func (self *Registrar) SetUrlHint(urlhint string, addr common.Address) (txhash string, err error) { if urlhint != "" { UrlHintAddr = urlhint } else { if !zero.MatchString(UrlHintAddr) { return } nameHex, extra := encodeName(UrlHintName, 2) urlHintAbi := resolveAbi + nameHex + extra glog.V(logger.Detail).Infof("UrlHint address query data: %s to %s", urlHintAbi, GlobalRegistrarAddr) var res string res, _, err = self.backend.Call("", GlobalRegistrarAddr, "", "", "", urlHintAbi) if len(res) >= 40 { UrlHintAddr = "0x" + res[len(res)-40:len(res)] } if err != nil || zero.MatchString(UrlHintAddr) { if (addr == common.Address{}) { err = fmt.Errorf("UrlHint address not found and sender for creation not given") return } txhash, err = self.backend.Transact(addr.Hex(), "", "", "", "210000", "", UrlHintCode) if err != nil { err = fmt.Errorf("UrlHint address not found and sender for creation failed: %v", err) } glog.V(logger.Detail).Infof("created UrlHint @ txhash %v\n", txhash) } else { glog.V(logger.Detail).Infof("UrlHint found @ %v\n", HashRegAddr) return } } return }
// SetUrlToHash(from, hash, url) registers a url to a content hash so that the content can be fetched // address is used as sender for the transaction and will be the owner of a new // registry entry on first time use // FIXME: silently doing nothing if sender is not the owner // note that with content addressed storage, this step is no longer necessary func (self *Registrar) SetUrlToHash(address common.Address, hash common.Hash, url string) (txh string, err error) { hashHex := common.Bytes2Hex(hash[:]) var urlHex string urlb := []byte(url) var cnt byte n := len(urlb) for n > 0 { if n > 32 { n = 32 } urlHex = common.Bytes2Hex(urlb[:n]) urlb = urlb[n:] n = len(urlb) bcnt := make([]byte, 32) bcnt[31] = cnt data := registerUrlAbi + hashHex + common.Bytes2Hex(bcnt) + common.Bytes2Hex(common.Hex2BytesFixed(urlHex, 32)) txh, err = self.backend.Transact( address.Hex(), UrlHintAddr, "", "", "", "", data, ) if err != nil { return } cnt++ } return }
func (self *Registrar) SetHashReg(hashreg string, addr common.Address) (txhash string, err error) { if hashreg != "" { HashRegAddr = hashreg } else { if !zero.MatchString(HashRegAddr) { return } nameHex, extra := encodeName(HashRegName, 2) hashRegAbi := resolveAbi + nameHex + extra glog.V(logger.Detail).Infof("\ncall HashRegAddr %v with %v\n", GlobalRegistrarAddr, hashRegAbi) var res string res, _, err = self.backend.Call("", GlobalRegistrarAddr, "", "", "", hashRegAbi) if len(res) >= 40 { HashRegAddr = "0x" + res[len(res)-40:len(res)] } if err != nil || zero.MatchString(HashRegAddr) { if (addr == common.Address{}) { err = fmt.Errorf("HashReg address not found and sender for creation not given") return } txhash, err = self.backend.Transact(addr.Hex(), "", "", "", "", "", HashRegCode) if err != nil { err = fmt.Errorf("HashReg address not found and sender for creation failed: %v", err) } glog.V(logger.Detail).Infof("created HashRegAddr @ txhash %v\n", txhash) } else { glog.V(logger.Detail).Infof("HashRegAddr found at @ %v\n", HashRegAddr) return } } return }
func opCreate(instr instruction, env Environment, context *Context, memory *Memory, stack *stack) { var ( value = stack.pop() offset, size = stack.pop(), stack.pop() input = memory.Get(offset.Int64(), size.Int64()) gas = new(big.Int).Set(context.Gas) addr common.Address ) context.UseGas(context.Gas) ret, suberr, ref := env.Create(context, input, gas, context.Price, value) if suberr != nil { stack.push(new(big.Int)) } else { // gas < len(ret) * Createinstr.dataGas == NO_CODE dataGas := big.NewInt(int64(len(ret))) dataGas.Mul(dataGas, params.CreateDataGas) if context.UseGas(dataGas) { ref.SetCode(ret) } addr = ref.Address() stack.push(addr.Big()) } }
