			true,
		},
		{
			// refund w/ invalid lock time
			makeWitnessTestCase(t, func() (wire.TxWitness, error) {
				return receiverHtlcSpendTimeout(htlcScript, paymentAmt,
					aliceKeyPriv, sweepTx, cltvTimeout-2)
			}),
			false,
		},
		{
			// refund w/ valid lock time
			makeWitnessTestCase(t, func() (wire.TxWitness, error) {
				return receiverHtlcSpendTimeout(htlcScript, paymentAmt,
					aliceKeyPriv, sweepTx, cltvTimeout)
			}),
			true,
		},
	}

	for i, testCase := range testCases {
		sweepTx.TxIn[0].Witness = testCase.witness()

		vm, err := txscript.NewEngine(htlcWitnessScript,
			sweepTx, 0, txscript.StandardVerifyFlags, nil,
			nil, int64(paymentAmt))
		if err != nil {
			t.Fatalf("unable to create engine: %v", err)
		}

		// This buffer will trace execution of the Script, only dumping
		// out to stdout in the case that a test fails.
		var debugBuf bytes.Buffer

		done := false
		for !done {
			dis, err := vm.DisasmPC()
			if err != nil {
				t.Fatalf("stepping (%v)\n", err)
			}
			debugBuf.WriteString(fmt.Sprintf("stepping %v\n", dis))

			done, err = vm.Step()
			if err != nil && testCase.valid {
				fmt.Println(debugBuf.String())
				t.Fatalf("spend test case #%v failed, spend should be valid: %v", i, err)
			} else if err == nil && !testCase.valid && done {
				fmt.Println(debugBuf.String())
				t.Fatalf("spend test case #%v succeed, spend should be invalid: %v", i, err)
			}

			debugBuf.WriteString(fmt.Sprintf("Stack: ", vm.GetStack()))
			debugBuf.WriteString(fmt.Sprintf("AltStack: ", vm.GetAltStack()))
		}
	}
}
Exemple #14
0
// This example demonstrates manually creating and signing a redeem transaction.
func ExampleSignTxOutput() {
	// Ordinarily the private key would come from whatever storage mechanism
	// is being used, but for this example just hard code it.
	privKeyBytes, err := hex.DecodeString("22a47fa09a223f2aa079edf85a7c2" +
		"d4f8720ee63e502ee2869afab7de234b80c")
	if err != nil {
		fmt.Println(err)
		return
	}
	privKey, pubKey := btcec.PrivKeyFromBytes(btcec.S256(), privKeyBytes)
	pubKeyHash := btcutil.Hash160(pubKey.SerializeCompressed())
	addr, err := btcutil.NewAddressPubKeyHash(pubKeyHash,
		&chaincfg.MainNetParams)
	if err != nil {
		fmt.Println(err)
		return
	}

	// For this example, create a fake transaction that represents what
	// would ordinarily be the real transaction that is being spent.  It
	// contains a single output that pays to address in the amount of 1 BTC.
	originTx := wire.NewMsgTx(wire.TxVersion)
	prevOut := wire.NewOutPoint(&chainhash.Hash{}, ^uint32(0))
	txIn := wire.NewTxIn(prevOut, []byte{txscript.OP_0, txscript.OP_0}, nil)
	originTx.AddTxIn(txIn)
	pkScript, err := txscript.PayToAddrScript(addr)
	if err != nil {
		fmt.Println(err)
		return
	}
	txOut := wire.NewTxOut(100000000, pkScript)
	originTx.AddTxOut(txOut)
	originTxHash := originTx.TxHash()

	// Create the transaction to redeem the fake transaction.
	redeemTx := wire.NewMsgTx(wire.TxVersion)

	// Add the input(s) the redeeming transaction will spend.  There is no
	// signature script at this point since it hasn't been created or signed
	// yet, hence nil is provided for it.
	prevOut = wire.NewOutPoint(&originTxHash, 0)
	txIn = wire.NewTxIn(prevOut, nil, nil)
	redeemTx.AddTxIn(txIn)

	// Ordinarily this would contain that actual destination of the funds,
	// but for this example don't bother.
	txOut = wire.NewTxOut(0, nil)
	redeemTx.AddTxOut(txOut)

	// Sign the redeeming transaction.
	lookupKey := func(a btcutil.Address) (*btcec.PrivateKey, bool, error) {
		// Ordinarily this function would involve looking up the private
		// key for the provided address, but since the only thing being
		// signed in this example uses the address associated with the
		// private key from above, simply return it with the compressed
		// flag set since the address is using the associated compressed
		// public key.
		//
		// NOTE: If you want to prove the code is actually signing the
		// transaction properly, uncomment the following line which
		// intentionally returns an invalid key to sign with, which in
		// turn will result in a failure during the script execution
		// when verifying the signature.
		//
		// privKey.D.SetInt64(12345)
		//
		return privKey, true, nil
	}
	// Notice that the script database parameter is nil here since it isn't
	// used.  It must be specified when pay-to-script-hash transactions are
	// being signed.
	sigScript, err := txscript.SignTxOutput(&chaincfg.MainNetParams,
		redeemTx, 0, originTx.TxOut[0].PkScript, txscript.SigHashAll,
		txscript.KeyClosure(lookupKey), nil, nil)
	if err != nil {
		fmt.Println(err)
		return
	}
	redeemTx.TxIn[0].SignatureScript = sigScript

