Exemple #1
0
func (d *DIBuilder) descriptorInterface(t *types.Interface, name string) llvm.Value {
	ifaceStruct := types.NewStruct([]*types.Var{
		types.NewVar(0, nil, "type", types.NewPointer(types.Typ[types.Uint8])),
		types.NewVar(0, nil, "data", types.NewPointer(types.Typ[types.Uint8])),
	}, nil)
	return d.typeDebugDescriptor(ifaceStruct, name)
}
Exemple #2
0
// testMainSlice emits to fn code to construct a slice of type slice
// (one of []testing.Internal{Test,Benchmark,Example}) for all
// functions in testfuncs.  It returns the slice value.
//
func testMainSlice(fn *Function, testfuncs []*Function, slice types.Type) Value {
	if testfuncs == nil {
		return nilConst(slice)
	}

	tElem := slice.(*types.Slice).Elem()
	tPtrString := types.NewPointer(tString)
	tPtrElem := types.NewPointer(tElem)
	tPtrFunc := types.NewPointer(funcField(slice))

	// TODO(adonovan): fix: populate the
	// testing.InternalExample.Output field correctly so that tests
	// work correctly under the interpreter.  This requires that we
	// do this step using ASTs, not *ssa.Functions---quite a
	// redesign.  See also the fake runExample in go/ssa/interp.

	// Emit: array = new [n]testing.InternalTest
	tArray := types.NewArray(tElem, int64(len(testfuncs)))
	array := emitNew(fn, tArray, token.NoPos)
	array.Comment = "test main"
	for i, testfunc := range testfuncs {
		// Emit: pitem = &array[i]
		ia := &IndexAddr{X: array, Index: intConst(int64(i))}
		ia.setType(tPtrElem)
		pitem := fn.emit(ia)

		// Emit: pname = &pitem.Name
		fa := &FieldAddr{X: pitem, Field: 0} // .Name
		fa.setType(tPtrString)
		pname := fn.emit(fa)

		// Emit: *pname = "testfunc"
		emitStore(fn, pname, stringConst(testfunc.Name()), token.NoPos)

		// Emit: pfunc = &pitem.F
		fa = &FieldAddr{X: pitem, Field: 1} // .F
		fa.setType(tPtrFunc)
		pfunc := fn.emit(fa)

		// Emit: *pfunc = testfunc
		emitStore(fn, pfunc, testfunc, token.NoPos)
	}

	// Emit: slice array[:]
	sl := &Slice{X: array}
	sl.setType(slice)
	return fn.emit(sl)
}
Exemple #3
0
func (c *funcContext) makeReceiver(x ast.Expr, sel *types.Selection) *expression {
	if !sel.Obj().Exported() {
		c.p.dependencies[sel.Obj()] = true
	}

	recvType := sel.Recv()
	_, isPointer := recvType.Underlying().(*types.Pointer)
	methodsRecvType := sel.Obj().Type().(*types.Signature).Recv().Type()
	_, pointerExpected := methodsRecvType.(*types.Pointer)
	var recv *expression
	switch {
	case !isPointer && pointerExpected:
		recv = c.translateExpr(c.setType(&ast.UnaryExpr{Op: token.AND, X: x}, types.NewPointer(recvType)))
	default:
		recv = c.translateExpr(x)
	}

	for _, index := range sel.Index()[:len(sel.Index())-1] {
		if ptr, isPtr := recvType.(*types.Pointer); isPtr {
			recvType = ptr.Elem()
		}
		s := recvType.Underlying().(*types.Struct)
		recv = c.formatExpr("%s.%s", recv, fieldName(s, index))
		recvType = s.Field(index).Type()
	}

	if isWrapped(methodsRecvType) {
		recv = c.formatExpr("new %s(%s)", c.typeName(methodsRecvType), recv)
	}

	return recv
}
Exemple #4
0
// emitNew emits to f a new (heap Alloc) instruction allocating an
// object of type typ.  pos is the optional source location.
//
func emitNew(f *Function, typ types.Type, pos token.Pos) *Alloc {
	v := &Alloc{Heap: true}
	v.setType(types.NewPointer(typ))
	v.setPos(pos)
	f.emit(v)
	return v
}
Exemple #5
0
// emitImplicitSelections emits to f code to apply the sequence of
// implicit field selections specified by indices to base value v, and
// returns the selected value.
//
// If v is the address of a struct, the result will be the address of
// a field; if it is the value of a struct, the result will be the
// value of a field.
//
func emitImplicitSelections(f *Function, v Value, indices []int) Value {
	for _, index := range indices {
		fld := deref(v.Type()).Underlying().(*types.Struct).Field(index)

