Exemple #1
0
func TestParents(t *testing.T) {
	testCases := []struct {
		tag, parent string
	}{
		{"af", "und"},
		{"en", "und"},
		{"en-001", "en"},
		{"en-AU", "en-001"},
		{"en-US", "en"},
		{"en-US-u-va-posix", "en-US"},
		{"ca-ES-valencia", "ca-ES"},
	}
	for _, tc := range testCases {
		tag, ok := language.CompactIndex(language.MustParse(tc.tag))
		if !ok {
			t.Fatalf("Could not get index of flag %s", tc.tag)
		}
		want, ok := language.CompactIndex(language.MustParse(tc.parent))
		if !ok {
			t.Fatalf("Could not get index of parent %s of tag %s", tc.parent, tc.tag)
		}
		if got := int(Parent[tag]); got != want {
			t.Errorf("Parent[%s] = %d; want %d (%s)", tc.tag, got, want, tc.parent)
		}
	}
}
Exemple #2
0
func BenchmarkPluralComplexCases(b *testing.B) {
	p := &cardinalData
	ar, _ := language.CompactIndex(language.Arabic)
	lv, _ := language.CompactIndex(language.Latvian)
	for i := 0; i < b.N; i++ {
		matchPlural(p, lv, 0, 19, 2)    // 0.19
		matchPlural(p, lv, 11, 0, 3)    // 11.000
		matchPlural(p, lv, 100, 123, 4) // 0.1230
		matchPlural(p, ar, 0, 0, 0)     // 0
		matchPlural(p, ar, 110, 0, 0)   // 110
		matchPlural(p, ar, 99, 99, 2)   // 99.99
	}
}
Exemple #3
0
func BenchmarkPluralSimpleCases(b *testing.B) {
	p := &cardinalData
	en, _ := language.CompactIndex(language.English)
	zh, _ := language.CompactIndex(language.Chinese)
	for i := 0; i < b.N; i++ {
		matchPlural(p, en, 0, 0, 0)  // 0
		matchPlural(p, en, 1, 0, 0)  // 1
		matchPlural(p, en, 2, 12, 3) // 2.120
		matchPlural(p, zh, 0, 0, 0)  // 0
		matchPlural(p, zh, 1, 0, 0)  // 1
		matchPlural(p, zh, 2, 12, 3) // 2.120
	}
}
Exemple #4
0
// Format implements fmt.Formatter. It accepts format.State for
// language-specific rendering.
func (v Value) Format(s fmt.State, verb rune) {
	var lang int
	if state, ok := s.(format.State); ok {
		lang, _ = language.CompactIndex(state.Language())
	}

	// Get the options. Use DefaultFormat if not present.
	opt := v.format
	if opt == nil {
		opt = defaultFormat
	}
	cur := v.currency
	if cur.index == 0 {
		cur = opt.currency
	}

	// TODO: use pattern.
	io.WriteString(s, opt.symbol(lang, cur))
	if v.amount != nil {
		s.Write(space)

		// TODO: apply currency-specific rounding
		scale, _ := opt.kind.Rounding(cur)
		if _, ok := s.Precision(); !ok {
			fmt.Fprintf(s, "%.*f", scale, v.amount)
		} else {
			fmt.Fprint(s, v.amount)
		}
	}
}
Exemple #5
0
func formatForLang(t language.Tag, index []byte) *Format {
	for ; ; t = t.Parent() {
		if x, ok := language.CompactIndex(t); ok {
			return &formats[index[x]]
		}
	}
}
Exemple #6
0
// InfoFromTag returns a Info for the given language tag.
func InfoFromTag(t language.Tag) Info {
	for {
		if index, ok := language.CompactIndex(t); ok {
			return InfoFromLangID(index, t.TypeForKey("nu"))
		}
		t = t.Parent()
	}
}
Exemple #7
0
func main() {
	r := gen.OpenCLDRCoreZip()
	defer r.Close()

	d := &cldr.Decoder{}
	data, err := d.DecodeZip(r)
	if err != nil {
		log.Fatalf("DecodeZip: %v", err)
	}

	w := gen.NewCodeWriter()
	defer w.WriteGoFile("tables.go", "internal")