	// Prove that the transaction has been validly signed by executing the
	// script pair.
	flags := txscript.ScriptBip16 | txscript.ScriptVerifyDERSignatures |
		txscript.ScriptStrictMultiSig |
		txscript.ScriptDiscourageUpgradableNops
	vm, err := txscript.NewEngine(originTx.TxOut[0].PkScript, redeemTx, 0,
		flags, nil, nil, -1)
	if err != nil {
		fmt.Println(err)
		return
	}
	if err := vm.Execute(); err != nil {
		fmt.Println(err)
		return
	}
	fmt.Println("Transaction successfully signed")

	// Output:
	// Transaction successfully signed
}
Exemple #15
0
// TestCalcSequenceLock tests the LockTimeToSequence function, and the
// CalcSequenceLock method of a Chain instance. The tests exercise several
// combinations of inputs to the CalcSequenceLock function in order to ensure
// the returned SequenceLocks are correct for each test instance.
func TestCalcSequenceLock(t *testing.T) {
	netParams := &chaincfg.SimNetParams

	// Create a new database and chain instance to run tests against.
	chain, teardownFunc, err := chainSetup("calcseqlock", netParams)
	if err != nil {
		t.Errorf("Failed to setup chain instance: %v", err)
		return
	}
	defer teardownFunc()

	// Since we're not dealing with the real block chain, disable
	// checkpoints and set the coinbase maturity to 1.
	chain.DisableCheckpoints(true)
	chain.TstSetCoinbaseMaturity(1)

	// Create a test mining address to use for the blocks we'll generate
	// shortly below.
	k := bytes.Repeat([]byte{1}, 32)
	_, miningPub := btcec.PrivKeyFromBytes(btcec.S256(), k)
	miningAddr, err := btcutil.NewAddressPubKey(miningPub.SerializeCompressed(),
		netParams)
	if err != nil {
		t.Fatalf("unable to generate mining addr: %v", err)
	}

	// We'll keep track of the previous block for back pointers in blocks
	// we generated, and also the generated blocks along with the MTP from
	// their PoV to aide with our relative time lock calculations.
	var prevBlock *btcutil.Block
	var blocksWithMTP []struct {
		block *btcutil.Block
		mtp   time.Time
	}

	// We need to activate CSV in order to test the processing logic, so
	// manually craft the block version that's used to signal the soft-fork
	// activation.
	csvBit := netParams.Deployments[chaincfg.DeploymentCSV].BitNumber
	blockVersion := int32(0x20000000 | (uint32(1) << csvBit))

	// Generate enough blocks to activate CSV, collecting each of the
	// blocks into a slice for later use.
	numBlocksToActivate := (netParams.MinerConfirmationWindow * 3)
	for i := uint32(0); i < numBlocksToActivate; i++ {
		block, err := rpctest.CreateBlock(prevBlock, nil, blockVersion,
			time.Time{}, miningAddr, netParams)
		if err != nil {
			t.Fatalf("unable to generate block: %v", err)
		}

		mtp := chain.BestSnapshot().MedianTime

		_, isOrphan, err := chain.ProcessBlock(block, blockchain.BFNone)
		if err != nil {
			t.Fatalf("ProcessBlock fail on block %v: %v\n", i, err)
		}
		if isOrphan {
			t.Fatalf("ProcessBlock incorrectly returned block %v "+
				"is an orphan\n", i)
		}

		blocksWithMTP = append(blocksWithMTP, struct {
			block *btcutil.Block
			mtp   time.Time
		}{
			block: block,
			mtp:   mtp,
		})

		prevBlock = block
	}

	// Create a utxo view with all the utxos within the blocks created
	// above.
	utxoView := blockchain.NewUtxoViewpoint()
	for blockHeight, blockWithMTP := range blocksWithMTP {
		for _, tx := range blockWithMTP.block.Transactions() {
			utxoView.AddTxOuts(tx, int32(blockHeight))
		}
	}
	utxoView.SetBestHash(blocksWithMTP[len(blocksWithMTP)-1].block.Hash())

	// The median time calculated from the PoV of the best block in our
	// test chain. For unconfirmed inputs, this value will be used since
	// the MTP will be calculated from the PoV of the yet-to-be-mined
	// block.
	nextMedianTime := int64(1401292712)

	// We'll refer to this utxo within each input in the transactions
	// created below. This utxo has an age of 4 blocks and was mined within
	// block 297
	targetTx := blocksWithMTP[len(blocksWithMTP)-4].block.Transactions()[0]
	utxo := wire.OutPoint{
		Hash:  *targetTx.Hash(),
		Index: 0,
	}