		if isPointer(v.Type()) {
			instr := &FieldAddr{
				X:     v,
				Field: index,
			}
			instr.setType(types.NewPointer(fld.Type()))
			v = f.emit(instr)
			// Load the field's value iff indirectly embedded.
			if isPointer(fld.Type()) {
				v = emitLoad(f, v)
			}
		} else {
			instr := &Field{
				X:     v,
				Field: index,
			}
			instr.setType(fld.Type())
			v = f.emit(instr)
		}
	}
	return v
}
Exemple #6
0
// emitFieldSelection emits to f code to select the index'th field of v.
//
// If wantAddr, the input must be a pointer-to-struct and the result
// will be the field's address; otherwise the result will be the
// field's value.
// Ident id is used for position and debug info.
//
func emitFieldSelection(f *Function, v Value, index int, wantAddr bool, id *ast.Ident) Value {
	fld := deref(v.Type()).Underlying().(*types.Struct).Field(index)
	if isPointer(v.Type()) {
		instr := &FieldAddr{
			X:     v,
			Field: index,
		}
		instr.setPos(id.Pos())
		instr.setType(types.NewPointer(fld.Type()))
		v = f.emit(instr)
		// Load the field's value iff we don't want its address.
		if !wantAddr {
			v = emitLoad(f, v)
		}
	} else {
		instr := &Field{
			X:     v,
			Field: index,
		}
		instr.setPos(id.Pos())
		instr.setType(fld.Type())
		v = f.emit(instr)
	}
	emitDebugRef(f, id, v, wantAddr)
	return v
}
Exemple #7
0
// lockPath returns a typePath describing the location of a lock value
// contained in typ. If there is no contained lock, it returns nil.
func lockPath(tpkg *types.Package, typ types.Type) typePath {
	if typ == nil {
		return nil
	}

	// We're only interested in the case in which the underlying
	// type is a struct. (Interfaces and pointers are safe to copy.)
	styp, ok := typ.Underlying().(*types.Struct)
	if !ok {
		return nil
	}

	// We're looking for cases in which a reference to this type
	// can be locked, but a value cannot. This differentiates
	// embedded interfaces from embedded values.
	if plock := types.NewMethodSet(types.NewPointer(typ)).Lookup(tpkg, "Lock"); plock != nil {
		if lock := types.NewMethodSet(typ).Lookup(tpkg, "Lock"); lock == nil {
			return []types.Type{typ}
		}
	}

	nfields := styp.NumFields()
	for i := 0; i < nfields; i++ {
		ftyp := styp.Field(i).Type()
		subpath := lockPath(tpkg, ftyp)
		if subpath != nil {
			return append(subpath, typ)
		}
	}

