func AlgorithmRunOnDataSet(classifier algo.Classifier, train_dataset, test_dataset *core.DataSet, pred_path string, params map[string]string) (float64, []*eval.LabelPrediction) { if train_dataset != nil { classifier.Train(train_dataset) } predictions := []*eval.LabelPrediction{} var pred_file *os.File if pred_path != "" { pred_file, _ = os.Create(pred_path) } for _, sample := range test_dataset.Samples { prediction := classifier.Predict(sample) if pred_file != nil { pred_file.WriteString(strconv.FormatFloat(prediction, 'g', 5, 64) + "\n") } predictions = append(predictions, &(eval.LabelPrediction{Label: sample.Label, Prediction: prediction})) } if pred_path != "" { defer pred_file.Close() } auc := eval.AUC(predictions) return auc, predictions }
func AlgorithmTrain(classifier algo.Classifier, train_path string, params map[string]string) error { global, _ := strconv.ParseInt(params["global"], 10, 64) train_dataset := core.NewDataSet() err := train_dataset.Load(train_path, global) if err != nil { return err } classifier.Init(params) classifier.Train(train_dataset) model_path, _ := params["model"] if model_path != "" { classifier.SaveModel(model_path) } return nil }