	// Obtain the median time past from the PoV of the input created above.
	// The MTP for the input is the MTP from the PoV of the block *prior*
	// to the one that included it.
	medianTime := blocksWithMTP[len(blocksWithMTP)-5].mtp.Unix()

	// Add an additional transaction which will serve as our unconfirmed
	// output.
	var fakeScript []byte
	unConfTx := &wire.MsgTx{
		TxOut: []*wire.TxOut{{
			PkScript: fakeScript,
			Value:    5,
		}},
	}
	unConfUtxo := wire.OutPoint{
		Hash:  unConfTx.TxHash(),
		Index: 0,
	}

	// Adding a utxo with a height of 0x7fffffff indicates that the output
	// is currently unmined.
	utxoView.AddTxOuts(btcutil.NewTx(unConfTx), 0x7fffffff)

	tests := []struct {
		tx      *btcutil.Tx
		view    *blockchain.UtxoViewpoint
		want    *blockchain.SequenceLock
		mempool bool
	}{
		// A transaction of version one should disable sequence locks
		// as the new sequence number semantics only apply to
		// transactions version 2 or higher.
		{
			tx: btcutil.NewTx(&wire.MsgTx{
				Version: 1,
				TxIn: []*wire.TxIn{{
					PreviousOutPoint: utxo,
					Sequence:         blockchain.LockTimeToSequence(false, 3),
				}},
			}),
			view: utxoView,
			want: &blockchain.SequenceLock{
				Seconds:     -1,
				BlockHeight: -1,
			},
		},
		// A transaction with a single input, that a max int sequence
		// number. This sequence number has the high bit set, so
		// sequence locks should be disabled.
		{
			tx: btcutil.NewTx(&wire.MsgTx{
				Version: 2,
				TxIn: []*wire.TxIn{{
					PreviousOutPoint: utxo,
					Sequence:         wire.MaxTxInSequenceNum,
				}},
			}),
			view: utxoView,
			want: &blockchain.SequenceLock{
				Seconds:     -1,
				BlockHeight: -1,
			},
		},
		// A transaction with a single input whose lock time is
		// expressed in seconds. However, the specified lock time is
		// below the required floor for time based lock times since
		// they have time granularity of 512 seconds. As a result, the
		// seconds lock-time should be just before the median time of
		// the targeted block.
		{
			tx: btcutil.NewTx(&wire.MsgTx{
				Version: 2,
				TxIn: []*wire.TxIn{{
					PreviousOutPoint: utxo,
					Sequence:         blockchain.LockTimeToSequence(true, 2),
				}},
			}),
			view: utxoView,
			want: &blockchain.SequenceLock{
				Seconds:     medianTime - 1,
				BlockHeight: -1,
			},
		},
		// A transaction with a single input whose lock time is
		// expressed in seconds. The number of seconds should be 1023
		// seconds after the median past time of the last block in the
		// chain.
		{
			tx: btcutil.NewTx(&wire.MsgTx{
				Version: 2,
				TxIn: []*wire.TxIn{{
					PreviousOutPoint: utxo,
					Sequence:         blockchain.LockTimeToSequence(true, 1024),
				}},
			}),
			view: utxoView,
			want: &blockchain.SequenceLock{
				Seconds:     medianTime + 1023,
				BlockHeight: -1,
			},
		},
		// A transaction with multiple inputs. The first input has a
		// sequence lock in blocks with a value of 4. The last input
		// has a sequence number with a value of 5, but has the disable
		// bit set. So the first lock should be selected as it's the
		// target lock as its the furthest in the future lock that
		// isn't disabled.
		{
			tx: btcutil.NewTx(&wire.MsgTx{
				Version: 2,
				TxIn: []*wire.TxIn{{
					PreviousOutPoint: utxo,
					Sequence:         blockchain.LockTimeToSequence(true, 2560),
				}, {
					PreviousOutPoint: utxo,
					Sequence: blockchain.LockTimeToSequence(false, 5) |
						wire.SequenceLockTimeDisabled,
				}, {
					PreviousOutPoint: utxo,
					Sequence:         blockchain.LockTimeToSequence(false, 4),
				}},
			}),
			view: utxoView,
			want: &blockchain.SequenceLock{
				Seconds:     medianTime + (5 << wire.SequenceLockTimeGranularity) - 1,
				BlockHeight: 299,
			},
		},
		// Transaction has a single input spending the genesis block