	return nil
}
Exemple #8
0
func FindAllExports(pkg *types.Package, fset *token.FileSet) []UnexportCandidate {
	candidates := []UnexportCandidate{}
	for _, name := range pkg.Scope().Names() {
		obj := pkg.Scope().Lookup(name)
		if !obj.Exported() {
			continue
		}
		displayName := obj.Name()
		if _, ok := obj.(*types.Func); ok {
			displayName += "()"
		}
		candidate := UnexportCandidate{obj.Name(), displayName, fset.Position(obj.Pos())}
		candidates = append(candidates, candidate)
		if tn, ok := obj.(*types.TypeName); ok {
			if str, ok := tn.Type().Underlying().(*types.Struct); ok {
				candidates = append(candidates, findStructFields(str, obj.Name(), fset)...)
			}
			ptrType := types.NewPointer(tn.Type())
			methodSet := types.NewMethodSet(ptrType)
			for i := 0; i < methodSet.Len(); i++ {
				methodSel := methodSet.At(i)
				method := methodSel.Obj()
				// skip unexported functions, and functions from embedded fields.
				// The best I can figure out for embedded functions is if the selection index path is longer than 1.
				if !method.Exported() || len(methodSel.Index()) > 1 {
					continue
				}
				candidate := UnexportCandidate{method.Name(), obj.Name() + "." + method.Name() + "()", fset.Position(method.Pos())}
				candidates = append(candidates, candidate)
			}
		}
	}
	return candidates
}
Exemple #9
0
// PointerType = "*" ("any" | Type) .
func (p *parser) parsePointerType(pkg *types.Package) types.Type {
	p.expect('*')
	if p.tok == scanner.Ident {
		p.expectKeyword("any")
		return types.Typ[types.UnsafePointer]
	}
	return types.NewPointer(p.parseType(pkg))
}
Exemple #10
0
// addLocal creates an anonymous local variable of type typ, adds it
// to function f and returns it.  pos is the optional source location.
//
func (f *Function) addLocal(typ types.Type, pos token.Pos) *Alloc {
	v := &Alloc{}
	v.setType(types.NewPointer(typ))
	v.setPos(pos)
	f.Locals = append(f.Locals, v)
	f.emit(v)
	return v
}
Exemple #11
0
func (d *DIBuilder) descriptorSlice(t *types.Slice, name string) llvm.Value {
	sliceStruct := types.NewStruct([]*types.Var{
		types.NewVar(0, nil, "ptr", types.NewPointer(t.Elem())),
		types.NewVar(0, nil, "len", types.Typ[types.Int]),
		types.NewVar(0, nil, "cap", types.Typ[types.Int]),
	}, nil)
	return d.typeDebugDescriptor(sliceStruct, name)
}
Exemple #12
0
// memberFromObject populates package pkg with a member for the
// typechecker object obj.
//
// For objects from Go source code, syntax is the associated syntax
// tree (for funcs and vars only); it will be used during the build
// phase.
//
func memberFromObject(pkg *Package, obj types.Object, syntax ast.Node) {
	name := obj.Name()
	switch obj := obj.(type) {
	case *types.TypeName:
		pkg.Members[name] = &Type{
			object: obj,
			pkg:    pkg,
		}

	case *types.Const:
		c := &NamedConst{
			object: obj,
			Value:  NewConst(obj.Val(), obj.Type()),
			pkg:    pkg,
		}
		pkg.values[obj] = c.Value
		pkg.Members[name] = c

	case *types.Var:
		g := &Global{
			Pkg:    pkg,
			name:   name,
			object: obj,
			typ:    types.NewPointer(obj.Type()), // address
			pos:    obj.Pos(),
		}
		pkg.values[obj] = g
		pkg.Members[name] = g

	case *types.Func:
		sig := obj.Type().(*types.Signature)
		if sig.Recv() == nil && name == "init" {
			pkg.ninit++
			name = fmt.Sprintf("init#%d", pkg.ninit)
		}
		fn := &Function{
			name:      name,
			object:    obj,
			Signature: sig,
			syntax:    syntax,
			pos:       obj.Pos(),
			Pkg:       pkg,
			Prog:      pkg.Prog,
		}
		if syntax == nil {
			fn.Synthetic = "loaded from gc object file"
		}

		pkg.values[obj] = fn
		if sig.Recv() == nil {
			pkg.Members[name] = fn // package-level function
		}

	default: // (incl. *types.Package)
		panic("unexpected Object type: " + obj.String())
	}
}
Exemple #13
0
// addSpilledParam declares a parameter that is pre-spilled to the
// stack; the function body will load/store the spilled location.
// Subsequent lifting will eliminate spills where possible.
//
func (f *Function) addSpilledParam(obj types.Object) {
	param := f.addParamObj(obj)
	spill := &Alloc{Comment: obj.Name()}
	spill.setType(types.NewPointer(obj.Type()))
	spill.setPos(obj.Pos())
	f.objects[obj] = spill
	f.Locals = append(f.Locals, spill)
	f.emit(spill)
	f.emit(&Store{Addr: spill, Val: param})
}
Exemple #14
0
// mapIterInit creates a map iterator
func (fr *frame) mapIterInit(m *govalue) []*govalue {
	// We represent an iterator as a tuple (map, *bool). The second element
	// controls whether the code we generate for "next" (below) calls the
	// runtime function for the first or the next element. We let the
	// optimizer reorganize this into something more sensible.
	isinit := fr.allocaBuilder.CreateAlloca(llvm.Int1Type(), "")
	fr.builder.CreateStore(llvm.ConstNull(llvm.Int1Type()), isinit)