	// Create parents table.
	parents := make([]uint16, language.NumCompactTags)
	for _, loc := range data.Locales() {
		tag := language.MustParse(loc)
		index, ok := language.CompactIndex(tag)
		if !ok {
			continue
		}
		parentIndex := 0 // und
		for p := tag.Parent(); p != language.Und; p = p.Parent() {
			if x, ok := language.CompactIndex(p); ok {
				parentIndex = x
				break
			}
		}
		parents[index] = uint16(parentIndex)
	}

	w.WriteComment(`
	Parent maps a compact index of a tag to the compact index of the parent of
	this tag.`)
	w.WriteVar("Parent", parents)
}
Exemple #8
0
func testPlurals(t *testing.T, p *pluralRules, testCases []pluralTest) {
	for _, tc := range testCases {
		for _, loc := range strings.Split(tc.locales, " ") {
			langIndex, _ := language.CompactIndex(language.MustParse(loc))
			// Test integers
			for _, s := range tc.integer {
				a := strings.Split(s, "~")
				from := parseUint(t, a[0])
				to := from
				if len(a) > 1 {
					to = parseUint(t, a[1])
				}
				for n := from; n <= to; n++ {
					if f := matchPlural(p, langIndex, n, 0, 0); f != tc.form {
						t.Errorf("%s:int(%d) = %v; want %v", loc, n, f, tc.form)
					}
				}
			}
			// Test decimals
			for _, s := range tc.decimal {
				a := strings.Split(s, "~")
				from, scale := parseFixedPoint(t, a[0])
				to := from
				if len(a) > 1 {
					var toScale int
					if to, toScale = parseFixedPoint(t, a[1]); toScale != scale {
						t.Fatalf("%s:%s: non-matching scales %d versus %d", loc, s, scale, toScale)
					}
				}
				m := 1
				for i := 0; i < scale; i++ {
					m *= 10
				}
				for n := from; n <= to; n++ {
					if f := matchPlural(p, langIndex, n/m, n%m, scale); f != tc.form {
						t.Errorf("%[1]s:dec(%[2]d.%0[4]*[3]d) = %[5]v; want %[6]v", loc, n/m, n%m, scale, f, tc.form)
					}
				}
			}
		}
	}
}
// genSymbols generates the symbols used for currencies. Most symbols are
// defined in root and there is only very small variation per language.
// The following rules apply:
// - A symbol can be requested as normal or narrow.
// - If a symbol is not defined for a currency, it defaults to its ISO code.
func (b *builder) genSymbols(w *gen.CodeWriter, data *cldr.CLDR) {
	d, err := cldr.ParseDraft(*draft)
	if err != nil {
		log.Fatalf("filter: %v", err)
	}

	const (
		normal = iota
		narrow
		numTypes
	)
	// language -> currency -> type ->  symbol
	var symbols [language.NumCompactTags][][numTypes]*string

	// Collect symbol information per language.
	for _, lang := range data.Locales() {
		ldml := data.RawLDML(lang)
		if ldml.Numbers == nil || ldml.Numbers.Currencies == nil {
			continue
		}

		langIndex, ok := language.CompactIndex(language.MustParse(lang))
		if !ok {
			log.Fatalf("No compact index for language %s", lang)
		}

		symbols[langIndex] = make([][numTypes]*string, b.numCurrencies+1)

		for _, c := range ldml.Numbers.Currencies.Currency {
			syms := cldr.MakeSlice(&c.Symbol)
			syms.SelectDraft(d)

			for _, sym := range c.Symbol {
				v := sym.Data()
				if v == c.Type {
					// We define "" to mean the ISO symbol.
					v = ""
				}
				cur := b.currencies.Index([]byte(c.Type))
				// XXX gets reassigned to 0 in the package's code.
				if c.Type == "XXX" {
					cur = 0
				}
				if cur == -1 {
					fmt.Println("Unsupported:", c.Type)
					continue
				}

				switch sym.Alt {
				case "":
					symbols[langIndex][cur][normal] = &v
				case "narrow":
					symbols[langIndex][cur][narrow] = &v
				}
			}
		}
	}