		// transaction. The input's sequence number is encodes a
		// relative lock-time in blocks (3 blocks). The sequence lock
		// should have a value of -1 for seconds, but a block height of
		// 298 meaning it can be included at height 299.
		{
			tx: btcutil.NewTx(&wire.MsgTx{
				Version: 2,
				TxIn: []*wire.TxIn{{
					PreviousOutPoint: utxo,
					Sequence:         blockchain.LockTimeToSequence(false, 3),
				}},
			}),
			view: utxoView,
			want: &blockchain.SequenceLock{
				Seconds:     -1,
				BlockHeight: 298,
			},
		},
		// A transaction with two inputs with lock times expressed in
		// seconds. The selected sequence lock value for seconds should
		// be the time further in the future.
		{
			tx: btcutil.NewTx(&wire.MsgTx{
				Version: 2,
				TxIn: []*wire.TxIn{{
					PreviousOutPoint: utxo,
					Sequence:         blockchain.LockTimeToSequence(true, 5120),
				}, {
					PreviousOutPoint: utxo,
					Sequence:         blockchain.LockTimeToSequence(true, 2560),
				}},
			}),
			view: utxoView,
			want: &blockchain.SequenceLock{
				Seconds:     medianTime + (10 << wire.SequenceLockTimeGranularity) - 1,
				BlockHeight: -1,
			},
		},
		// A transaction with two inputs with lock times expressed in
		// seconds. The selected sequence lock value for blocks should
		// be the height further in the future. The converted absolute
		// block height should be 302, meaning it can be included in
		// block 303.
		{
			tx: btcutil.NewTx(&wire.MsgTx{
				Version: 2,
				TxIn: []*wire.TxIn{{
					PreviousOutPoint: utxo,
					Sequence:         blockchain.LockTimeToSequence(false, 1),
				}, {
					PreviousOutPoint: utxo,
					Sequence:         blockchain.LockTimeToSequence(false, 7),
				}},
			}),
			view: utxoView,
			want: &blockchain.SequenceLock{
				Seconds:     -1,
				BlockHeight: 302,
			},
		},
		// A transaction with multiple inputs. Two inputs are time
		// based, and the other two are input maturity based. The lock
		// lying further into the future for both inputs should be
		// chosen.
		{
			tx: btcutil.NewTx(&wire.MsgTx{
				Version: 2,
				TxIn: []*wire.TxIn{{
					PreviousOutPoint: utxo,
					Sequence:         blockchain.LockTimeToSequence(true, 2560),
				}, {
					PreviousOutPoint: utxo,
					Sequence:         blockchain.LockTimeToSequence(true, 6656),
				}, {
					PreviousOutPoint: utxo,
					Sequence:         blockchain.LockTimeToSequence(false, 3),
				}, {
					PreviousOutPoint: utxo,
					Sequence:         blockchain.LockTimeToSequence(false, 9),
				}},
			}),
			view: utxoView,
			want: &blockchain.SequenceLock{
				Seconds:     medianTime + (13 << wire.SequenceLockTimeGranularity) - 1,
				BlockHeight: 304,
			},
		},
		// A transaction with a single unconfirmed input. As the input
		// is confirmed, the height of the input should be interpreted
		// as the height of the *next* block. The current block height
		// is 300, so the lock time should be calculated using height
		// 301 as a base. A 2 block relative lock means the transaction
		// can be included after block 302, so in 303.
		{
			tx: btcutil.NewTx(&wire.MsgTx{
				Version: 2,
				TxIn: []*wire.TxIn{{
					PreviousOutPoint: unConfUtxo,
					Sequence:         blockchain.LockTimeToSequence(false, 2),
				}},
			}),
			view: utxoView,
			want: &blockchain.SequenceLock{
				Seconds:     -1,
				BlockHeight: 302,
			},
		},
		// A transaction with a single unconfirmed input. The input has
		// a time based lock, so the lock time should be based off the
		// MTP of the *next* block.
		{
			tx: btcutil.NewTx(&wire.MsgTx{
				Version: 2,
				TxIn: []*wire.TxIn{{
					PreviousOutPoint: unConfUtxo,
					Sequence:         blockchain.LockTimeToSequence(true, 1024),
				}},
			}),
			view: utxoView,
			want: &blockchain.SequenceLock{
				Seconds:     nextMedianTime + 1023,
				BlockHeight: -1,
			},
		},
	}