	return []*govalue{m, newValue(isinit, types.NewPointer(types.Typ[types.Bool]))}
}
Exemple #15
0
// testMainSlice emits to fn code to construct a slice of type slice
// (one of []testing.Internal{Test,Benchmark,Example}) for all
// functions in testfuncs.  It returns the slice value.
//
func testMainSlice(fn *Function, testfuncs []*Function, slice types.Type) Value {
	if testfuncs == nil {
		return nilConst(slice)
	}

	tElem := slice.(*types.Slice).Elem()
	tPtrString := types.NewPointer(tString)
	tPtrElem := types.NewPointer(tElem)
	tPtrFunc := types.NewPointer(funcField(slice))

	// Emit: array = new [n]testing.InternalTest
	tArray := types.NewArray(tElem, int64(len(testfuncs)))
	array := emitNew(fn, tArray, token.NoPos)
	array.Comment = "test main"
	for i, testfunc := range testfuncs {
		// Emit: pitem = &array[i]
		ia := &IndexAddr{X: array, Index: intConst(int64(i))}
		ia.setType(tPtrElem)
		pitem := fn.emit(ia)

		// Emit: pname = &pitem.Name
		fa := &FieldAddr{X: pitem, Field: 0} // .Name
		fa.setType(tPtrString)
		pname := fn.emit(fa)

		// Emit: *pname = "testfunc"
		emitStore(fn, pname, stringConst(testfunc.Name()), token.NoPos)

		// Emit: pfunc = &pitem.F
		fa = &FieldAddr{X: pitem, Field: 1} // .F
		fa.setType(tPtrFunc)
		pfunc := fn.emit(fa)

		// Emit: *pfunc = testfunc
		emitStore(fn, pfunc, testfunc, token.NoPos)
	}

	// Emit: slice array[:]
	sl := &Slice{X: array}
	sl.setType(slice)
	return fn.emit(sl)
}
Exemple #16
0
func (p *Processor) isInitPresent(t types.Type) bool {
	ms := types.NewMethodSet(types.NewPointer(t))
	for i := 0; i < ms.Len(); i++ {
		m := ms.At(i)
		if m.Obj().Name() == "Init" {
			return true
		}
	}

	return false
}
Exemple #17
0
func (cache *MethodSetCache) lookupNamed(named *types.Named) struct{ value, pointer *types.MethodSet } {
	if cache.named == nil {
		cache.named = make(map[*types.Named]struct{ value, pointer *types.MethodSet })
	}
	// Avoid recomputing mset(*T) for each distinct Pointer
	// instance whose underlying type is a named type.
	msets, ok := cache.named[named]
	if !ok {
		msets.value = types.NewMethodSet(named)
		msets.pointer = types.NewMethodSet(types.NewPointer(named))
		cache.named[named] = msets
	}
	return msets
}
Exemple #18
0
// Type =
//	BasicType | TypeName | ArrayType | SliceType | StructType |
//      PointerType | FuncType | InterfaceType | MapType | ChanType |
//      "(" Type ")" .
//
// BasicType   = ident .
// TypeName    = ExportedName .
// SliceType   = "[" "]" Type .
// PointerType = "*" Type .
// FuncType    = "func" Signature .
//
func (p *parser) parseType() types.Type {
	switch p.tok {
	case scanner.Ident:
		switch p.lit {
		default:
			return p.parseBasicType()
		case "struct":
			return p.parseStructType()
		case "func":
			// FuncType
			p.next()
			return p.parseSignature(nil)
		case "interface":
			return p.parseInterfaceType()
		case "map":
			return p.parseMapType()
		case "chan":
			return p.parseChanType()
		}
	case '@':
		// TypeName
		pkg, name := p.parseExportedName()
		return declTypeName(pkg, name).Type()
	case '[':
		p.next() // look ahead
		if p.tok == ']' {
			// SliceType
			p.next()
			return types.NewSlice(p.parseType())
		}
		return p.parseArrayType()
	case '*':
		// PointerType
		p.next()
		return types.NewPointer(p.parseType())
	case '<':
		return p.parseChanType()
	case '(':
		// "(" Type ")"
		p.next()
		typ := p.parseType()
		p.expect(')')
		return typ
	}
	p.errorf("expected type, got %s (%q)", scanner.TokenString(p.tok), p.lit)
	return nil
}
Exemple #19
0
// callInstruction translates function call instructions.
func (fr *frame) callInstruction(instr ssa.CallInstruction) []*govalue {
	call := instr.Common()
	if builtin, ok := call.Value.(*ssa.Builtin); ok {
		var typ types.Type
		if v := instr.Value(); v != nil {
			typ = v.Type()
		}
		return fr.callBuiltin(typ, builtin, call.Args)
	}

