Exemple #1
0
func (g *GaussNoiseLayer) ApplyR(v autofunc.RVector, in autofunc.RResult) autofunc.RResult {
	if g.Training {
		return autofunc.AddR(in, g.noiseR(len(in.Output())))
	} else {
		return in
	}
}
Exemple #2
0
func manualNetworkSeq(rv autofunc.RVector, f autofunc.RFunc, start *autofunc.Variable,
	ins [][]*autofunc.Variable, stateSize int) (out, outR [][]linalg.Vector) {
	out = make([][]linalg.Vector, len(ins))
	outR = make([][]linalg.Vector, len(ins))
	for seqIdx, inSeq := range ins {
		var state autofunc.RResult = autofunc.NewRVariable(start, rv)
		for _, in := range inSeq {
			inR := rv[in]

			packedIn := append(linalg.Vector{}, in.Output()...)
			packedIn = append(packedIn, state.Output()...)
			packedInR := append(linalg.Vector{}, inR...)
			packedInR = append(packedInR, state.ROutput()...)

			stepOut := f.ApplyR(rv, &autofunc.RVariable{
				Variable:   &autofunc.Variable{Vector: packedIn},
				ROutputVec: packedInR,
			})
			outSize := len(stepOut.Output()) - stateSize
			out[seqIdx] = append(out[seqIdx], stepOut.Output()[:outSize])
			outR[seqIdx] = append(outR[seqIdx], stepOut.ROutput()[:outSize])
			state = &autofunc.RVariable{
				Variable:   &autofunc.Variable{Vector: stepOut.Output()[outSize:]},
				ROutputVec: stepOut.ROutput()[outSize:],
			}
		}
	}
	return
}
Exemple #3
0
func (u *UnstackLayer) ApplyR(v autofunc.RVector, in autofunc.RResult) autofunc.RResult {
	return &unstackLayerRResult{
		OutputVector:  u.unstack(in.Output()),
		ROutputVector: u.unstack(in.ROutput()),
		Input:         in,
		Layer:         u,
	}
}
Exemple #4
0
func (b *BorderLayer) ApplyR(rv autofunc.RVector, in autofunc.RResult) autofunc.RResult {
	return &borderRResult{
		OutputVec:  b.addBorder(in.Output()),
		ROutputVec: b.addBorder(in.ROutput()),
		Input:      in,
		Info:       b,
	}
}
Exemple #5
0
func (d *DropoutLayer) ApplyR(v autofunc.RVector, in autofunc.RResult) autofunc.RResult {
	if d.Training {
		mask := d.dropoutMask(len(in.Output()))
		maskVar := autofunc.NewRVariable(mask, v)
		return autofunc.MulR(in, maskVar)
	} else {
		return autofunc.ScaleR(in, d.KeepProbability)
	}
}
Exemple #6
0
func (v *VecRescaleLayer) ApplyR(rv autofunc.RVector, in autofunc.RResult) autofunc.RResult {
	zeroVec := make(linalg.Vector, len(in.Output()))
	biases := &autofunc.RVariable{
		Variable:   &autofunc.Variable{Vector: v.Biases},
		ROutputVec: zeroVec,
	}
	scales := &autofunc.RVariable{
		Variable:   &autofunc.Variable{Vector: v.Scales},
		ROutputVec: zeroVec,
	}
	return autofunc.MulR(autofunc.AddR(in, biases), scales)
}
Exemple #7
0
func (s *LogSoftmaxLayer) ApplyR(v autofunc.RVector, in autofunc.RResult) autofunc.RResult {
	return autofunc.PoolR(in, func(in autofunc.RResult) autofunc.RResult {
		// See comment in Apply() for details on how this works.
		maxIdx := maxVecIdx(in.Output())
		maxValue := autofunc.SliceR(in, maxIdx, maxIdx+1)
		exponents := autofunc.AddFirstR(in, autofunc.ScaleR(maxValue, -1))
		expSum := autofunc.SumAllR(autofunc.Exp{}.ApplyR(v, exponents))
		expLog := autofunc.Log{}.ApplyR(v, expSum)
		denomLog := autofunc.AddR(expLog, maxValue)
		return autofunc.AddFirstR(in, autofunc.ScaleR(denomLog, -1))
	})
}
Exemple #8
0
func (_ ReLU) ApplyR(v autofunc.RVector, r autofunc.RResult) autofunc.RResult {
	outVec := r.Output()
	outVecR := r.ROutput()
	vec := make(linalg.Vector, len(outVec))
	vecR := make(linalg.Vector, len(outVec))
	for i, x := range outVec {
		if x > 0 {
			vec[i] = x
			vecR[i] = outVecR[i]
		}
	}
	return &reLURResult{
		OutputVec:  vec,
		ROutputVec: vecR,
		Input:      r,
	}
}
Exemple #9
0
func (l *lstmGate) BatchR(rv autofunc.RVector, in autofunc.RResult, n int) autofunc.RResult {
	if l.Peephole == nil {
		return l.Activation.ApplyR(rv, l.Dense.BatchR(rv, in, n))
	}
	return autofunc.PoolR(in, func(in autofunc.RResult) autofunc.RResult {
		vecSize := len(in.Output()) / n
		var weightedInputs []autofunc.RResult
		var peepholed []autofunc.RResult
		peephole := autofunc.NewRVariable(l.Peephole, rv)
		for i := 0; i < n; i++ {
			start := vecSize * i
			weightedEnd := start + vecSize - len(l.Peephole.Vector)
			weightedInputs = append(weightedInputs, autofunc.SliceR(in, start, weightedEnd))
			peepholeMe := autofunc.SliceR(in, weightedEnd, (i+1)*vecSize)
			peepholed = append(peepholed, autofunc.MulR(peephole, peepholeMe))
		}
		weighted := l.Dense.BatchR(rv, autofunc.ConcatR(weightedInputs...), n)
		joinedPeep := autofunc.ConcatR(peepholed...)
		return l.Activation.ApplyR(rv, autofunc.AddR(joinedPeep, weighted))
	})
}
Exemple #10
0
// BatchR is like Batch, but for RResults.
func (c *ConvLayer) BatchR(rv autofunc.RVector, in autofunc.RResult,
	n int) autofunc.RResult {
	if c.Filters == nil || c.Biases == nil || c.FilterVar == nil {
		panic(uninitPanicMessage)
	}
	outSize := c.OutputWidth() * c.OutputHeight() * c.OutputDepth()
	inSize := c.InputWidth * c.InputHeight * c.InputDepth
	if len(in.Output()) != n*inSize {
		panic("invalid input size")
	}
	res := &convLayerRResult{
		OutputVec:  make(linalg.Vector, outSize*n),
		ROutputVec: make(linalg.Vector, outSize*n),
		Input:      in,
		FiltersR:   rv[c.FilterVar],
		N:          n,
		Layer:      c,
	}
	for i := 0; i < n; i++ {
		subIn := in.Output()[i*inSize : (i+1)*inSize]
		subOut := res.OutputVec[i*outSize : (i+1)*outSize]
		c.convolve(subIn, c.outputToTensor(subOut))