	t.Logf("Running %v SequenceLock tests", len(tests))
	for i, test := range tests {
		seqLock, err := chain.CalcSequenceLock(test.tx, test.view, test.mempool)
		if err != nil {
			t.Fatalf("test #%d, unable to calc sequence lock: %v", i, err)
		}

		if seqLock.Seconds != test.want.Seconds {
			t.Fatalf("test #%d got %v seconds want %v seconds",
				i, seqLock.Seconds, test.want.Seconds)
		}
		if seqLock.BlockHeight != test.want.BlockHeight {
			t.Fatalf("test #%d got height of %v want height of %v ",
				i, seqLock.BlockHeight, test.want.BlockHeight)
		}
	}
}
	bobsPrivKey = []byte{
		0x81, 0xb6, 0x37, 0xd8, 0xfc, 0xd2, 0xc6, 0xda,
		0x63, 0x59, 0xe6, 0x96, 0x31, 0x13, 0xa1, 0x17,
		0xd, 0xe7, 0x95, 0xe4, 0xb7, 0x25, 0xb8, 0x4d,
		0x1e, 0xb, 0x4c, 0xfd, 0x9e, 0xc5, 0x8c, 0xe9,
	}

	// Use a hard-coded HD seed.
	testHdSeed = [32]byte{
		0xb7, 0x94, 0x38, 0x5f, 0x2d, 0x1e, 0xf7, 0xab,
		0x4d, 0x92, 0x73, 0xd1, 0x90, 0x63, 0x81, 0xb4,
		0x4f, 0x2f, 0x6f, 0x25, 0x88, 0xa3, 0xef, 0xb9,
		0x6a, 0x49, 0x18, 0x83, 0x31, 0x98, 0x47, 0x53,
	}

	_, testPub = btcec.PrivKeyFromBytes(btcec.S256(), testHdSeed[:])

	// The number of confirmations required to consider any created channel
	// open.
	numReqConfs = uint16(1)

	bobAddr, _ = net.ResolveTCPAddr("tcp", "10.0.0.2:9000")
)

// assertProperBalance asserts than the total value of the unspent outputs
// within the wallet are *exactly* amount. If unable to retrieve the current
// balance, or the assertion fails, the test will halt with a fatal error.
func assertProperBalance(t *testing.T, lw *lnwallet.LightningWallet, numConfirms int32, amount int64) {
	balance, err := lw.ConfirmedBalance(numConfirms, false)
	if err != nil {
		t.Fatalf("unable to query for balance: %v", err)
	"github.com/roasbeef/btcd/rpctest"
	"github.com/roasbeef/btcd/txscript"
	"github.com/roasbeef/btcd/wire"
	"github.com/roasbeef/btcutil"
)

var (
	testPrivKey = []byte{
		0x81, 0xb6, 0x37, 0xd8, 0xfc, 0xd2, 0xc6, 0xda,
		0x63, 0x59, 0xe6, 0x96, 0x31, 0x13, 0xa1, 0x17,
		0xd, 0xe7, 0x95, 0xe4, 0xb7, 0x25, 0xb8, 0x4d,
		0x1e, 0xb, 0x4c, 0xfd, 0x9e, 0xc5, 0x8c, 0xe9,
	}

	netParams       = &chaincfg.SimNetParams
	privKey, pubKey = btcec.PrivKeyFromBytes(btcec.S256(), testPrivKey)
	addrPk, _       = btcutil.NewAddressPubKey(pubKey.SerializeCompressed(),
		netParams)
	testAddr = addrPk.AddressPubKeyHash()
)

func getTestTxId(miner *rpctest.Harness) (*wire.ShaHash, error) {
	script, err := txscript.PayToAddrScript(testAddr)
	if err != nil {
		return nil, err
	}

	outputs := []*wire.TxOut{&wire.TxOut{2e8, script}}
	return miner.CoinbaseSpend(outputs)
}
Exemple #18
0
// createTestChannels creates two test channels funded witr 10 BTC, with 5 BTC
// allocated to each side.
func createTestChannels(revocationWindow int) (*LightningChannel, *LightningChannel, func(), error) {
	aliceKeyPriv, aliceKeyPub := btcec.PrivKeyFromBytes(btcec.S256(),
		testWalletPrivKey)
	bobKeyPriv, bobKeyPub := btcec.PrivKeyFromBytes(btcec.S256(),
		bobsPrivKey)

	channelCapacity := btcutil.Amount(10 * 1e8)
	channelBal := channelCapacity / 2
	csvTimeoutAlice := uint32(5)
	csvTimeoutBob := uint32(4)

	witnessScript, _, err := GenFundingPkScript(aliceKeyPub.SerializeCompressed(),
		bobKeyPub.SerializeCompressed(), int64(channelCapacity))
	if err != nil {
		return nil, nil, nil, err
	}

	prevOut := &wire.OutPoint{
		Hash:  wire.ShaHash(testHdSeed),
		Index: 0,
	}
	fundingTxIn := wire.NewTxIn(prevOut, nil, nil)

	bobElkrem := elkrem.NewElkremSender(deriveElkremRoot(bobKeyPriv, bobKeyPub, aliceKeyPub))
	bobFirstRevoke, err := bobElkrem.AtIndex(0)
	if err != nil {
		return nil, nil, nil, err
	}
	bobRevokeKey := DeriveRevocationPubkey(aliceKeyPub, bobFirstRevoke[:])

	aliceElkrem := elkrem.NewElkremSender(deriveElkremRoot(aliceKeyPriv, aliceKeyPub, bobKeyPub))
	aliceFirstRevoke, err := aliceElkrem.AtIndex(0)
	if err != nil {
		return nil, nil, nil, err
	}
	aliceRevokeKey := DeriveRevocationPubkey(bobKeyPub, aliceFirstRevoke[:])

	aliceCommitTx, err := CreateCommitTx(fundingTxIn, aliceKeyPub,
		bobKeyPub, aliceRevokeKey, csvTimeoutAlice, channelBal, channelBal)
	if err != nil {
		return nil, nil, nil, err
	}
	bobCommitTx, err := CreateCommitTx(fundingTxIn, bobKeyPub,
		aliceKeyPub, bobRevokeKey, csvTimeoutBob, channelBal, channelBal)
	if err != nil {
		return nil, nil, nil, err
	}