	// Remove values identical to the parent.
	for langIndex, data := range symbols {
		for curIndex, curs := range data {
			for typ, sym := range curs {
				if sym == nil {
					continue
				}
				for p := uint16(langIndex); p != 0; {
					p = internal.Parent[p]
					x := symbols[p]
					if x == nil {
						continue
					}
					if v := x[curIndex][typ]; v != nil || p == 0 {
						// Value is equal to the default value root value is undefined.
						parentSym := ""
						if v != nil {
							parentSym = *v
						}
						if parentSym == *sym {
							// Value is the same as parent.
							data[curIndex][typ] = nil
						}
						break
					}
				}
			}
		}
	}

	// Create symbol index.
	symbolData := []byte{0}
	symbolLookup := map[string]uint16{"": 0} // 0 means default, so block that value.
	for _, data := range symbols {
		for _, curs := range data {
			for _, sym := range curs {
				if sym == nil {
					continue
				}
				if _, ok := symbolLookup[*sym]; !ok {
					symbolLookup[*sym] = uint16(len(symbolData))
					symbolData = append(symbolData, byte(len(*sym)))
					symbolData = append(symbolData, *sym...)
				}
			}
		}
	}
	w.WriteComment(`
	symbols holds symbol data of the form <n> <str>, where n is the length of
	the symbol string str.`)
	w.WriteConst("symbols", string(symbolData))

	// Create index from language to currency lookup to symbol.
	type curToIndex struct{ cur, idx uint16 }
	w.WriteType(curToIndex{})

	prefix := []string{"normal", "narrow"}
	// Create data for regular and narrow symbol data.
	for typ := normal; typ <= narrow; typ++ {

		indexes := []curToIndex{} // maps currency to symbol index
		languages := []uint16{}

		for _, data := range symbols {
			languages = append(languages, uint16(len(indexes)))
			for curIndex, curs := range data {

				if sym := curs[typ]; sym != nil {
					indexes = append(indexes, curToIndex{uint16(curIndex), symbolLookup[*sym]})
				}
			}
		}
		languages = append(languages, uint16(len(indexes)))

		w.WriteVar(prefix[typ]+"LangIndex", languages)
		w.WriteVar(prefix[typ]+"SymIndex", indexes)
	}
}
Exemple #10
0
func genSymbols(w *gen.CodeWriter, data *cldr.CLDR) {
	d, err := cldr.ParseDraft(*draft)
	if err != nil {
		log.Fatalf("invalid draft level: %v", err)
	}

	nNumberSystems := system(len(systemMap))

	type symbols [NumSymbolTypes]string

	type key struct {
		tag    int // from language.CompactIndex
		system system
	}
	symbolMap := map[key]*symbols{}

	defaults := map[int]system{}

	for _, lang := range data.Locales() {
		ldml := data.RawLDML(lang)
		if ldml.Numbers == nil {
			continue
		}
		langIndex, ok := language.CompactIndex(language.MustParse(lang))
		if !ok {
			log.Fatalf("No compact index for language %s", lang)
		}
		if d := ldml.Numbers.DefaultNumberingSystem; len(d) > 0 {
			defaults[langIndex] = getNumberSystem(d[0].Data())
		}

		syms := cldr.MakeSlice(&ldml.Numbers.Symbols)
		syms.SelectDraft(d)