		subInR := in.ROutput()[i*inSize : (i+1)*inSize]
		subOutR := res.ROutputVec[i*outSize : (i+1)*outSize]
		c.convolveR(rv, subIn, subInR, c.outputToTensor(subOutR))
	}
	return res
}
// BatchR is like Batch, but for RResults.
func (m *MaxPoolingLayer) BatchR(rv autofunc.RVector, in autofunc.RResult,
	n int) autofunc.RResult {
	outSize := m.OutputWidth() * m.OutputHeight() * m.InputDepth
	inSize := m.InputWidth * m.InputHeight * m.InputDepth
	if len(in.Output()) != n*inSize {
		panic("invalid input size")
	}
	res := &maxPoolingRResult{
		OutputVec:  make(linalg.Vector, outSize*n),
		ROutputVec: make(linalg.Vector, outSize*n),
		Input:      in,
		Layer:      m,
	}
	for i := 0; i < n; i++ {
		outTensor := m.outputTensor(res.OutputVec[i*outSize : (i+1)*outSize])
		inTensor := m.inputTensor(in.Output()[i*inSize : (i+1)*inSize])
		choices := m.evaluate(inTensor, outTensor)
		res.Choices = append(res.Choices, choices)

		outTensorR := m.outputTensor(res.ROutputVec[i*outSize : (i+1)*outSize])
		inTensorR := m.inputTensor(in.ROutput()[i*inSize : (i+1)*inSize])
		choices.ForwardPropagate(inTensorR, outTensorR)
	}
	return res
}