// NewBlockTemplate returns a new block template that is ready to be solved // using the transactions from the passed transaction source pool and a coinbase // that either pays to the passed address if it is not nil, or a coinbase that // is redeemable by anyone if the passed address is nil. The nil address // functionality is useful since there are cases such as the getblocktemplate // RPC where external mining software is responsible for creating their own // coinbase which will replace the one generated for the block template. Thus // the need to have configured address can be avoided. // // The transactions selected and included are prioritized according to several // factors. First, each transaction has a priority calculated based on its // value, age of inputs, and size. Transactions which consist of larger // amounts, older inputs, and small sizes have the highest priority. Second, a // fee per kilobyte is calculated for each transaction. Transactions with a // higher fee per kilobyte are preferred. Finally, the block generation related // policy settings are all taken into account. // // Transactions which only spend outputs from other transactions already in the // block chain are immediately added to a priority queue which either // prioritizes based on the priority (then fee per kilobyte) or the fee per // kilobyte (then priority) depending on whether or not the BlockPrioritySize // policy setting allots space for high-priority transactions. Transactions // which spend outputs from other transactions in the source pool are added to a // dependency map so they can be added to the priority queue once the // transactions they depend on have been included. // // Once the high-priority area (if configured) has been filled with // transactions, or the priority falls below what is considered high-priority, // the priority queue is updated to prioritize by fees per kilobyte (then // priority). // // When the fees per kilobyte drop below the TxMinFreeFee policy setting, the // transaction will be skipped unless the BlockMinSize policy setting is // nonzero, in which case the block will be filled with the low-fee/free // transactions until the block size reaches that minimum size. // // Any transactions which would cause the block to exceed the BlockMaxSize // policy setting, exceed the maximum allowed signature operations per block, or // otherwise cause the block to be invalid are skipped. // // Given the above, a block generated by this function is of the following form: // // ----------------------------------- -- -- // | Coinbase Transaction | | | // |-----------------------------------| | | // | | | | ----- policy.BlockPrioritySize // | High-priority Transactions | | | // | | | | // |-----------------------------------| | -- // | | | // | | | // | | |--- policy.BlockMaxSize // | Transactions prioritized by fee | | // | until <= policy.TxMinFreeFee | | // | | | // | | | // | | | // |-----------------------------------| | // | Low-fee/Non high-priority (free) | | // | transactions (while block size | | // | <= policy.BlockMinSize) | | // ----------------------------------- -- func (g *BlkTmplGenerator) NewBlockTemplate(payToAddress btcutil.Address) (*BlockTemplate, error) { // Extend the most recently known best block. best := g.chain.BestSnapshot() prevHash := best.Hash nextBlockHeight := best.Height + 1 // Create a standard coinbase transaction paying to the provided // address. NOTE: The coinbase value will be updated to include the // fees from the selected transactions later after they have actually // been selected. It is created here to detect any errors early // before potentially doing a lot of work below. The extra nonce helps // ensure the transaction is not a duplicate transaction (paying the // same value to the same public key address would otherwise be an // identical transaction for block version 1). extraNonce := uint64(0) coinbaseScript, err := standardCoinbaseScript(nextBlockHeight, extraNonce) if err != nil { return nil, err } // TODO(roasbeef): add witnesss commitment output coinbaseTx, err := createCoinbaseTx(g.chainParams, coinbaseScript, nextBlockHeight, payToAddress) if err != nil { return nil, err } coinbaseSigOpCost := int64(blockchain.CountSigOps(coinbaseTx)) * blockchain.WitnessScaleFactor // Get the current source transactions and create a priority queue to // hold the transactions which are ready for inclusion into a block // along with some priority related and fee metadata. Reserve the same // number of items that are available for the priority queue. Also, // choose the initial sort order for the priority queue based on whether // or not there is an area allocated for high-priority transactions. sourceTxns := g.txSource.MiningDescs() sortedByFee := g.policy.BlockPrioritySize == 0 priorityQueue := newTxPriorityQueue(len(sourceTxns), sortedByFee) // Create a slice to hold the transactions to be included in the // generated block with reserved space. Also create a utxo view to // house all of the input transactions so multiple lookups can be // avoided. blockTxns := make([]*btcutil.Tx, 0, len(sourceTxns)) blockTxns = append(blockTxns, coinbaseTx) blockUtxos := blockchain.NewUtxoViewpoint() // dependers is used to track transactions which depend on another // transaction in the source pool. This, in conjunction with the // dependsOn map kept with each dependent transaction helps quickly // determine which dependent transactions are now eligible for inclusion // in the block once each transaction has been included. dependers := make(map[chainhash.Hash]map[chainhash.Hash]*txPrioItem) // Create slices to hold the fees and number of signature operations // for each of the selected transactions and add an entry for the // coinbase. This allows the code below to simply append details about // a transaction as it is selected for inclusion in the final block. // However, since the total fees aren't known yet, use a dummy value for // the coinbase fee which will be updated later. txFees := make([]int64, 0, len(sourceTxns)) txSigOpCosts := make([]int64, 0, len(sourceTxns)) txFees = append(txFees, -1) // Updated once known txSigOpCosts = append(txSigOpCosts, coinbaseSigOpCost) log.Debugf("Considering %d transactions for inclusion to new block", len(sourceTxns)) mempoolLoop: for _, txDesc := range sourceTxns { // A block can't have more than one coinbase or contain // non-finalized transactions. tx := txDesc.Tx if blockchain.IsCoinBase(tx) { log.Tracef("Skipping coinbase tx %s", tx.Hash()) continue } if !blockchain.IsFinalizedTransaction(tx, nextBlockHeight, g.timeSource.AdjustedTime()) { log.Tracef("Skipping non-finalized tx %s", tx.Hash()) continue } // Fetch all of the utxos referenced by the this transaction. // NOTE: This intentionally does not fetch inputs from the // mempool since a transaction which depends on other // transactions in the mempool must come after those // dependencies in the final generated block. utxos, err := g.chain.FetchUtxoView(tx) if err != nil { log.Warnf("Unable to fetch utxo view for tx %s: %v", tx.Hash(), err) continue } // Setup dependencies for any transactions which reference // other transactions in the mempool so they can be properly // ordered below. prioItem := &txPrioItem{tx: tx} for _, txIn := range tx.MsgTx().TxIn { originHash := &txIn.PreviousOutPoint.Hash originIndex := txIn.PreviousOutPoint.Index utxoEntry := utxos.LookupEntry(originHash) if utxoEntry == nil || utxoEntry.IsOutputSpent(originIndex) { if !g.txSource.HaveTransaction(originHash) { log.Tracef("Skipping tx %s because it "+ "references unspent output %s "+ "which is not available", tx.Hash(), txIn.PreviousOutPoint) continue mempoolLoop } // The transaction is referencing another // transaction in the source pool, so setup an // ordering dependency. deps, exists := dependers[*originHash] if !exists { deps = make(map[chainhash.Hash]*txPrioItem) dependers[*originHash] = deps } deps[*prioItem.tx.Hash()] = prioItem if prioItem.dependsOn == nil { prioItem.dependsOn = make( map[chainhash.Hash]struct{}) } prioItem.dependsOn[*originHash] = struct{}{} // Skip the check below. We already know the // referenced transaction is available. continue } } // Calculate the final transaction