// called as first step in the registration process on HashReg func (self *Registrar) SetOwner(address common.Address) (txh string, err error) { return self.backend.Transact( address.Hex(), HashRegAddr, "", "", "", "", setOwnerAbi, ) }
// SetNonce sets the new canonical nonce for the managed state func (ms *ManagedState) SetNonce(addr common.Address, nonce uint64) { ms.mu.Lock() defer ms.mu.Unlock() so := ms.GetOrNewStateObject(addr) so.SetNonce(nonce) ms.accounts[addr.Str()] = newAccount(so) }
// NewStateObject create a state object whether it exist in the trie or not func (self *StateDB) newStateObject(addr common.Address) *StateObject { if glog.V(logger.Core) { glog.Infof("(+) %x\n", addr) } stateObject := NewStateObject(addr, self.db) self.stateObjects[addr.Str()] = stateObject return stateObject }
// ReserveName(from, name) reserves name for the sender address in the globalRegistrar // the tx needs to be mined to take effect func (self *Registrar) ReserveName(address common.Address, name string) (txh string, err error) { nameHex, extra := encodeName(name, 2) abi := reserveAbi + nameHex + extra glog.V(logger.Detail).Infof("Reserve data: %s", abi) return self.backend.Transact( address.Hex(), GlobalRegistrarAddr, "", "", "", "", abi, ) }
// SetAddressToName(from, name, addr) will set the Address to address for name // in the globalRegistrar using from as the sender of the transaction // the tx needs to be mined to take effect func (self *Registrar) SetAddressToName(from common.Address, name string, address common.Address) (txh string, err error) { nameHex, extra := encodeName(name, 6) addrHex := encodeAddress(address) abi := registerAbi + nameHex + addrHex + trueHex + extra glog.V(logger.Detail).Infof("SetAddressToName data: %s to %s ", abi, GlobalRegistrarAddr) return self.backend.Transact( from.Hex(), GlobalRegistrarAddr, "", "", "", "", abi, ) }
// NameToAddr(from, name) queries the registrar for the address on name func (self *Registrar) NameToAddr(from common.Address, name string) (address common.Address, err error) { nameHex, extra := encodeName(name, 2) abi := resolveAbi + nameHex + extra glog.V(logger.Detail).Infof("NameToAddr data: %s", abi) res, _, err := self.backend.Call( from.Hex(), GlobalRegistrarAddr, "", "", "", abi, ) if err != nil { return } address = common.HexToAddress(res) return }
func (self *XEth) doSign(from common.Address, hash common.Hash, didUnlock bool) ([]byte, error) { sig, err := self.backend.AccountManager().Sign(accounts.Account{Address: from}, hash.Bytes()) if err == accounts.ErrLocked { if didUnlock { return nil, fmt.Errorf("signer account still locked after successful unlock") } if !self.frontend.UnlockAccount(from.Bytes()) { return nil, fmt.Errorf("could not unlock signer account") } // retry signing, the account should now be unlocked. return self.doSign(from, hash, true) } else if err != nil { return nil, err } return sig, nil }
// registers some content hash to a key/code hash // e.g., the contract Info combined Json Doc's ContentHash // to CodeHash of a contract or hash of a domain func (self *Registrar) SetHashToHash(address common.Address, codehash, dochash common.Hash) (txh string, err error) { _, err = self.SetOwner(address) if err != nil { return } codehex := common.Bytes2Hex(codehash[:]) dochex := common.Bytes2Hex(dochash[:]) data := registerContentHashAbi + codehex + dochex glog.V(logger.Detail).Infof("SetHashToHash data: %s sent to %v\n", data, HashRegAddr) return self.backend.Transact( address.Hex(), HashRegAddr, "", "", "", "", data, ) }