	args := make([]*govalue, len(call.Args))
	for i, arg := range call.Args {
		args[i] = fr.value(arg)
	}

	var fn *govalue
	if call.IsInvoke() {
		var recv *govalue
		fn, recv = fr.interfaceMethod(fr.llvmvalue(call.Value), call.Value.Type(), call.Method)
		args = append([]*govalue{recv}, args...)
	} else {
		if ssafn, ok := call.Value.(*ssa.Function); ok {
			llfn := fr.resolveFunctionGlobal(ssafn)
			llfn = llvm.ConstBitCast(llfn, llvm.PointerType(llvm.Int8Type(), 0))
			fn = newValue(llfn, ssafn.Type())
		} else {
			// First-class function values are stored as *{*fnptr}, so
			// we must extract the function pointer. We must also
			// call __go_set_closure, in case the function is a closure.
			fn = fr.value(call.Value)
			fr.runtime.setClosure.call(fr, fn.value)
			fnptr := fr.builder.CreateBitCast(fn.value, llvm.PointerType(fn.value.Type(), 0), "")
			fnptr = fr.builder.CreateLoad(fnptr, "")
			fn = newValue(fnptr, fn.Type())
		}
		if recv := call.Signature().Recv(); recv != nil {
			if _, ok := recv.Type().Underlying().(*types.Pointer); !ok {
				recvalloca := fr.allocaBuilder.CreateAlloca(args[0].value.Type(), "")
				fr.builder.CreateStore(args[0].value, recvalloca)
				args[0] = newValue(recvalloca, types.NewPointer(args[0].Type()))
			}
		}
	}
	return fr.createCall(fn, args)
}
Exemple #20
0
func (tm *llvmTypeMap) getSignatureInfo(sig *types.Signature) functionTypeInfo {
	var args, results []types.Type
	if sig.Recv() != nil {
		recvtype := sig.Recv().Type()
		if _, ok := recvtype.Underlying().(*types.Pointer); !ok && recvtype != types.Typ[types.UnsafePointer] {
			recvtype = types.NewPointer(recvtype)
		}
		args = []types.Type{recvtype}
	}

	for i := 0; i != sig.Params().Len(); i++ {
		args = append(args, sig.Params().At(i).Type())
	}
	for i := 0; i != sig.Results().Len(); i++ {
		results = append(results, sig.Results().At(i).Type())
	}
	return tm.getFunctionTypeInfo(args, results)
}
Exemple #21
0
func MustGetGoTypesFromReflect(typ reflect.Type) types.Type {
	switch typ.Kind() {
	case reflect.Ptr:
		return types.NewPointer(MustGetGoTypesFromReflect(typ.Elem()))
	case reflect.Struct:
		if typ.PkgPath() == "" {
			panic(fmt.Errorf(`[MustGetGoTypesFromReflect] Not implement typ.PkgPath=="" name[%s]`,
				typ.Name()))
		}
		//此处没有办法获取Package的实际Package名称
		pkg := MustNewGoTypesMainPackageFromImportPath(typ.PkgPath())
		typObj := pkg.Scope().Lookup(typ.Name())
		return typObj.Type()
	default:
		panic(fmt.Errorf("[MustGetGoTypesFromReflect] Not implement Kind [%s]",
			typ.Kind().String()))
	}
}
Exemple #22
0
// combinedMethodSet returns the method set for a named type T
// merged with all the methods of *T that have different names than
// the methods of T.
//
// combinedMethodSet is analogous to types/typeutil.IntuitiveMethodSet
// but doesn't require a MethodSetCache.
// TODO(gri) If this functionality doesn't change over time, consider
// just calling IntuitiveMethodSet eventually.
func combinedMethodSet(T *types.Named) []*types.Selection {
	// method set for T
	mset := types.NewMethodSet(T)
	var res []*types.Selection
	for i, n := 0, mset.Len(); i < n; i++ {
		res = append(res, mset.At(i))
	}