		for _, sym := range ldml.Numbers.Symbols {
			if sym.NumberSystem == "" {
				// This is just linking the default of root to "latn".
				continue
			}
			symbolMap[key{langIndex, getNumberSystem(sym.NumberSystem)}] = &symbols{
				SymDecimal:                getFirst("decimal", sym.Decimal),
				SymGroup:                  getFirst("group", sym.Group),
				SymList:                   getFirst("list", sym.List),
				SymPercentSign:            getFirst("percentSign", sym.PercentSign),
				SymPlusSign:               getFirst("plusSign", sym.PlusSign),
				SymMinusSign:              getFirst("minusSign", sym.MinusSign),
				SymExponential:            getFirst("exponential", sym.Exponential),
				SymSuperscriptingExponent: getFirst("superscriptingExponent", sym.SuperscriptingExponent),
				SymPerMille:               getFirst("perMille", sym.PerMille),
				SymInfinity:               getFirst("infinity", sym.Infinity),
				SymNan:                    getFirst("nan", sym.Nan),
				SymTimeSeparator:          getFirst("timeSeparator", sym.TimeSeparator),
			}
		}
	}

	// Expand all values.
	for k, syms := range symbolMap {
		for t := SymDecimal; t < NumSymbolTypes; t++ {
			p := k.tag
			for syms[t] == "" {
				p = int(internal.Parent[p])
				if pSyms, ok := symbolMap[key{p, k.system}]; ok && (*pSyms)[t] != "" {
					syms[t] = (*pSyms)[t]
					break
				}
				if p == 0 /* und */ {
					// Default to root, latn.
					syms[t] = (*symbolMap[key{}])[t]
				}
			}
		}
	}

	// Unique the symbol sets and write the string data.
	m := map[symbols]int{}
	sb := stringset.NewBuilder()

	symIndex := [][NumSymbolTypes]byte{}

	for ns := system(0); ns < nNumberSystems; ns++ {
		for _, l := range data.Locales() {
			langIndex, _ := language.CompactIndex(language.MustParse(l))
			s := symbolMap[key{langIndex, ns}]
			if s == nil {
				continue
			}
			if _, ok := m[*s]; !ok {
				m[*s] = len(symIndex)
				sb.Add(s[:]...)
				var x [NumSymbolTypes]byte
				for i := SymDecimal; i < NumSymbolTypes; i++ {
					x[i] = byte(sb.Index((*s)[i]))
				}
				symIndex = append(symIndex, x)
			}
		}
	}
	w.WriteVar("symIndex", symIndex)
	w.WriteVar("symData", sb.Set())

	// resolveSymbolIndex gets the index from the closest matching locale,
	// including the locale itself.
	resolveSymbolIndex := func(langIndex int, ns system) byte {
		for {
			if sym := symbolMap[key{langIndex, ns}]; sym != nil {
				return byte(m[*sym])
			}
			if langIndex == 0 {
				return 0 // und, latn
			}
			langIndex = int(internal.Parent[langIndex])
		}
	}

	// Create an index with the symbols for each locale for the latn numbering
	// system. If this is not the default, or the only one, for a locale, we
	// will overwrite the value later.
	var langToDefaults [language.NumCompactTags]byte
	for _, l := range data.Locales() {
		langIndex, _ := language.CompactIndex(language.MustParse(l))
		langToDefaults[langIndex] = resolveSymbolIndex(langIndex, 0)
	}

	// Delete redundant entries.
	for _, l := range data.Locales() {
		langIndex, _ := language.CompactIndex(language.MustParse(l))
		def := defaults[langIndex]
		syms := symbolMap[key{langIndex, def}]
		if syms == nil {
			continue
		}
		for ns := system(0); ns < nNumberSystems; ns++ {
			if ns == def {
				continue
			}
			if altSyms, ok := symbolMap[key{langIndex, ns}]; ok && *altSyms == *syms {
				delete(symbolMap, key{langIndex, ns})
			}
		}
	}