priority using the input // value age sum as well as the adjusted transaction size. The // formula is: sum(inputValue * inputAge) / adjustedTxSize prioItem.priority = CalcPriority(tx.MsgTx(), utxos, nextBlockHeight) // Calculate the fee in Satoshi/kB. // TODO(roasbeef): cost accounting by weight prioItem.feePerKB = txDesc.FeePerKB prioItem.fee = txDesc.Fee // Add the transaction to the priority queue to mark it ready // for inclusion in the block unless it has dependencies. if prioItem.dependsOn == nil { heap.Push(priorityQueue, prioItem) } // Merge the referenced outputs from the input transactions to // this transaction into the block utxo view. This allows the // code below to avoid a second lookup. mergeUtxoView(blockUtxos, utxos) } log.Tracef("Priority queue len %d, dependers len %d", priorityQueue.Len(), len(dependers)) // The starting block size is the size of the block header plus the max // possible transaction count size, plus the size of the coinbase // transaction. blockWeight := uint32((blockHeaderOverhead * blockchain.WitnessScaleFactor) + blockchain.GetTransactionWeight(coinbaseTx)) blockSigOpCost := coinbaseSigOpCost totalFees := int64(0) // Query the version bits state to see if segwit has been activated, if // so then this means that we'll include any transactions with witness // data in the mempool, and also add the witness commitment as an // OP_RETURN output in the coinbase transaction. segwitState, err := g.chain.ThresholdState(chaincfg.DeploymentSegwit) if err != nil { return nil, err } segwitActive := segwitState == blockchain.ThresholdActive witnessIncluded := false // Choose which transactions make it into the block. for priorityQueue.Len() > 0 { // Grab the highest priority (or highest fee per kilobyte // depending on the sort order) transaction. prioItem := heap.Pop(priorityQueue).(*txPrioItem) tx := prioItem.tx switch { // If segregated witness has not been activated yet, then we // shouldn't include any witness transactions in the block. case tx.MsgTx().HasWitness() && !segwitActive: continue // Otherwise, Keep track of if we've included a transaction // with witness data or not. If so, then we'll need to include // the witness commitment as the last output in the coinbase // transaction. case tx.MsgTx().HasWitness() && segwitActive: // If we're about to include a transaction bearing // witness data, then we'll also need to include a // witness commitment in the coinbase transaction. // Therefore, we account for the additional weight // within the block. if !witnessIncluded { // First we account for the additional witness // data in the witness nonce of the coinbaes // transaction: 32-bytes of zeroes. blockWeight += 2 + 32 // Next we account for the additional flag and // marker bytes in the transaction // serialization. blockWeight += (1 + 1) * blockchain.WitnessScaleFactor // Finally we account for the weight of the // additional OP_RETURN output: 8-bytes (value) // + 1-byte (var-int) + 38-bytes (pkScript), // scaling up the weight as it's non-witness // data. blockWeight += (8 + 1 + 38) * blockchain.WitnessScaleFactor } witnessIncluded = true } // Grab any transactions which depend on this one. deps := dependers[*tx.Hash()] // Enforce maximum block size. Also check for overflow. txWeight := uint32(blockchain.GetTransactionWeight(tx)) blockPlusTxWeight := uint32(blockWeight + txWeight) if blockPlusTxWeight < blockWeight || blockPlusTxWeight >= g.policy.BlockMaxWeight { log.Tracef("Skipping tx %s because it would exceed "+ "the max block weight", tx.Hash()) logSkippedDeps(tx, deps) continue } // Enforce maximum signature operation cost per block. Also // check for overflow. sigOpCost, err := blockchain.GetSigOpCost(tx, false, blockUtxos, true, segwitActive) if err != nil { log.Tracef("Skipping tx %s due to error in "+ "GetSigOpCost: %v", tx.Hash(), err) logSkippedDeps(tx, deps) continue } if blockSigOpCost+int64(sigOpCost) < blockSigOpCost || blockSigOpCost+int64(sigOpCost) > blockchain.MaxBlockSigOpsCost { log.Tracef("Skipping tx %s because it would "+ "exceed the maximum sigops per block", tx.Hash()) logSkippedDeps(tx, deps) continue } // Skip free transactions once the block is larger than the // minimum block size. if sortedByFee && prioItem.feePerKB < int64(g.policy.TxMinFreeFee) && blockPlusTxWeight >= g.policy.BlockMinWeight { log.Tracef("Skipping tx %s with feePerKB %d "+ "< TxMinFreeFee %d and block weight %d >= "+ "minBlockWeight %d", tx.Hash(), prioItem.feePerKB, g.policy.TxMinFreeFee, blockPlusTxWeight, g.policy.BlockMinWeight) logSkippedDeps(tx, deps) continue } // Prioritize by fee per kilobyte once the block is larger than // the priority size or there are no more high-priority // transactions. if !sortedByFee && (blockPlusTxWeight >= g.policy.BlockPrioritySize || prioItem.priority <= MinHighPriority) { log.Tracef("Switching to sort by fees per "+ "kilobyte blockSize %d >= BlockPrioritySize "+ "%d || priority %.2f <= minHighPriority %.2f", blockPlusTxWeight, g.policy.BlockPrioritySize, prioItem.priority, MinHighPriority) sortedByFee = true priorityQueue.SetLessFunc(txPQByFee) // Put the transaction back into the priority queue and // skip it so it is re-priortized by fees if it won't // fit into the high-priority section or the priority // is too low. Otherwise this transaction will be the // final one in the high-priority section, so just fall // though to the code below so it is added now. if blockPlusTxWeight > g.policy.BlockPrioritySize || prioItem.priority < MinHighPriority { heap.Push(priorityQueue, prioItem) continue } } // Ensure the transaction inputs pass all of the necessary // preconditions before allowing it to be added to the block. _, err = blockchain.CheckTransactionInputs(tx, nextBlockHeight, blockUtxos, g.chainParams) if err != nil { log.Tracef("Skipping tx %s due to error in "+ "CheckTransactionInputs: %v", tx.Hash(), err) logSkippedDeps(tx, deps) continue } err = blockchain.ValidateTransactionScripts(tx, blockUtxos, txscript.StandardVerifyFlags, g.sigCache, g.hashCache) if err != nil { log.Tracef("Skipping tx %s due to error in "+ "ValidateTransactionScripts: %v", tx.Hash(), err) logSkippedDeps(tx, deps) continue } // Spend the transaction inputs in the block utxo view and add // an entry for it to ensure any transactions which reference // this one have it available as an input and can ensure they // aren't double spending. spendTransaction(blockUtxos, tx, nextBlockHeight) // Add the transaction to the block, increment counters, and // save the fees and signature operation counts to the block // template. blockTxns = append(blockTxns, tx) blockWeight += txWeight blockSigOpCost += int64(sigOpCost) totalFees += prioItem.fee txFees = append(txFees, prioItem.fee) txSigOpCosts = append(txSigOpCosts, int64(sigOpCost)) log.Tracef("Adding tx %s (priority %.2f, feePerKB %.2f)", prioItem.tx.Hash(), prioItem.priority, prioItem.feePerKB) // Add transactions which depend on this one (and also do not // have any other unsatisified dependencies) to the priority // queue. for _, item := range deps { // Add the transaction to the priority queue if there // are no more dependencies after this one. delete(item.dependsOn, *tx.Hash()) if len(item.dependsOn) == 0 { heap.Push(priorityQueue, item) } } } // Now that the actual transactions have been selected, update the // block weight for the real transaction count and coinbase value with // the total fees accordingly. blockWeight -= wire.MaxVarIntPayload - (uint32(wire.VarIntSerializeSize(uint64(len(blockTxns)))) * blockchain.WitnessScaleFactor) coinbaseTx.MsgTx().TxOut[0].Value += totalFees txFees[0] = -totalFees // If segwit is active and we included transactions with witness data, // then we'll need to include a commitment to the witness data in an // OP_RETURN output within the coinbase transaction. if witnessIncluded { // The witness of the coinbase transaction MUST be exactly 32-bytes // of all zeroes. var witnessNonce [blockchain.CoinbaseWitnessDataLen]byte coinbaseTx.MsgTx().TxIn[0].Witness = wire.TxWitness{witnessNonce[:]} // Next, obtain the merkle root of a tree which consists of the // wtxid of all transactions in the block. The coinbase // transaction will have a special wtxid of all