	// add all *T methods with names different from T methods
	pmset := types.NewMethodSet(types.NewPointer(T))
	for i, n := 0, pmset.Len(); i < n; i++ {
		pm := pmset.At(i)
		if obj := pm.Obj(); mset.Lookup(obj.Pkg(), obj.Name()) == nil {
			res = append(res, pm)
		}
	}

	return res
}
// IntuitiveMethodSet returns the intuitive method set of a type, T.
//
// The result contains MethodSet(T) and additionally, if T is a
// concrete type, methods belonging to *T if there is no identically
// named method on T itself.  This corresponds to user intuition about
// method sets; this function is intended only for user interfaces.
//
// The order of the result is as for types.MethodSet(T).
//
func IntuitiveMethodSet(T types.Type, msets *MethodSetCache) []*types.Selection {
	var result []*types.Selection
	mset := msets.MethodSet(T)
	if _, ok := T.Underlying().(*types.Interface); ok {
		for i, n := 0, mset.Len(); i < n; i++ {
			result = append(result, mset.At(i))
		}
	} else {
		pmset := msets.MethodSet(types.NewPointer(T))
		for i, n := 0, pmset.Len(); i < n; i++ {
			meth := pmset.At(i)
			if m := mset.Lookup(meth.Obj().Pkg(), meth.Obj().Name()); m != nil {
				meth = m
			}
			result = append(result, meth)
		}
	}
	return result
}
// Smoke test to ensure that imported methods get the correct package.
func TestCorrectMethodPackage(t *testing.T) {
	// This package does not handle gccgo export data.
	if runtime.Compiler == "gccgo" {
		return
	}

	imports := make(map[string]*types.Package)
	_, err := Import(imports, "net/http")
	if err != nil {
		t.Fatal(err)
	}

	mutex := imports["sync"].Scope().Lookup("Mutex").(*types.TypeName).Type()
	mset := types.NewMethodSet(types.NewPointer(mutex)) // methods of *sync.Mutex
	sel := mset.Lookup(nil, "Lock")
	lock := sel.Obj().(*types.Func)
	if got, want := lock.Pkg().Path(), "sync"; got != want {
		t.Errorf("got package path %q; want %q", got, want)
	}
}
Exemple #25
0
func (d *DIBuilder) descriptorBasic(t *types.Basic, name string) llvm.Value {
	switch t.Kind() {
	case types.String:
		return d.typeDebugDescriptor(types.NewStruct([]*types.Var{
			types.NewVar(0, nil, "ptr", types.NewPointer(types.Typ[types.Uint8])),
			types.NewVar(0, nil, "len", types.Typ[types.Int]),
		}, nil), name)
	case types.UnsafePointer:
		return d.builder.CreateBasicType(llvm.DIBasicType{
			Name:        name,
			SizeInBits:  uint64(d.sizes.Sizeof(t) * 8),
			AlignInBits: uint64(d.sizes.Alignof(t) * 8),
			Encoding:    llvm.DW_ATE_unsigned,
		})
	default:
		bt := llvm.DIBasicType{
			Name:        t.String(),
			SizeInBits:  uint64(d.sizes.Sizeof(t) * 8),
			AlignInBits: uint64(d.sizes.Alignof(t) * 8),
		}
		switch bi := t.Info(); {
		case bi&types.IsBoolean != 0:
			bt.Encoding = llvm.DW_ATE_boolean
		case bi&types.IsUnsigned != 0:
			bt.Encoding = llvm.DW_ATE_unsigned
		case bi&types.IsInteger != 0:
			bt.Encoding = llvm.DW_ATE_signed
		case bi&types.IsFloat != 0:
			bt.Encoding = llvm.DW_ATE_float
		case bi&types.IsComplex != 0:
			bt.Encoding = llvm.DW_ATE_imaginary_float
		case bi&types.IsUnsigned != 0:
			bt.Encoding = llvm.DW_ATE_unsigned
		default:
			panic(fmt.Sprintf("unhandled: %#v", t))
		}
		return d.builder.CreateBasicType(bt)
	}
}
Exemple #26
0
// findNamedFunc returns the named function whose FuncDecl.Ident is at
// position pos.
//
func findNamedFunc(pkg *Package, pos token.Pos) *Function {
	// Look at all package members and method sets of named types.
	// Not very efficient.
	for _, mem := range pkg.Members {
		switch mem := mem.(type) {
		case *Function:
			if mem.Pos() == pos {
				return mem
			}
		case *Type:
			mset := pkg.Prog.MethodSets.MethodSet(types.NewPointer(mem.Type()))
			for i, n := 0, mset.Len(); i < n; i++ {
				// Don't call Program.Method: avoid creating wrappers.
				obj := mset.At(i).Obj().(*types.Func)
				if obj.Pos() == pos {
					return pkg.values[obj].(*Function)
				}
			}
		}
	}
	return nil
}
Exemple #27
0
func (g *objcGen) genStructH(obj *types.TypeName, t *types.Struct) {
	g.Printf("@interface %s%s : NSObject {\n", g.namePrefix, obj.Name())
	g.Printf("}\n")
	g.Printf("@property(strong, readonly) id ref;\n")
	g.Printf("\n")
	g.Printf("- (id)initWithRef:(id)ref;\n")