	// Create a sorted list of alternatives per language. This will only need to
	// be referenced if a user specified an alternative numbering system.
	var langToAlt []altSymData
	for _, l := range data.Locales() {
		langIndex, _ := language.CompactIndex(language.MustParse(l))
		start := len(langToAlt)
		if start > 0x7F {
			log.Fatal("Number of alternative assignments > 0x7F")
		}
		// Create the entry for the default value.
		def := defaults[langIndex]
		langToAlt = append(langToAlt, altSymData{
			compactTag: uint16(langIndex),
			system:     def,
			symIndex:   resolveSymbolIndex(langIndex, def),
		})

		for ns := system(0); ns < nNumberSystems; ns++ {
			if def == ns {
				continue
			}
			if sym := symbolMap[key{langIndex, ns}]; sym != nil {
				langToAlt = append(langToAlt, altSymData{
					compactTag: uint16(langIndex),
					system:     ns,
					symIndex:   resolveSymbolIndex(langIndex, ns),
				})
			}
		}
		if def == 0 && len(langToAlt) == start+1 {
			// No additional data: erase the entry.
			langToAlt = langToAlt[:start]
		} else {
			// Overwrite the entry in langToDefaults.
			langToDefaults[langIndex] = 0x80 | byte(start)
		}
	}
	w.WriteComment(`
langToDefaults maps a compact language index to the default numbering system
and default symbol set`)
	w.WriteVar("langToDefaults", langToDefaults)

	w.WriteComment(`
langToAlt is a list of numbering system and symbol set pairs, sorted and
marked by compact language index.`)
	w.WriteVar("langToAlt", langToAlt)
}
Exemple #11
0
func genPlurals(w *gen.CodeWriter, data *cldr.CLDR) {
	for _, plurals := range data.Supplemental().Plurals {
		if plurals.Type == "" {
			continue
		}
		// Initialize setMap and inclusionMasks. They are already populated with
		// a few entries to serve as an example and to assign nice numbers to
		// common cases.

		// setMap contains sets of numbers represented by boolean arrays where
		// a true value for element i means that the number i is included.
		setMap := map[[numN]bool]int{
			// The above init func adds an entry for including all numbers.
			[numN]bool{1: true}: 1, // fix {1} to a nice value
			[numN]bool{2: true}: 2, // fix {2} to a nice value
			[numN]bool{0: true}: 3, // fix {0} to a nice value
		}

		// inclusionMasks contains bit masks for every number under numN to
		// indicate in which set the number is included. Bit 1 << x will be set
		// if it is included in set x.
		inclusionMasks := [numN]uint64{
			// Note: these entries are not complete: more bits will be set along the way.
			0: 1 << 3,
			1: 1 << 1,
			2: 1 << 2,
		}

		// Create set {0..99}. We will assign this set the identifier 0.
		var all [numN]bool
		for i := range all {
			// Mark number i as being included in the set (which has identifier 0).
			inclusionMasks[i] |= 1 << 0
			// Mark number i as included in the set.
			all[i] = true
		}
		// Register the identifier for the set.
		setMap[all] = 0

		rules := []pluralCheck{}
		index := []byte{0}
		langMap := map[int]byte{0: 0} // From compact language index to index

		for _, pRules := range plurals.PluralRules {
			// Parse the rules.
			var conds []orCondition
			for _, rule := range pRules.PluralRule {
				form := countMap[rule.Count]
				conds = parsePluralCondition(conds, rule.Data(), form)
			}
			// Encode the rules.
			for _, c := range conds {
				// If an or condition only has filters, we create an entry for
				// this filter and the set that contains all values.
				empty := true
				for _, b := range c.used {
					empty = empty && !b
				}
				if empty {
					rules = append(rules, pluralCheck{
						cat:   byte(opMod<<opShift) | byte(c.form),
						setID: 0, // all values
					})
					continue
				}
				// We have some entries with values.
				for i, set := range c.set {
					if !c.used[i] {
						continue
					}
					index, ok := setMap[set]
					if !ok {
						index = len(setMap)
						setMap[set] = index
						for i := range inclusionMasks {
							if set[i] {
								inclusionMasks[i] |= 1 << uint64(index)
							}
						}
					}
					rules = append(rules, pluralCheck{
						cat:   byte(i<<opShift | andNext),
						setID: byte(index),
					})
				}
				// Now set the last entry to the plural form the rule matches.
				rules[len(rules)-1].cat &^= formMask
				rules[len(rules)-1].cat |= byte(c.form)
			}
			// Point the relevant locales to the created entries.
			for _, loc := range strings.Split(pRules.Locales, " ") {
				if strings.TrimSpace(loc) == "" {
					continue
				}
				lang, ok := language.CompactIndex(language.MustParse(loc))
				if !ok {
					log.Printf("No compact index for locale %q", loc)
				}
				langMap[lang] = byte(len(index) - 1)
			}
			index = append(index, byte(len(rules)))
		}
		w.WriteVar(plurals.Type+"Rules", rules)
		w.WriteVar(plurals.Type+"Index", index)
		// Expand the values.
		langToIndex := make([]byte, language.NumCompactTags)
		for i := range langToIndex {
			for p := i; ; p = int(internal.Parent[p]) {
				if x, ok := langMap[p]; ok {
					langToIndex[i] = x
					break
				}
			}
		}
		w.WriteVar(plurals.Type+"LangToIndex", langToIndex)
		// Need to convert array to slice because of golang.org/issue/7651.
		// This will allow tables to be dropped when unused. This is especially
		// relevant for the ordinal data, which I suspect won't be used as much.
		w.WriteVar(plurals.Type+"InclusionMasks", inclusionMasks[:])