zeroes. witnessMerkleTree := blockchain.BuildMerkleTreeStore(blockTxns, true) witnessMerkleRoot := witnessMerkleTree[len(witnessMerkleTree)-1] // The preimage to the witness commitment is: // witnessRoot || coinbaseWitness var witnessPreimage [64]byte copy(witnessPreimage[:32], witnessMerkleRoot[:]) copy(witnessPreimage[32:], witnessNonce[:]) // The witness commitment itself is the double-sha256 of the // witness preimage generated above. With the commitment // generated, the witness script for the output is: OP_RETURN // OP_DATA_36 {0xaa21a9ed || witnessCommitment}. The leading // prefix is refered to as the "witness magic bytes". witnessCommitment := chainhash.DoubleHashB(witnessPreimage[:]) witnessScript := append(blockchain.WitnessMagicBytes, witnessCommitment...) // Finally, create the OP_RETURN carrying witness commitment // output as an additional output within the coinbase. commitmentOutput := &wire.TxOut{ Value: 0, PkScript: witnessScript, } coinbaseTx.MsgTx().TxOut = append(coinbaseTx.MsgTx().TxOut, commitmentOutput) } // Calculate the required difficulty for the block. The timestamp // is potentially adjusted to ensure it comes after the median time of // the last several blocks per the chain consensus rules. ts := medianAdjustedTime(best, g.timeSource) reqDifficulty, err := g.chain.CalcNextRequiredDifficulty(ts) if err != nil { return nil, err } // Calculate the next expected block version based on the state of the // rule change deployments. nextBlockVersion, err := g.chain.CalcNextBlockVersion() if err != nil { return nil, err } // Create a new block ready to be solved. merkles := blockchain.BuildMerkleTreeStore(blockTxns, false) var msgBlock wire.MsgBlock msgBlock.Header = wire.BlockHeader{ Version: nextBlockVersion, PrevBlock: *prevHash, MerkleRoot: *merkles[len(merkles)-1], Timestamp: ts, Bits: reqDifficulty, } for _, tx := range blockTxns { if err := msgBlock.AddTransaction(tx.MsgTx()); err != nil { return nil, err } } // Finally, perform a full check on the created block against the chain // consensus rules to ensure it properly connects to the current best // chain with no issues. block := btcutil.NewBlock(&msgBlock) block.SetHeight(nextBlockHeight) if err := g.chain.CheckConnectBlock(block); err != nil { return nil, err } log.Debugf("Created new block template (%d transactions, %d in "+ "fees, %d signature operations cost, %d weight, target difficulty "+ "%064x)", len(msgBlock.Transactions), totalFees, blockSigOpCost, blockWeight, blockchain.CompactToBig(msgBlock.Header.Bits)) return &BlockTemplate{ Block: &msgBlock, Fees: txFees, SigOpCosts: txSigOpCosts, Height: nextBlockHeight, ValidPayAddress: payToAddress != nil, }, nil }
// BlockRootOK checks for block self-consistency. // If the block has no wintess txs, and no coinbase witness commitment, // it only checks the tx merkle root. If either a witness commitment or // any witnesses are detected, it also checks that as well. // Returns false if anything goes wrong, true if everything is fine. func BlockOK(blk wire.MsgBlock) bool { var txids, wtxids []*wire.ShaHash // txids and wtxids // witMode true if any tx has a wintess OR coinbase has wit commit var witMode bool for _, tx := range blk.Transactions { // make slice of (w)/txids txid := tx.TxSha() wtxid := tx.WitnessHash() if !witMode && !txid.IsEqual(&wtxid) { witMode = true } txids = append(txids, &txid) wtxids = append(wtxids, &wtxid) } var commitBytes []byte // try to extract coinbase witness commitment (even if !witMode) cb := blk.Transactions[0] // get coinbase tx for i := len(cb.TxOut) - 1; i >= 0; i-- { // start at the last txout if bytes.HasPrefix(cb.TxOut[i].PkScript, WitMagicBytes) && len(cb.TxOut[i].PkScript) > 37 { // 38 bytes or more, and starts with WitMagicBytes is a hit commitBytes = cb.TxOut[i].PkScript[6:38] witMode = true // it there is a wit commit it must be valid } } if witMode { // witmode, so check witness tree // first find ways witMode can be disqualified if len(commitBytes) != 32 { // witness in block but didn't find a wintess commitment; fail log.Printf("block %s has witness but no