// populate the managed state func (ms *ManagedState) getAccount(addr common.Address) *account { straddr := addr.Str() if account, ok := ms.accounts[straddr]; !ok { so := ms.GetOrNewStateObject(addr) ms.accounts[straddr] = newAccount(so) } else { // Always make sure the state account nonce isn't actually higher // than the tracked one. so := ms.StateDB.GetStateObject(addr) if so != nil && uint64(len(account.nonces))+account.nstart < so.nonce { ms.accounts[straddr] = newAccount(so) } } return ms.accounts[straddr] }
func (self *Registrar) SetGlobalRegistrar(namereg string, addr common.Address) (txhash string, err error) { if namereg != "" { GlobalRegistrarAddr = namereg return } if GlobalRegistrarAddr == "0x0" || GlobalRegistrarAddr == "0x" { if (addr == common.Address{}) { err = fmt.Errorf("GlobalRegistrar address not found and sender for creation not given") return } else { txhash, err = self.backend.Transact(addr.Hex(), "", "", "", "800000", "", GlobalRegistrarCode) if err != nil { err = fmt.Errorf("GlobalRegistrar address not found and sender for creation failed: %v", err) return } } } return }
// Retrieve a state object given my the address. Nil if not found func (self *StateDB) GetStateObject(addr common.Address) (stateObject *StateObject) { stateObject = self.stateObjects[addr.Str()] if stateObject != nil { if stateObject.deleted { stateObject = nil } return stateObject } data := self.trie.Get(addr[:]) if len(data) == 0 { return nil } stateObject = NewStateObjectFromBytes(addr, []byte(data), self.db) self.SetStateObject(stateObject) return stateObject }
func (ms *ManagedState) hasAccount(addr common.Address) bool { _, ok := ms.accounts[addr.Str()] return ok }
// Run loops and evaluates the contract's code with the given input data func (self *Vm) Run(context *Context, input []byte) (ret []byte, err error) { self.env.SetDepth(self.env.Depth() + 1) defer self.env.SetDepth(self.env.Depth() - 1) // User defer pattern to check for an error and, based on the error being nil or not, use all gas and return. defer func() { if err != nil { // In case of a VM exception (known exceptions) all gas consumed (panics NOT included). context.UseGas(context.Gas) ret = context.Return(nil) } }() if context.CodeAddr != nil { if p := Precompiled[context.CodeAddr.Str()]; p != nil { return self.RunPrecompiled(p, input, context) } } var ( codehash = crypto.Sha3Hash(context.Code) // codehash is used when doing jump dest caching program *Program ) if EnableJit { // Fetch program status. // * If ready run using JIT // * If unknown, compile in a seperate goroutine // * If forced wait for compilation and run once done if status := GetProgramStatus(codehash); status == progReady { return RunProgram(GetProgram(codehash), self.env, context, input) } else if status == progUnknown { if ForceJit { // Create and compile program program = NewProgram(context.Code) perr := CompileProgram(program) if perr == nil { return RunProgram(program, self.env, context, input) } glog.V(logger.Info).Infoln("error compiling program", err) } else { // create and compile the program. Compilation // is done in a seperate goroutine program = NewProgram(context.Code) go func() { err := CompileProgram(program) if err != nil { glog.V(logger.Info).Infoln("error compiling program", err) return } }() } } } var ( caller = context.caller code = context.Code value = context.value price = context.Price op OpCode // current opcode mem = NewMemory() // bound memory stack = newstack() // local stack statedb = self.env.State() // current state // For optimisation reason we're using uint64 as the program counter. // It's theoretically possible to go above 2^64. The YP defines the PC to be uint256. Pratically much less so feasible. pc = uint64(0) // program