		if len(rules) > 0xFF {
			log.Fatalf("Too many entries for rules: %#x", len(rules))
		}
		if len(index) > 0xFF {
			log.Fatalf("Too many entries for index: %#x", len(index))
		}
		if len(setMap) > 64 { // maximum number of bits.
			log.Fatalf("Too many entries for setMap: %d", len(setMap))
		}
		w.WriteComment(
			"Slots used for %s: %X of 0xFF rules; %X of 0xFF indexes; %d of 64 sets",
			plurals.Type, len(rules), len(index), len(setMap))
		// Prevent comment from attaching to the next entry.
		fmt.Fprint(w, "\n\n")
	}
}
Exemple #12
0
// genFormats generates the lookup table for decimal, scientific and percent
// patterns.
//
// CLDR allows for patterns to be different per language for different numbering
// systems. In practice the patterns are set to be consistent for a language
// independent of the numbering system. genFormats verifies that no language
// deviates from this.
func genFormats(w *gen.CodeWriter, data *cldr.CLDR) {
	d, err := cldr.ParseDraft(*draft)
	if err != nil {
		log.Fatalf("invalid draft level: %v", err)
	}

	// Fill the first slot with a dummy so we can identify unspecified tags.
	formats := []number.Format{{}}
	patterns := map[string]int{}

	// TODO: It would be possible to eliminate two of these slices by having
	// another indirection and store a reference to the combination of patterns.
	decimal := make([]byte, language.NumCompactTags)
	scientific := make([]byte, language.NumCompactTags)
	percent := make([]byte, language.NumCompactTags)

	for _, lang := range data.Locales() {
		ldml := data.RawLDML(lang)
		if ldml.Numbers == nil {
			continue
		}
		langIndex, ok := language.CompactIndex(language.MustParse(lang))
		if !ok {
			log.Fatalf("No compact index for language %s", lang)
		}
		type patternSlice []*struct {
			cldr.Common
			Numbers string `xml:"numbers,attr"`
			Count   string `xml:"count,attr"`
		}

		add := func(name string, tags []byte, ps patternSlice) {
			sl := cldr.MakeSlice(&ps)
			sl.SelectDraft(d)
			if len(ps) == 0 {
				return
			}
			if len(ps) > 2 || len(ps) == 2 && ps[0] != ps[1] {
				log.Fatalf("Inconsistent %d patterns for language %s", name, lang)
			}
			s := ps[0].Data()

			index, ok := patterns[s]
			if !ok {
				nf, err := number.ParsePattern(s)
				if err != nil {
					log.Fatal(err)
				}
				index = len(formats)
				patterns[s] = index
				formats = append(formats, *nf)
			}
			tags[langIndex] = byte(index)
		}