witcommit", blk.BlockSha().String()) return false } if len(cb.TxIn) != 1 { log.Printf("block %s coinbase tx has %d txins (must be 1)", blk.BlockSha().String(), len(cb.TxIn)) return false } if len(cb.TxIn[0].Witness) != 1 { log.Printf("block %s coinbase has %d witnesses (must be 1)", blk.BlockSha().String(), len(cb.TxIn[0].Witness)) return false } if len(cb.TxIn[0].Witness[0]) != 32 { log.Printf("block %s coinbase has %d byte witness nonce (not 32)", blk.BlockSha().String(), len(cb.TxIn[0].Witness[0])) return false } // witness nonce is the cb's witness, subject to above constraints witNonce, err := wire.NewShaHash(cb.TxIn[0].Witness[0]) if err != nil { log.Printf("Witness nonce error: %s", err.Error()) return false // not sure why that'd happen but fail } var empty [32]byte wtxids[0].SetBytes(empty[:]) // coinbase wtxid is 0x00...00 // witness root calculated from wtixds witRoot := calcRoot(wtxids) calcWitCommit := wire.DoubleSha256SH( append(witRoot.Bytes(), witNonce.Bytes()...)) // witness root given in coinbase op_return givenWitCommit, err := wire.NewShaHash(commitBytes) if err != nil { log.Printf("Witness root error: %s", err.Error()) return false // not sure why that'd happen but fail } // they should be the same. If not, fail. if !calcWitCommit.IsEqual(givenWitCommit) { log.Printf("Block %s witRoot error: calc %s given %s", blk.BlockSha().String(), calcWitCommit.String(), givenWitCommit.String()) return false } } // got through witMode check so that should be OK; // check regular txid merkleroot. Which is, like, trivial. return blk.Header.MerkleRoot.IsEqual(calcRoot(txids)) }
// CreateBlock creates a new block building from the previous block with a // specified blockversion and timestamp. If the timestamp passed is zero (not // initialized), then the timestamp of the previous block will be used plus 1 // second is used. Passing nil for the previous block results in a block that // builds off of the genesis block for the specified chain. func CreateBlock(prevBlock *btcutil.Block, inclusionTxs []*btcutil.Tx, blockVersion int32, blockTime time.Time, miningAddr btcutil.Address, net *chaincfg.Params) (*btcutil.Block, error) { var ( prevHash *chainhash.Hash blockHeight int32 prevBlockTime time.Time ) // If the previous block isn't specified, then we'll construct a block // that builds off of the genesis block for the chain. if prevBlock == nil { prevHash = net.GenesisHash blockHeight = 1 prevBlockTime = net.GenesisBlock.Header.Timestamp.Add(time.Minute) } else { prevHash = prevBlock.Hash() blockHeight = prevBlock.Height() + 1 prevBlockTime = prevBlock.MsgBlock().Header.Timestamp } // If a target block time was specified, then use that as the header's // timestamp. Otherwise, add one second to the previous block unless // it's the genesis block in which case use the current time. var ts time.Time switch { case !blockTime.IsZero(): ts = blockTime default: ts = prevBlockTime.Add(time.Second) } extraNonce := uint64(0) coinbaseScript, err := standardCoinbaseScript(blockHeight, extraNonce) if err != nil { return nil, err } coinbaseTx, err := createCoinbaseTx(coinbaseScript, blockHeight, miningAddr, net) if err != nil { return nil, err } // Create a new block ready to be solved. blockTxns := []*btcutil.Tx{coinbaseTx} if inclusionTxs != nil { blockTxns = append(blockTxns, inclusionTxs...) } merkles := blockchain.BuildMerkleTreeStore(blockTxns, false) var block wire.MsgBlock block.Header = wire.BlockHeader{ Version: blockVersion, PrevBlock: *prevHash, MerkleRoot: *merkles[len(merkles)-1], Timestamp: ts, Bits: net.PowLimitBits, } for _, tx := range blockTxns { if err := block.AddTransaction(tx.MsgTx()); err != nil { return nil, err } } found := solveBlock(&block.Header, net.PowLimit) if !found { return nil, errors.New("Unable to solve block") } utilBlock := btcutil.NewBlock(&block) utilBlock.SetHeight(blockHeight) return utilBlock, nil }