counter // jump evaluates and checks whether the given jump destination is a valid one // if valid move the `pc` otherwise return an error. jump = func(from uint64, to *big.Int) error { if !context.jumpdests.has(codehash, code, to) { nop := context.GetOp(to.Uint64()) return fmt.Errorf("invalid jump destination (%v) %v", nop, to) } pc = to.Uint64() return nil } newMemSize *big.Int cost *big.Int ) // User defer pattern to check for an error and, based on the error being nil or not, use all gas and return. defer func() { if err != nil { self.log(pc, op, context.Gas, cost, mem, stack, context, err) } }() // Don't bother with the execution if there's no code. if len(code) == 0 { return context.Return(nil), nil } for { // Overhead of the atomic read might not be worth it /* TODO this still causes a few issues in the tests if program != nil && progStatus(atomic.LoadInt32(&program.status)) == progReady { // move execution glog.V(logger.Info).Infoln("Moved execution to JIT") return runProgram(program, pc, mem, stack, self.env, context, input) } */ // The base for all big integer arithmetic base := new(big.Int) // Get the memory location of pc op = context.GetOp(pc) // calculate the new memory size and gas price for the current executing opcode newMemSize, cost, err = calculateGasAndSize(self.env, context, caller, op, statedb, mem, stack) if err != nil { return nil, err } // Use the calculated gas. When insufficient gas is present, use all gas and return an // Out Of Gas error if !context.UseGas(cost) { return nil, OutOfGasError } // Resize the memory calculated previously mem.Resize(newMemSize.Uint64()) // Add a log message self.log(pc, op, context.Gas, cost, mem, stack, context, nil) switch op { case ADD: x, y := stack.pop(), stack.pop() base.Add(x, y) U256(base) // pop result back on the stack stack.push(base) case SUB: x, y := stack.pop(), stack.pop() base.Sub(x, y) U256(base) // pop result back on the stack stack.push(base) case MUL: x, y := stack.pop(), stack.pop() base.Mul(x, y) U256(base) // pop result back on the stack stack.push(base) case DIV: x, y := stack.pop(), stack.pop() if y.Cmp(common.Big0) != 0 { base.Div(x, y) } U256(base) // pop result back on the stack stack.push(base) case SDIV: x, y := S256(stack.pop()), S256(stack.pop()) if y.Cmp(common.Big0) == 0 { base.Set(common.Big0) } else { n := new(big.Int) if new(big.Int).Mul(x, y).Cmp(common.Big0) < 0 { n.SetInt64(-1) } else { n.SetInt64(1) } base.Div(x.Abs(x), y.Abs(y)).Mul(base, n) U256(base) } stack.push(base) case MOD: x, y := stack.pop(), stack.pop() if y.Cmp(common.Big0) == 0 { base.Set(common.Big0) } else { base.Mod(x, y) } U256(base) stack.push(base) case SMOD: x, y := S256(stack.pop()), S256(stack.pop()) if y.Cmp(common.Big0) == 0 { base.Set(common.Big0) } else { n := new(big.Int) if x.Cmp(common.Big0) < 0 { n.SetInt64(-1) } else { n.SetInt64(1) } base.Mod(x.Abs(x), y.Abs(y)).Mul(base, n) U256(base) } stack.push(base) case EXP: x, y := stack.pop(), stack.pop() base.Exp(x, y, Pow256) U256(base) stack.push(base) case SIGNEXTEND: back := stack.pop() if back.Cmp(big.NewInt(31)) < 0 { bit := uint(back.Uint64()*8 + 7) num := stack.pop() mask := new(big.Int).Lsh(common.Big1, bit) mask.Sub(mask, common.Big1) if common.BitTest(num, int(bit)) { num.Or(num, mask.Not(mask)) } else { num.And(num, mask) } num = U256(num) stack.push(num) } case NOT: stack.push(U256(new(big.Int).Not(stack.pop()))) case LT: x, y := stack.pop(), stack.pop() // x < y if x.Cmp(y) < 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case GT: x, y := stack.pop(), stack.pop() // x > y if x.Cmp(y) > 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case SLT: x, y := S256(stack.pop()), S256(stack.pop()) // x < y if x.Cmp(S256(y)) < 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case SGT: x, y := S256(stack.pop()), S256(stack.pop()) // x > y if x.Cmp(y) > 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case EQ: x, y := stack.pop(), stack.pop() // x == y if x.Cmp(y) == 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case ISZERO: x := stack.pop() if x.Cmp(common.BigFalse) > 0 { stack.push(common.BigFalse) } else { stack.push(common.BigTrue) } case AND: x, y := stack.pop(), stack.pop() stack.push(base.And(x, y)) case OR: x, y := stack.pop(), stack.pop() stack.push(base.Or(x, y)) case XOR: x, y := stack.pop(), stack.pop() stack.push(base.Xor(x, y)) case BYTE: th, val := stack.pop(), stack.pop() if th.Cmp(big.NewInt(32)) < 0 { byt := big.NewInt(int64(common.LeftPadBytes(val.Bytes(), 32)[th.Int64()])) base.Set(byt) } else { base.Set(common.BigFalse) } stack.push(base) case ADDMOD: x := stack.pop() y := stack.pop() z := stack.pop() if z.Cmp(Zero) > 0 { add := new(big.Int).Add(x, y) base.Mod(add, z) base = U256(base) } stack.push(base) case MULMOD: x := stack.pop() y := stack.pop() z := stack.pop() if z.Cmp(Zero) > 0 { mul := new(big.Int).Mul(x, y) base.Mod(mul, z) U256(base) } stack.push(base) case SHA3: offset, size := stack.pop(), stack.pop() data := crypto.Sha3(mem.Get(offset.Int64(), size.Int64())) stack.push(common.BigD(data)) case ADDRESS: stack.push(common.Bytes2Big(context.Address().Bytes())) case BALANCE: addr := common.BigToAddress(stack.pop()) balance := statedb.GetBalance(addr) stack.push(new(big.Int).Set(balance)) case ORIGIN: origin := self.env.Origin() stack.push(origin.Big()) case CALLER: caller := context.caller.Address() stack.push(common.Bytes2Big(caller.Bytes())) case CALLVALUE: stack.push(new(big.Int).Set(value)) case CALLDATALOAD: data := getData(input, stack.pop(), common.Big32) stack.push(common.Bytes2Big(data)) case CALLDATASIZE: l := int64(len(input)) stack.push(big.NewInt(l)) case CALLDATACOPY: var ( mOff = stack.pop() cOff = stack.pop() l = stack.pop() ) data := getData(input, cOff, l) mem.Set(mOff.Uint64(), l.Uint64(), data) case CODESIZE, EXTCODESIZE: var code []byte if op == EXTCODESIZE { addr := common.BigToAddress(stack.pop()) code = statedb.GetCode(addr) } else { code = context.Code } l := big.NewInt(int64(len(code))) stack.push(l) case CODECOPY, EXTCODECOPY: var code []byte if op == EXTCODECOPY { addr := common.BigToAddress(stack.pop()) code = statedb.GetCode(addr) } else { code = context.Code } var ( mOff = stack.pop() cOff = stack.pop() l = stack.pop() ) codeCopy := getData(code, cOff, l) mem.Set(mOff.Uint64(), l.Uint64(), codeCopy) case GASPRICE: stack.push(new(big.Int).Set(context.Price)) case BLOCKHASH: num := stack.pop() n := new(big.Int).Sub(self.env.BlockNumber(), common.Big257) if num.Cmp(n) > 0 && num.Cmp(self.env.BlockNumber()) < 0 { stack.push(self.env.GetHash(num.Uint64()).Big()) } else { stack.push(common.Big0) } case COINBASE: coinbase := self.env.Coinbase() stack.push(coinbase.Big()) case TIMESTAMP: time := self.env.Time() stack.push(new(big.Int).Set(time)) case NUMBER: number := self.env.BlockNumber() stack.push(U256(number)) case DIFFICULTY: difficulty := self.env.Difficulty() stack.push(new(big.Int).Set(difficulty)) case GASLIMIT: stack.push(new(big.Int).Set(self.env.GasLimit())) case PUSH1, PUSH2, PUSH3, PUSH4, PUSH5, PUSH6, PUSH7, PUSH8, PUSH9, PUSH10, PUSH11, PUSH12, PUSH13, PUSH14, PUSH15, PUSH16, PUSH17, PUSH18, PUSH19, PUSH20, PUSH21, PUSH22, PUSH23, PUSH24, PUSH25, PUSH26, PUSH27, PUSH28, PUSH29, PUSH30, PUSH31, PUSH32: size := uint64(op - PUSH1 + 1) byts := getData(code, new(big.Int).SetUint64(pc+1), new(big.Int).SetUint64(size)) // push