		for _, df := range ldml.Numbers.DecimalFormats {
			for _, l := range df.DecimalFormatLength {
				if l.Type != "" {
					continue
				}
				for _, f := range l.DecimalFormat {
					add("decimal", decimal, f.Pattern)
				}
			}
		}
		for _, df := range ldml.Numbers.ScientificFormats {
			for _, l := range df.ScientificFormatLength {
				if l.Type != "" {
					continue
				}
				for _, f := range l.ScientificFormat {
					add("scientific", scientific, f.Pattern)
				}
			}
		}
		for _, df := range ldml.Numbers.PercentFormats {
			for _, l := range df.PercentFormatLength {
				if l.Type != "" {
					continue
				}
				for _, f := range l.PercentFormat {
					add("percent", percent, f.Pattern)
				}
			}
		}
	}

	// Complete the parent tag array to reflect inheritance. An index of 0
	// indicates an unspecified value.
	for _, data := range [][]byte{decimal, scientific, percent} {
		for i := range data {
			p := uint16(i)
			for ; data[p] == 0; p = internal.Parent[p] {
			}
			data[i] = data[p]
		}
	}
	w.WriteVar("tagToDecimal", decimal)
	w.WriteVar("tagToScientific", scientific)
	w.WriteVar("tagToPercent", percent)

	value := strings.Replace(fmt.Sprintf("%#v", formats), "number.", "", -1)
	// Break up the lines. This won't give ideal perfect formatting, but it is
	// better than one huge line.
	value = strings.Replace(value, ", ", ",\n", -1)
	fmt.Fprintf(w, "var formats = %s\n", value)
}
Exemple #13
0
func TestSymbols(t *testing.T) {
	testtext.SkipIfNotLong(t)

	draft, err := cldr.ParseDraft(*draft)
	if err != nil {
		log.Fatalf("invalid draft level: %v", err)
	}

	r := gen.OpenCLDRCoreZip()
	defer r.Close()

	d := &cldr.Decoder{}
	d.SetDirFilter("main")
	d.SetSectionFilter("numbers")
	data, err := d.DecodeZip(r)
	if err != nil {
		t.Fatalf("DecodeZip: %v", err)
	}

	for _, lang := range data.Locales() {
		ldml := data.RawLDML(lang)
		if ldml.Numbers == nil {
			continue
		}
		langIndex, ok := language.CompactIndex(language.MustParse(lang))
		if !ok {
			t.Fatalf("No compact index for language %s", lang)
		}

		syms := cldr.MakeSlice(&ldml.Numbers.Symbols)
		syms.SelectDraft(draft)

		for _, sym := range ldml.Numbers.Symbols {
			if sym.NumberSystem == "" {
				continue
			}
			testCases := []struct {
				name string
				st   SymbolType
				x    interface{}
			}{
				{"Decimal", SymDecimal, sym.Decimal},
				{"Group", SymGroup, sym.Group},
				{"List", SymList, sym.List},
				{"PercentSign", SymPercentSign, sym.PercentSign},
				{"PlusSign", SymPlusSign, sym.PlusSign},
				{"MinusSign", SymMinusSign, sym.MinusSign},
				{"Exponential", SymExponential, sym.Exponential},
				{"SuperscriptingExponent", SymSuperscriptingExponent, sym.SuperscriptingExponent},
				{"PerMille", SymPerMille, sym.PerMille},
				{"Infinity", SymInfinity, sym.Infinity},
				{"NaN", SymNan, sym.Nan},
				{"TimeSeparator", SymTimeSeparator, sym.TimeSeparator},
			}
			info := InfoFromLangID(langIndex, sym.NumberSystem)
			for _, tc := range testCases {
				// Extract the wanted value.
				v := reflect.ValueOf(tc.x)
				if v.Len() == 0 {
					return
				}
				if v.Len() > 1 {
					t.Fatalf("Multiple values of %q within single symbol not supported.", tc.name)
				}
				want := v.Index(0).MethodByName("Data").Call(nil)[0].String()
				got := info.Symbol(tc.st)
				if got != want {
					t.Errorf("%s:%s:%s: got %q; want %q", lang, sym.NumberSystem, tc.name, got, want)
				}
			}
		}
	}
}