	alicePath, err := ioutil.TempDir("", "alicedb")
	dbAlice, err := channeldb.Open(alicePath, &chaincfg.TestNet3Params)
	if err != nil {
		return nil, nil, nil, err
	}

	bobPath, err := ioutil.TempDir("", "bobdb")
	dbBob, err := channeldb.Open(bobPath, &chaincfg.TestNet3Params)
	if err != nil {
		return nil, nil, nil, err
	}

	aliceChannelState := &channeldb.OpenChannel{
		IdentityPub:            aliceKeyPub,
		ChanID:                 prevOut,
		OurCommitKey:           aliceKeyPub,
		TheirCommitKey:         bobKeyPub,
		Capacity:               channelCapacity,
		OurBalance:             channelBal,
		TheirBalance:           channelBal,
		OurCommitTx:            aliceCommitTx,
		FundingOutpoint:        prevOut,
		OurMultiSigKey:         aliceKeyPub,
		TheirMultiSigKey:       bobKeyPub,
		FundingWitnessScript:   witnessScript,
		LocalCsvDelay:          csvTimeoutAlice,
		RemoteCsvDelay:         csvTimeoutBob,
		TheirCurrentRevocation: bobRevokeKey,
		LocalElkrem:            aliceElkrem,
		RemoteElkrem:           &elkrem.ElkremReceiver{},
		Db:                     dbAlice,
	}
	bobChannelState := &channeldb.OpenChannel{
		IdentityPub:            bobKeyPub,
		ChanID:                 prevOut,
		OurCommitKey:           bobKeyPub,
		TheirCommitKey:         aliceKeyPub,
		Capacity:               channelCapacity,
		OurBalance:             channelBal,
		TheirBalance:           channelBal,
		OurCommitTx:            bobCommitTx,
		FundingOutpoint:        prevOut,
		OurMultiSigKey:         bobKeyPub,
		TheirMultiSigKey:       aliceKeyPub,
		FundingWitnessScript:   witnessScript,
		LocalCsvDelay:          csvTimeoutBob,
		RemoteCsvDelay:         csvTimeoutAlice,
		TheirCurrentRevocation: aliceRevokeKey,
		LocalElkrem:            bobElkrem,
		RemoteElkrem:           &elkrem.ElkremReceiver{},
		Db:                     dbBob,
	}

	cleanUpFunc := func() {
		os.RemoveAll(bobPath)
		os.RemoveAll(alicePath)
	}

	aliceSigner := &mockSigner{aliceKeyPriv}
	bobSigner := &mockSigner{bobKeyPriv}

	notifier := &mockNotfier{}

	channelAlice, err := NewLightningChannel(aliceSigner, nil, notifier, aliceChannelState)
	if err != nil {
		return nil, nil, nil, err
	}
	channelBob, err := NewLightningChannel(bobSigner, nil, notifier, bobChannelState)
	if err != nil {
		return nil, nil, nil, err
	}

	// Now that the channel are open, simulate the start of a session by
	// having Alice and Bob extend their revocation windows to each other.
	err = initRevocationWindows(channelAlice, channelBob, revocationWindow)
	if err != nil {
		return nil, nil, nil, err
	}

	return channelAlice, channelBob, cleanUpFunc, nil
}
Exemple #19
0
	// preimage: 9a2cbd088763db88dd8ba79e5726daa6aba4aa7e
	// echo -n | openssl sha256 | openssl ripemd160 | openssl sha256 | openssl ripemd160
	revocationHashBytes, _ = hex.DecodeString("4132b6b48371f7b022a16eacb9b2b0ebee134d41")
	revocationHash         [20]byte

	// preimage: "hello world"
	redemptionHashBytes, _ = hex.DecodeString("5b315ebabb0d8c0d94281caa2dfee69a1a00436e")
	redemptionHash         [20]byte

	// preimage: "next hop"
	nextHopBytes, _ = hex.DecodeString("94a9ded5a30fc5944cb1e2cbcd980f30616a1440")
	nextHop         [20]byte

	privKeyBytes, _ = hex.DecodeString("9fa1d55217f57019a3c37f49465896b15836f54cb8ef6963870a52926420a2dd")
	privKey, pubKey = btcec.PrivKeyFromBytes(btcec.S256(), privKeyBytes)
	address         = pubKey

	//  Delivery PkScript
	// Privkey: f2c00ead9cbcfec63098dc0a5f152c0165aff40a2ab92feb4e24869a284c32a7
	// PKhash: n2fkWVphUzw3zSigzPsv9GuDyg9mohzKpz
	deliveryPkScript, _ = hex.DecodeString("76a914e8048c0fb75bdecc91ebfb99c174f4ece29ffbd488ac")

	//  Change PkScript
	// Privkey: 5b18f5049efd9d3aff1fb9a06506c0b809fb71562b6ecd02f6c5b3ab298f3b0f
	// PKhash: miky84cHvLuk6jcT6GsSbgHR8d7eZCu9Qc
	changePkScript, _ = hex.DecodeString("76a914238ee44bb5c8c1314dd03974a17ec6c406fdcb8388ac")