// IngestBlock is like IngestMerkleBlock but aralphic // different enough that it's better to have 2 separate functions func (s *SPVCon) IngestBlock(m *wire.MsgBlock) { var err error // var buf bytes.Buffer // m.SerializeWitness(&buf) // fmt.Printf("block hex %x\n", buf.Bytes()) // for _, tx := range m.Transactions { // fmt.Printf("wtxid: %s\n", tx.WTxSha()) // fmt.Printf(" txid: %s\n", tx.TxSha()) // fmt.Printf("%d %s", i, TxToString(tx)) // } ok := BlockOK(*m) // check block self-consistency if !ok { fmt.Printf("block %s not OK!!11\n", m.BlockSha().String()) return } var hah HashAndHeight select { // select here so we don't block on an unrequested mblock case hah = <-s.blockQueue: // pop height off mblock queue break default: log.Printf("Unrequested full block") return } newBlockSha := m.Header.BlockSha() if !hah.blockhash.IsEqual(&newBlockSha) { log.Printf("full block out of order error") return } fPositive := 0 // local filter false positives reFilter := 10 // after that many false positives, regenerate filter. // 10? Making it up. False positives have disk i/o cost, and regenning // the filter also has costs. With a large local filter, false positives // should be rare. // iterate through all txs in the block, looking for matches. // use a local bloom filter to ignore txs that don't affect us for _, tx := range m.Transactions { utilTx := btcutil.NewTx(tx) if s.TS.localFilter.MatchTxAndUpdate(utilTx) { hits, err := s.TS.Ingest(tx, hah.height) if err != nil { log.Printf("Incoming Tx error: %s\n", err.Error()) return } if hits > 0 { // log.Printf("block %d tx %d %s ingested and matches %d utxo/adrs.", // hah.height, i, tx.TxSha().String(), hits) } else { fPositive++ // matched filter but no hits } } } if fPositive > reFilter { fmt.Printf("%d filter false positives in this block\n", fPositive) err = s.TS.Refilter() if err != nil { log.Printf("Refilter error: %s\n", err.Error()) return } } // write to db that we've sync'd to the height indicated in the // merkle block. This isn't QUITE true since we haven't actually gotten // the txs yet but if there are problems with the txs we should backtrack. err = s.TS.SetDBSyncHeight(hah.height) if err != nil { log.Printf("full block sync error: %s\n", err.Error()) return } fmt.Printf("ingested full block %s height %d OK\n", m.Header.BlockSha().String(), hah.height) if hah.final { // check sync end // don't set waitstate; instead, ask for headers again! // this way the only thing that triggers waitstate is asking for headers, // getting 0, calling AskForMerkBlocks(), and seeing you don't need any. // that way you are pretty sure you're synced up. err = s.AskForHeaders() if err != nil { log.Printf("Merkle block error: %s\n", err.Error()) return } } return }
// TestFullBlocks ensures all tests generated by the fullblocktests package // have the expected result when processed via ProcessBlock. func TestFullBlocks(t *testing.T) { tests, err := fullblocktests.Generate(false) if err != nil { t.Fatalf("failed to generate tests: %v", err) } // Create a new database and chain instance to run tests against. chain, teardownFunc, err := chainSetup("fullblocktest", &chaincfg.RegressionNetParams) if err != nil { t.Errorf("Failed to setup chain instance: %v", err) return } defer teardownFunc() // testAcceptedBlock attempts to process the block in the provided test // instance and ensures that it was accepted according to the flags // specified in the test. testAcceptedBlock := func(item fullblocktests.AcceptedBlock) { blockHeight := item.Height block := btcutil.NewBlock(item.Block) block.SetHeight(blockHeight) t.Logf("Testing block %s (hash %s, height %d)", item.Name, block.Hash(), blockHeight) isMainChain, isOrphan, err := chain.ProcessBlock(block, blockchain.BFNone) if err != nil { t.Fatalf("block %q (hash %s, height %d) should "+ "have been accepted: %v", item.Name, block.Hash(), blockHeight, err) } // Ensure the main chain and orphan flags match the values // specified in the test. if isMainChain != item.IsMainChain { t.Fatalf("block %q (hash %s, height %d) unexpected main "+ "chain flag -- got %v, want %v", item.Name, block.Hash(), blockHeight, isMainChain, item.IsMainChain) } if isOrphan != item.IsOrphan { t.Fatalf("block %q (hash %s, height %d) unexpected "+ "orphan flag -- got %v, want %v", item.Name, block.Hash(), blockHeight, isOrphan, item.IsOrphan) } } // testRejectedBlock