	// accessors to exported fields.
	for _, f := range exportedFields(t) {
		// TODO(hyangah): error type field?
		name, typ := f.Name(), g.objcType(f.Type())
		g.Printf("- (%s)%s;\n", typ, name)
		g.Printf("- (void)set%s:(%s)v;\n", name, typ)
	}

	// exported methods
	for _, m := range exportedMethodSet(types.NewPointer(obj.Type())) {
		s := g.funcSummary(m)
		g.Printf("- %s;\n", s.asMethod(g))
	}
	g.Printf("@end\n")
}
Exemple #28
0
func checkVarValue(t *testing.T, prog *ssa.Program, pkg *ssa.Package, ref []ast.Node, obj *types.Var, expKind string, wantAddr bool) {
	// The prefix of all assertions messages.
	prefix := fmt.Sprintf("VarValue(%s @ L%d)",
		obj, prog.Fset.Position(ref[0].Pos()).Line)

	v, gotAddr := prog.VarValue(obj, pkg, ref)

	// Kind is the concrete type of the ssa Value.
	gotKind := "nil"
	if v != nil {
		gotKind = fmt.Sprintf("%T", v)[len("*ssa."):]
	}

	// fmt.Printf("%s = %v (kind %q; expect %q) wantAddr=%t gotAddr=%t\n", prefix, v, gotKind, expKind, wantAddr, gotAddr) // debugging

	// Check the kinds match.
	// "nil" indicates expected failure (e.g. optimized away).
	if expKind != gotKind {
		t.Errorf("%s concrete type == %s, want %s", prefix, gotKind, expKind)
	}

	// Check the types match.
	// If wantAddr, the expected type is the object's address.
	if v != nil {
		expType := obj.Type()
		if wantAddr {
			expType = types.NewPointer(expType)
			if !gotAddr {
				t.Errorf("%s: got value, want address", prefix)
			}
		} else if gotAddr {
			t.Errorf("%s: got address, want value", prefix)
		}
		if !types.Identical(v.Type(), expType) {
			t.Errorf("%s.Type() == %s, want %s", prefix, v.Type(), expType)
		}
	}
}
Exemple #29
0
// Smoke test to ensure that imported methods get the correct package.
func TestCorrectMethodPackage(t *testing.T) {
	skipSpecialPlatforms(t)

	// This package only handles gc export data.
	if runtime.Compiler != "gc" {
		t.Skipf("gc-built packages not available (compiler = %s)", runtime.Compiler)
		return
	}

	imports := make(map[string]*types.Package)
	_, err := Import(imports, "net/http")
	if err != nil {
		t.Fatal(err)
	}

	mutex := imports["sync"].Scope().Lookup("Mutex").(*types.TypeName).Type()
	mset := types.NewMethodSet(types.NewPointer(mutex)) // methods of *sync.Mutex
	sel := mset.Lookup(nil, "Lock")
	lock := sel.Obj().(*types.Func)
	if got, want := lock.Pkg().Path(), "sync"; got != want {
		t.Errorf("got package path %q; want %q", got, want)
	}
}
Exemple #30
0
func (g *javaGen) genStruct(obj *types.TypeName, T *types.Struct) {
	fields := exportedFields(T)
	methods := exportedMethodSet(types.NewPointer(obj.Type()))