	// echo -n | openssl sha256
	// This stuff gets reversed!!!
	shaHash1Bytes, _ = hex.DecodeString("e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855")
Exemple #20
0
// Test the sigscript generation for valid and invalid inputs, all
// hashTypes, and with and without compression.  This test creates
// sigscripts to spend fake coinbase inputs, as sigscripts cannot be
// created for the MsgTxs in txTests, since they come from the blockchain
// and we don't have the private keys.
func TestSignatureScript(t *testing.T) {
	t.Parallel()

	privKey, _ := btcec.PrivKeyFromBytes(btcec.S256(), privKeyD)

nexttest:
	for i := range sigScriptTests {
		tx := wire.NewMsgTx(wire.TxVersion)

		output := wire.NewTxOut(500, []byte{OP_RETURN})
		tx.AddTxOut(output)

		for range sigScriptTests[i].inputs {
			txin := wire.NewTxIn(coinbaseOutPoint, nil, nil)
			tx.AddTxIn(txin)
		}

		var script []byte
		var err error
		for j := range tx.TxIn {
			var idx int
			if sigScriptTests[i].inputs[j].indexOutOfRange {
				t.Errorf("at test %v", sigScriptTests[i].name)
				idx = len(sigScriptTests[i].inputs)
			} else {
				idx = j
			}
			script, err = SignatureScript(tx, idx,
				sigScriptTests[i].inputs[j].txout.PkScript,
				sigScriptTests[i].hashType, privKey,
				sigScriptTests[i].compress)

			if (err == nil) != sigScriptTests[i].inputs[j].sigscriptGenerates {
				if err == nil {
					t.Errorf("passed test '%v' incorrectly",
						sigScriptTests[i].name)
				} else {
					t.Errorf("failed test '%v': %v",
						sigScriptTests[i].name, err)
				}
				continue nexttest
			}
			if !sigScriptTests[i].inputs[j].sigscriptGenerates {
				// done with this test
				continue nexttest
			}

			tx.TxIn[j].SignatureScript = script
		}

		// If testing using a correct sigscript but for an incorrect
		// index, use last input script for first input.  Requires > 0
		// inputs for test.
		if sigScriptTests[i].scriptAtWrongIndex {
			tx.TxIn[0].SignatureScript = script
			sigScriptTests[i].inputs[0].inputValidates = false
		}

		// Validate tx input scripts
		scriptFlags := ScriptBip16 | ScriptVerifyDERSignatures
		for j := range tx.TxIn {
			vm, err := NewEngine(sigScriptTests[i].
				inputs[j].txout.PkScript, tx, j, scriptFlags, nil, nil, 0)
			if err != nil {
				t.Errorf("cannot create script vm for test %v: %v",
					sigScriptTests[i].name, err)
				continue nexttest
			}
			err = vm.Execute()
			if (err == nil) != sigScriptTests[i].inputs[j].inputValidates {
				if err == nil {
					t.Errorf("passed test '%v' validation incorrectly: %v",
						sigScriptTests[i].name, err)
				} else {
					t.Errorf("failed test '%v' validation: %v",
						sigScriptTests[i].name, err)
				}
				continue nexttest
			}
		}
	}
}
// newBobNode generates a test "ln node" to interact with Alice (us). For the
// funding transaction, bob has a single output totaling 7BTC. For our basic
// test, he'll fund the channel with 5BTC, leaving 2BTC to the change output.
// TODO(roasbeef): proper handling of change etc.
func newBobNode(miner *rpctest.Harness, amt btcutil.Amount) (*bobNode, error) {
	// First, parse Bob's priv key in order to obtain a key he'll use for the
	// multi-sig funding transaction.
	privKey, pubKey := btcec.PrivKeyFromBytes(btcec.S256(), bobsPrivKey)

	// Next, generate an output redeemable by bob.
	pkHash := btcutil.Hash160(pubKey.SerializeCompressed())
	bobAddr, err := btcutil.NewAddressWitnessPubKeyHash(
		pkHash,
		miner.ActiveNet)
	if err != nil {
		return nil, err
	}
	bobAddrScript, err := txscript.PayToAddrScript(bobAddr)
	if err != nil {
		return nil, err
	}

	// Give bobNode one 7 BTC output for use in creating channels.
	output := &wire.TxOut{7e8, bobAddrScript}
	mainTxid, err := miner.CoinbaseSpend([]*wire.TxOut{output})
	if err != nil {
		return nil, err
	}

	// Mine a block in order to include the above output in a block. During
	// the reservation workflow, we currently test to ensure that the funding
	// output we're given actually exists.
	if _, err := miner.Node.Generate(1); err != nil {
		return nil, err
	}

	// Grab the transaction in order to locate the output index to Bob.
	tx, err := miner.Node.GetRawTransaction(mainTxid)
	if err != nil {
		return nil, err
	}
	found, index := lnwallet.FindScriptOutputIndex(tx.MsgTx(), bobAddrScript)
	if !found {
		return nil, fmt.Errorf("output to bob never created")
	}

	prevOut := wire.NewOutPoint(mainTxid, index)
	bobTxIn := wire.NewTxIn(prevOut, nil, nil)