value to stack stack.push(common.Bytes2Big(byts)) pc += size case POP: stack.pop() case DUP1, DUP2, DUP3, DUP4, DUP5, DUP6, DUP7, DUP8, DUP9, DUP10, DUP11, DUP12, DUP13, DUP14, DUP15, DUP16: n := int(op - DUP1 + 1) stack.dup(n) case SWAP1, SWAP2, SWAP3, SWAP4, SWAP5, SWAP6, SWAP7, SWAP8, SWAP9, SWAP10, SWAP11, SWAP12, SWAP13, SWAP14, SWAP15, SWAP16: n := int(op - SWAP1 + 2) stack.swap(n) case LOG0, LOG1, LOG2, LOG3, LOG4: n := int(op - LOG0) topics := make([]common.Hash, n) mStart, mSize := stack.pop(), stack.pop() for i := 0; i < n; i++ { topics[i] = common.BigToHash(stack.pop()) } data := mem.Get(mStart.Int64(), mSize.Int64()) log := state.NewLog(context.Address(), topics, data, self.env.BlockNumber().Uint64()) self.env.AddLog(log) case MLOAD: offset := stack.pop() val := common.BigD(mem.Get(offset.Int64(), 32)) stack.push(val) case MSTORE: // pop value of the stack mStart, val := stack.pop(), stack.pop() mem.Set(mStart.Uint64(), 32, common.BigToBytes(val, 256)) case MSTORE8: off, val := stack.pop().Int64(), stack.pop().Int64() mem.store[off] = byte(val & 0xff) case SLOAD: loc := common.BigToHash(stack.pop()) val := statedb.GetState(context.Address(), loc).Big() stack.push(val) case SSTORE: loc := common.BigToHash(stack.pop()) val := stack.pop() statedb.SetState(context.Address(), loc, common.BigToHash(val)) case JUMP: if err := jump(pc, stack.pop()); err != nil { return nil, err } continue case JUMPI: pos, cond := stack.pop(), stack.pop() if cond.Cmp(common.BigTrue) >= 0 { if err := jump(pc, pos); err != nil { return nil, err } continue } case JUMPDEST: case PC: stack.push(new(big.Int).SetUint64(pc)) case MSIZE: stack.push(big.NewInt(int64(mem.Len()))) case GAS: stack.push(new(big.Int).Set(context.Gas)) case CREATE: var ( value = stack.pop() offset, size = stack.pop(), stack.pop() input = mem.Get(offset.Int64(), size.Int64()) gas = new(big.Int).Set(context.Gas) addr common.Address ) context.UseGas(context.Gas) ret, suberr, ref := self.env.Create(context, input, gas, price, value) if suberr != nil { stack.push(common.BigFalse) } else { // gas < len(ret) * CreateDataGas == NO_CODE dataGas := big.NewInt(int64(len(ret))) dataGas.Mul(dataGas, params.CreateDataGas) if context.UseGas(dataGas) { ref.SetCode(ret) } addr = ref.Address() stack.push(addr.Big()) } case CALL, CALLCODE: gas := stack.pop() // pop gas and value of the stack. addr, value := stack.pop(), stack.pop() value = U256(value) // pop input size and offset inOffset, inSize := stack.pop(), stack.pop() // pop return size and offset retOffset, retSize := stack.pop(), stack.pop() address := common.BigToAddress(addr) // Get the arguments from the memory args := mem.Get(inOffset.Int64(), inSize.Int64()) if len(value.Bytes()) > 0 { gas.Add(gas, params.CallStipend) } var ( ret []byte err error ) if op == CALLCODE { ret, err = self.env.CallCode(context, address, args, gas, price, value) } else { ret, err = self.env.Call(context, address, args, gas, price, value) } if err != nil { stack.push(common.BigFalse) } else { stack.push(common.BigTrue) mem.Set(retOffset.Uint64(), retSize.Uint64(), ret) } case RETURN: offset, size := stack.pop(), stack.pop() ret := mem.GetPtr(offset.Int64(), size.Int64()) return context.Return(ret), nil case SUICIDE: receiver := statedb.GetOrNewStateObject(common.BigToAddress(stack.pop())) balance := statedb.GetBalance(context.Address()) receiver.AddBalance(balance) statedb.Delete(context.Address()) fallthrough case STOP: // Stop the context return context.Return(nil), nil default: return nil, fmt.Errorf("Invalid opcode %x", op) } pc++ } }
func encodeAddress(address common.Address) string { return addressAbiPrefix + address.Hex()[2:] }