// fetchManyLazy abstracts upon fetchLazy so that looping over the resulting channels is not needed. // It returns any overall error, as well as a slice of the resulting timeseries. func (m *parallelMultiBackend) fetchManyLazy(cancellable api.Cancellable, works []func() (api.Timeseries, error)) ([]api.Timeseries, error) { results := make([]api.Timeseries, len(works)) channel := make(chan error, len(works)) // Buffering the channel means the goroutines won't need to wait. for i := range results { m.fetchLazy(cancellable, &results[i], works[i], channel) } var err error = nil for _ = range works { select { case thisErr := <-channel: if thisErr != nil { err = thisErr } case <-cancellable.Done(): return nil, api.BackendError{ api.TaggedMetric{}, api.FetchTimeoutError, "", } } } if err != nil { return nil, err } return results, nil }
// Execute performs the query represented by the given query string, and returs the result. func (cmd *SelectCommand) Execute(context ExecutionContext) (interface{}, error) { timerange, err := api.NewSnappedTimerange(cmd.context.Start, cmd.context.End, cmd.context.Resolution) if err != nil { return nil, err } hasTimeout := context.Timeout != 0 var cancellable api.Cancellable if hasTimeout { cancellable = api.NewTimeoutCancellable(time.Now().Add(context.Timeout)) } else { cancellable = api.NewCancellable() } r := context.Registry if r == nil { r = registry.Default() } defer close(cancellable.Done()) // broadcast the finish - this ensures that the future work is cancelled. evaluationContext := function.EvaluationContext{ API: context.API, FetchLimit: function.NewFetchCounter(context.FetchLimit), MultiBackend: context.Backend, Predicate: cmd.predicate, SampleMethod: cmd.context.SampleMethod, Timerange: timerange, Cancellable: cancellable, Profiler: context.Profiler, Registry: r, } if hasTimeout { timeout := time.After(context.Timeout) results := make(chan interface{}) errors := make(chan error) go func() { result, err := evaluateExpressions(evaluationContext, cmd.expressions) if err != nil { errors <- err } else { results <- result } }() select { case <-timeout: return nil, fmt.Errorf("Timeout while executing the query.") // timeout. case result := <-results: return result, nil case err := <-errors: return nil, err } } else { return evaluateExpressions(evaluationContext, cmd.expressions) } }
func (b *Blueflood) fetchLazy(cancellable api.Cancellable, result *api.Timeseries, work func() (api.Timeseries, error), channel chan error, ctx BluefloodParallelRequest) { go func() { select { case ticket := <-ctx.tickets: series, err := work() // Put the ticket back (regardless of whether caller drops) ctx.tickets <- ticket // Store the result *result = series // Return the error (and sync up with the caller). channel <- err case <-cancellable.Done(): channel <- api.TimeseriesStorageError{ api.TaggedMetric{}, api.FetchTimeoutError, "", } } }() }
func (b *Blueflood) fetchManyLazy(cancellable api.Cancellable, works []func() (api.Timeseries, error)) ([]api.Timeseries, error) { results := make([]api.Timeseries, len(works)) channel := make(chan error, len(works)) // Buffering the channel means the goroutines won't need to wait. limit := b.config.MaxSimultaneousRequests tickets := make(chan struct{}, limit) for i := 0; i < limit; i++ { tickets <- struct{}{} } ctx := BluefloodParallelRequest{ tickets: tickets, } for i := range results { b.fetchLazy(cancellable, &results[i], works[i], channel, ctx) } var err error = nil for _ = range works { select { case thisErr := <-channel: if thisErr != nil { err = thisErr } case <-cancellable.Done(): return nil, api.TimeseriesStorageError{ api.TaggedMetric{}, api.FetchTimeoutError, "", } } } if err != nil { return nil, err } return results, nil }