attempts to process the block in the provided test // instance and ensures that it was rejected with the reject code // specified in the test. testRejectedBlock := func(item fullblocktests.RejectedBlock) { blockHeight := item.Height block := btcutil.NewBlock(item.Block) block.SetHeight(blockHeight) t.Logf("Testing block %s (hash %s, height %d)", item.Name, block.Hash(), blockHeight) _, _, err := chain.ProcessBlock(block, blockchain.BFNone) if err == nil { t.Fatalf("block %q (hash %s, height %d) should not "+ "have been accepted", item.Name, block.Hash(), blockHeight) } // Ensure the error code is of the expected type and the reject // code matches the value specified in the test instance. rerr, ok := err.(blockchain.RuleError) if !ok { t.Fatalf("block %q (hash %s, height %d) returned "+ "unexpected error type -- got %T, want "+ "blockchain.RuleError", item.Name, block.Hash(), blockHeight, err) } if rerr.ErrorCode != item.RejectCode { t.Fatalf("block %q (hash %s, height %d) does not have "+ "expected reject code -- got %v, want %v", item.Name, block.Hash(), blockHeight, rerr.ErrorCode, item.RejectCode) } } // testRejectedNonCanonicalBlock attempts to decode the block in the // provided test instance and ensures that it failed to decode with a // message error. testRejectedNonCanonicalBlock := func(item fullblocktests.RejectedNonCanonicalBlock) { headerLen := len(item.RawBlock) if headerLen > 80 { headerLen = 80 } blockHash := chainhash.DoubleHashH(item.RawBlock[0:headerLen]) blockHeight := item.Height t.Logf("Testing block %s (hash %s, height %d)", item.Name, blockHash, blockHeight) // Ensure there is an error due to deserializing the block. var msgBlock wire.MsgBlock err := msgBlock.BtcDecode(bytes.NewReader(item.RawBlock), 0, wire.BaseEncoding) if _, ok := err.(*wire.MessageError); !ok { t.Fatalf("block %q (hash %s, height %d) should have "+ "failed to decode", item.Name, blockHash, blockHeight) } } // testOrphanOrRejectedBlock attempts to process the block in the // provided test instance and ensures that it was either accepted as an // orphan or rejected with a rule violation. testOrphanOrRejectedBlock := func(item fullblocktests.OrphanOrRejectedBlock) { blockHeight := item.Height block := btcutil.NewBlock(item.Block) block.SetHeight(blockHeight) t.Logf("Testing block %s (hash %s, height %d)", item.Name, block.Hash(), blockHeight) _, isOrphan, err := chain.ProcessBlock(block, blockchain.BFNone) if err != nil { // Ensure the error code is of the expected type. if _, ok := err.(blockchain.RuleError); !ok { t.Fatalf("block %q (hash %s, height %d) "+ "returned unexpected error type -- "+ "got %T, want blockchain.RuleError", item.Name, block.Hash(), blockHeight, err) } } if !isOrphan { t.Fatalf("block %q (hash %s, height %d) was accepted, "+ "but is not considered an orphan", item.Name, block.Hash(), blockHeight) } } // testExpectedTip ensures the current tip of the blockchain is the // block specified in the provided test instance. testExpectedTip := func(item fullblocktests.ExpectedTip) { blockHeight := item.Height block := btcutil.NewBlock(item.Block) block.SetHeight(blockHeight) t.Logf("Testing tip for block %s (hash %s, height %d)", item.Name, block.Hash(), blockHeight) // Ensure hash and height match. best := chain.BestSnapshot() if *best.Hash != item.Block.BlockHash() || best.Height != blockHeight { t.Fatalf("block %q (hash %s, height %d) should be "+ "the current tip -- got (hash %s, height %d)", item.Name, block.Hash(), blockHeight, best.Hash, best.Height) } } for testNum, test := range tests { for itemNum, item := range test { switch item := item.(type) { case fullblocktests.AcceptedBlock: testAcceptedBlock(item) case fullblocktests.RejectedBlock: testRejectedBlock(item) case fullblocktests.RejectedNonCanonicalBlock: testRejectedNonCanonicalBlock(item) case fullblocktests.OrphanOrRejectedBlock: testOrphanOrRejectedBlock(item) case fullblocktests.ExpectedTip: testExpectedTip(item) default: t.Fatalf("test #%d, item #%d is not one of "+ "the supported test instance types -- "+ "got type: %T", testNum, itemNum, item) } } } }