	g.Printf("public static final class %s implements go.Seq.Object {\n", obj.Name())
	g.Indent()
	g.Printf("private static final String DESCRIPTOR = \"go.%s.%s\";\n", g.pkg.Name(), obj.Name())
	for i, f := range fields {
		g.Printf("private static final int FIELD_%s_GET = 0x%x0f;\n", f.Name(), i)
		g.Printf("private static final int FIELD_%s_SET = 0x%x1f;\n", f.Name(), i)
	}
	for i, m := range methods {
		g.Printf("private static final int CALL_%s = 0x%x0c;\n", m.Name(), i)
	}
	g.Printf("\n")

	g.Printf("private go.Seq.Ref ref;\n\n")

	n := obj.Name()
	g.Printf("private %s(go.Seq.Ref ref) { this.ref = ref; }\n\n", n)
	g.Printf(`public go.Seq.Ref ref() { return ref; }

public void call(int code, go.Seq in, go.Seq out) {
    throw new RuntimeException("internal error: cycle: cannot call concrete proxy");
}

`)

	for _, f := range fields {
		g.Printf("public %s get%s() {\n", g.javaType(f.Type()), f.Name())
		g.Indent()
		g.Printf("Seq in = new Seq();\n")
		g.Printf("Seq out = new Seq();\n")
		g.Printf("in.writeRef(ref);\n")
		g.Printf("Seq.send(DESCRIPTOR, FIELD_%s_GET, in, out);\n", f.Name())
		if seqType(f.Type()) == "Ref" {
			g.Printf("return new %s(out.read%s);\n", g.javaType(f.Type()), seqRead(f.Type()))
		} else {
			g.Printf("return out.read%s;\n", seqRead(f.Type()))
		}
		g.Outdent()
		g.Printf("}\n\n")

		g.Printf("public void set%s(%s v) {\n", f.Name(), g.javaType(f.Type()))
		g.Indent()
		g.Printf("Seq in = new Seq();\n")
		g.Printf("Seq out = new Seq();\n")
		g.Printf("in.writeRef(ref);\n")
		g.Printf("in.write%s;\n", seqWrite(f.Type(), "v"))
		g.Printf("Seq.send(DESCRIPTOR, FIELD_%s_SET, in, out);\n", f.Name())
		g.Outdent()
		g.Printf("}\n\n")
	}

	for _, m := range methods {
		g.genFunc(m, true)
	}

	g.Printf("@Override public boolean equals(Object o) {\n")
	g.Indent()
	g.Printf("if (o == null || !(o instanceof %s)) {\n    return false;\n}\n", n)
	g.Printf("%s that = (%s)o;\n", n, n)
	for _, f := range fields {
		nf := f.Name()
		g.Printf("%s this%s = get%s();\n", g.javaType(f.Type()), nf, nf)
		g.Printf("%s that%s = that.get%s();\n", g.javaType(f.Type()), nf, nf)
		if isJavaPrimitive(f.Type()) {
			g.Printf("if (this%s != that%s) {\n    return false;\n}\n", nf, nf)
		} else {
			g.Printf("if (this%s == null) {\n", nf)
			g.Indent()
			g.Printf("if (that%s != null) {\n    return false;\n}\n", nf)
			g.Outdent()
			g.Printf("} else if (!this%s.equals(that%s)) {\n    return false;\n}\n", nf, nf)
		}
	}
	g.Printf("return true;\n")
	g.Outdent()
	g.Printf("}\n\n")

	g.Printf("@Override public int hashCode() {\n")
	g.Printf("    return java.util.Arrays.hashCode(new Object[] {")
	for i, f := range fields {
		if i > 0 {
			g.Printf(", ")
		}
		g.Printf("get%s()", f.Name())
	}
	g.Printf("});\n")
	g.Printf("}\n\n")

	// TODO(crawshaw): use String() string if it is defined.
	g.Printf("@Override public String toString() {\n")
	g.Indent()
	g.Printf("StringBuilder b = new StringBuilder();\n")
	g.Printf(`b.append("%s").append("{");`, obj.Name())
	g.Printf("\n")
	for _, f := range fields {
		n := f.Name()
		g.Printf(`b.append("%s:").append(get%s()).append(",");`, n, n)
		g.Printf("\n")
	}
	g.Printf(`return b.append("}").toString();`)
	g.Printf("\n")
	g.Outdent()
	g.Printf("}\n\n")

	g.Outdent()
	g.Printf("}\n\n")
}