// Execute performs the query represented by the given query string, and returs the result. func (cmd *SelectCommand) Execute(context ExecutionContext) (interface{}, error) { timerange, err := api.NewSnappedTimerange(cmd.context.Start, cmd.context.End, cmd.context.Resolution) if err != nil { return nil, err } slotLimit := context.SlotLimit defaultLimit := 1000 if slotLimit == 0 { slotLimit = defaultLimit // the default limit } smallestResolution := timerange.Duration() / time.Duration(slotLimit-2) // ((end + res/2) - (start - res/2)) / res + 1 <= slots // make adjustments for a snap that moves the endpoints // (do some algebra) // (end - start + res) + res <= slots * res // end - start <= res * (slots - 2) // so // res >= (end - start) / (slots - 2) // Update the timerange by applying the insights of the storage API: chosenResolution := context.TimeseriesStorageAPI.ChooseResolution(timerange, smallestResolution) chosenTimerange, err := api.NewSnappedTimerange(timerange.Start(), timerange.End(), int64(chosenResolution/time.Millisecond)) if err != nil { return nil, err } if chosenTimerange.Slots() > slotLimit { return nil, function.NewLimitError( "Requested number of data points exceeds the configured limit", chosenTimerange.Slots(), slotLimit) } hasTimeout := context.Timeout != 0 var cancellable api.Cancellable if hasTimeout { cancellable = api.NewTimeoutCancellable(time.Now().Add(context.Timeout)) } else { cancellable = api.NewCancellable() } r := context.Registry if r == nil { r = registry.Default() } defer close(cancellable.Done()) // broadcast the finish - this ensures that the future work is cancelled. evaluationContext := function.EvaluationContext{ MetricMetadataAPI: context.MetricMetadataAPI, FetchLimit: function.NewFetchCounter(context.FetchLimit), TimeseriesStorageAPI: context.TimeseriesStorageAPI, Predicate: cmd.predicate, SampleMethod: cmd.context.SampleMethod, Timerange: timerange, Cancellable: cancellable, Registry: r, Profiler: context.Profiler, OptimizationConfiguration: context.OptimizationConfiguration, } if hasTimeout { timeout := time.After(context.Timeout) results := make(chan interface{}) errors := make(chan error) go func() { result, err := function.EvaluateMany(evaluationContext, cmd.expressions) if err != nil { errors <- err } else { results <- result } }() select { case <-timeout: return nil, function.NewLimitError("Timeout while executing the query.", context.Timeout, context.Timeout) case result := <-results: return result, nil case err := <-errors: return nil, err } } else { values, err := function.EvaluateMany(evaluationContext, cmd.expressions) if err != nil { return nil, err } lists := make([]api.SeriesList, len(values)) for i := range values { lists[i], err = values[i].ToSeriesList(evaluationContext.Timerange) if err != nil { return nil, err } } return lists, nil } }
// Execute performs the query represented by the given query string, and returs the result. func (cmd *SelectCommand) Execute(context ExecutionContext) (interface{}, error) { timerange, err := api.NewSnappedTimerange(cmd.context.Start, cmd.context.End, cmd.context.Resolution) if err != nil { return nil, err } slotLimit := context.SlotLimit defaultLimit := 1000 if slotLimit == 0 { slotLimit = defaultLimit // the default limit } if timerange.Slots() > slotLimit { return nil, function.NewLimitError( "Requested number of data points exceeds the configured limit", timerange.Slots(), slotLimit) } hasTimeout := context.Timeout != 0 var cancellable api.Cancellable if hasTimeout { cancellable = api.NewTimeoutCancellable(time.Now().Add(context.Timeout)) } else { cancellable = api.NewCancellable() } r := context.Registry if r == nil { r = registry.Default() } defer close(cancellable.Done()) // broadcast the finish - this ensures that the future work is cancelled. evaluationContext := function.EvaluationContext{ API: context.API, FetchLimit: function.NewFetchCounter(context.FetchLimit), MultiBackend: context.Backend, Predicate: cmd.predicate, SampleMethod: cmd.context.SampleMethod, Timerange: timerange, Cancellable: cancellable, Profiler: context.Profiler, Registry: r, } if hasTimeout { timeout := time.After(context.Timeout) results := make(chan interface{}) errors := make(chan error) go func() { result, err := function.EvaluateMany(evaluationContext, cmd.expressions) if err != nil { errors <- err } else { results <- result } }() select { case <-timeout: return nil, function.NewLimitError("Timeout while executing the query.", context.Timeout, context.Timeout) case result := <-results: return result, nil case err := <-errors: return nil, err } } else { values, err := function.EvaluateMany(evaluationContext, cmd.expressions) if err != nil { return nil, err } lists := make([]api.SeriesList, len(values)) for i := range values { lists[i], err = values[i].ToSeriesList(evaluationContext.Timerange) if err != nil { return nil, err } } return lists, nil } }