	// Using bobs priv key above, create a change output he can spend.
	bobChangeOutput := wire.NewTxOut(2*1e8, bobAddrScript)

	// Bob's initial revocation hash is just his private key with the first
	// byte changed...
	var revocation [32]byte
	copy(revocation[:], bobsPrivKey)
	revocation[0] = 0xff

	// His ID is just as creative...
	var id [wire.HashSize]byte
	id[0] = 0xff

	return &bobNode{
		id:               pubKey,
		privKey:          privKey,
		channelKey:       pubKey,
		deliveryAddress:  bobAddr,
		revocation:       revocation,
		fundingAmt:       amt,
		delay:            5,
		availableOutputs: []*wire.TxIn{bobTxIn},
		changeOutputs:    []*wire.TxOut{bobChangeOutput},
	}, nil
}
Exemple #22
0
func TestLinkNodeEncodeDecode(t *testing.T) {
	cdb, cleanUp, err := makeTestDB()
	if err != nil {
		t.Fatalf("uanble to make test database: %v", err)
	}
	defer cleanUp()

	// First we'll create some initial data to use for populating our test
	// LinkNode instances.
	_, pub1 := btcec.PrivKeyFromBytes(btcec.S256(), key[:])
	_, pub2 := btcec.PrivKeyFromBytes(btcec.S256(), rev[:])
	addr1, err := net.ResolveTCPAddr("tcp", "10.0.0.1:9000")
	if err != nil {
		t.Fatalf("unable to create test addr: %v", err)
	}
	addr2, err := net.ResolveTCPAddr("tcp", "10.0.0.2:9000")
	if err != nil {
		t.Fatalf("unable to create test addr: %v", err)
	}

	// Create two fresh link node instances with the above dummy data, then
	// fully sync both instances to disk.
	node1 := cdb.NewLinkNode(wire.MainNet, pub1, addr1)
	node2 := cdb.NewLinkNode(wire.TestNet3, pub2, addr2)
	if err := node1.Sync(); err != nil {
		t.Fatalf("unable to sync node: %v", err)
	}
	if err := node2.Sync(); err != nil {
		t.Fatalf("unable to sync node: %v", err)
	}

	// Fetch all current link nodes from the database, they should exactly
	// match the two created above.
	originalNodes := []*LinkNode{node2, node1}
	linkNodes, err := cdb.FetchAllLinkNodes()
	if err != nil {
		t.Fatalf("unable to fetch nodes: %v", err)
	}
	for i, node := range linkNodes {
		if originalNodes[i].Network != node.Network {
			t.Fatalf("node networks don't match: expected %v, got %v",
				originalNodes[i].Network, node.Network)
		}

		originalPubkey := originalNodes[i].IdentityPub.SerializeCompressed()
		dbPubkey := node.IdentityPub.SerializeCompressed()
		if !bytes.Equal(originalPubkey, dbPubkey) {
			t.Fatalf("node pubkeys don't match: expected %x, got %x",
				originalPubkey, dbPubkey)
		}
		if originalNodes[i].LastSeen.Unix() != node.LastSeen.Unix() {
			t.Fatalf("last seen timestamps don't match: expected %v got %v",
				originalNodes[i].LastSeen.Unix(), node.LastSeen.Unix())
		}
		if !reflect.DeepEqual(originalNodes[i].Addresses,
			node.Addresses) {
			t.Fatalf("addresses don't match: expected %v, got %v",
				originalNodes[i].Addresses, node.Addresses)
		}
	}

	// Next, we'll excercise the methods to append additionall IP
	// addresses, and also to update the last seen time.
	if err := node1.UpdateLastSeen(time.Now()); err != nil {
		t.Fatalf("unable to update last seen: %v", err)
	}
	if err := node1.AddAddress(addr2); err != nil {
		t.Fatalf("unable to update addr: %v", err)
	}

	// Fetch the same node from the databse according to its public key.
	node1DB, err := cdb.FetchLinkNode(pub1)
	if err != nil {
		t.Fatalf("unable to find node: %v", err)
	}

	// Both the last seen timestamp and the list of reachable addresses for
	// the node should be updated.
	if node1DB.LastSeen.Unix() != node1.LastSeen.Unix() {
		t.Fatalf("last seen timestamps don't match: expected %v got %v",
			node1.LastSeen.Unix(), node1DB.LastSeen.Unix())
	}
	if len(node1DB.Addresses) != 2 {
		t.Fatalf("wrong length for node1 addrsses: expected %v, got %v",
			2, len(node1DB.Addresses))
	}
	if node1DB.Addresses[0].String() != addr1.String() {
		t.Fatalf("wrong address for node: expected %v, got %v",
			addr1.String(), node1DB.Addresses[0].String())
	}
	if node1DB.Addresses[1].String() != addr2.String() {
		t.Fatalf("wrong address for node: expected %v, got %v",
			addr2.String(), node1DB.Addresses[1].String())
	}
}