// Execute performs the query represented by the given query string, and returs the result. func (cmd *SelectCommand) Execute(context ExecutionContext) (CommandResult, error) { userTimerange, err := api.NewSnappedTimerange(cmd.context.Start, cmd.context.End, cmd.context.Resolution) if err != nil { return CommandResult{}, err } slotLimit := context.SlotLimit defaultLimit := 1000 if slotLimit == 0 { slotLimit = defaultLimit // the default limit } smallestResolution := userTimerange.Duration() / time.Duration(slotLimit-2) // ((end + res/2) - (start - res/2)) / res + 1 <= slots // make adjustments for a snap that moves the endpoints // (do some algebra) // (end - start + res) + res <= slots * res // end - start <= res * (slots - 2) // so // res >= (end - start) / (slots - 2) // Update the timerange by applying the insights of the storage API: chosenResolution := context.TimeseriesStorageAPI.ChooseResolution(userTimerange, smallestResolution) chosenTimerange, err := api.NewSnappedTimerange(userTimerange.Start(), userTimerange.End(), int64(chosenResolution/time.Millisecond)) if err != nil { return CommandResult{}, err } if chosenTimerange.Slots() > slotLimit { return CommandResult{}, function.NewLimitError( "Requested number of data points exceeds the configured limit", chosenTimerange.Slots(), slotLimit) } hasTimeout := context.Timeout != 0 var cancellable api.Cancellable if hasTimeout { cancellable = api.NewTimeoutCancellable(time.Now().Add(context.Timeout)) } else { cancellable = api.NewCancellable() } r := context.Registry if r == nil { r = registry.Default() } defer close(cancellable.Done()) // broadcast the finish - this ensures that the future work is cancelled. evaluationContext := function.EvaluationContext{ MetricMetadataAPI: context.MetricMetadataAPI, FetchLimit: function.NewFetchCounter(context.FetchLimit), TimeseriesStorageAPI: context.TimeseriesStorageAPI, Predicate: cmd.predicate, SampleMethod: cmd.context.SampleMethod, Timerange: chosenTimerange, Cancellable: cancellable, Registry: r, Profiler: context.Profiler, OptimizationConfiguration: context.OptimizationConfiguration, EvaluationNotes: []string{}, UserSpecifiableConfig: context.UserSpecifiableConfig, } timeout := (<-chan time.Time)(nil) if hasTimeout { // A nil channel will just block forever timeout = time.After(context.Timeout) } results := make(chan []function.Value, 1) errors := make(chan error, 1) // Goroutines are never garbage collected, so we need to provide capacity so that the send always succeeds. go func() { // Evaluate the result, and send it along the goroutines. result, err := function.EvaluateMany(&evaluationContext, cmd.expressions) if err != nil { errors <- err return } results <- result }() select { case <-timeout: return CommandResult{}, function.NewLimitError("Timeout while executing the query.", context.Timeout, context.Timeout) case err := <-errors: return CommandResult{}, err case result := <-results: lists := make([]api.SeriesList, len(result)) for i := range result { lists[i], err = result[i].ToSeriesList(evaluationContext.Timerange) if err != nil { return CommandResult{}, err } } description := map[string][]string{} for _, list := range lists { for _, series := range list.Series { for key, value := range series.TagSet { description[key] = append(description[key], value) } } } for key, values := range description { natural_sort.Sort(values) filtered := []string{} for i := range values { if i == 0 || values[i-1] != values[i] { filtered = append(filtered, values[i]) } } description[key] = filtered } return CommandResult{ Body: lists, Metadata: map[string]interface{}{ "description": description, "notes": evaluationContext.EvaluationNotes, }, }, nil } }