Exemple #1
0
// Reads the value from the given interface type, assuming that the
// interface holds a value of the correct type.
func (fr *frame) getInterfaceValue(v *govalue, ty types.Type) *govalue {
	val := fr.builder.CreateExtractValue(v.value, 1, "")
	if _, ok := ty.Underlying().(*types.Pointer); !ok {
		typedval := fr.builder.CreateBitCast(val, llvm.PointerType(fr.types.ToLLVM(ty), 0), "")
		val = fr.builder.CreateLoad(typedval, "")
	}
	return newValue(val, ty)
}
Exemple #2
0
func (x array) hash(t types.Type) int {
	h := 0
	tElt := t.Underlying().(*types.Array).Elem()
	for _, xi := range x {
		h += hash(tElt, xi)
	}
	return h
}
Exemple #3
0
func (fr *frame) makeInterface(llv llvm.Value, vty types.Type, iface types.Type) *govalue {
	if _, ok := vty.Underlying().(*types.Pointer); !ok {
		ptr := fr.createTypeMalloc(vty)
		fr.builder.CreateStore(llv, ptr)
		llv = ptr
	}
	return fr.makeInterfaceFromPointer(llv, vty, iface)
}
Exemple #4
0
func (fr *frame) makeInterfaceFromPointer(vptr llvm.Value, vty types.Type, iface types.Type) *govalue {
	i8ptr := llvm.PointerType(llvm.Int8Type(), 0)
	llv := fr.builder.CreateBitCast(vptr, i8ptr, "")
	value := llvm.Undef(fr.types.ToLLVM(iface))
	itab := fr.types.getItabPointer(vty, iface.Underlying().(*types.Interface))
	value = fr.builder.CreateInsertValue(value, itab, 0, "")
	value = fr.builder.CreateInsertValue(value, llv, 1, "")
	return newValue(value, iface)
}
Exemple #5
0
// If cond is true, reads the value from the given interface type, otherwise
// returns a nil value.
func (fr *frame) getInterfaceValueOrNull(cond llvm.Value, v *govalue, ty types.Type) *govalue {
	val := fr.builder.CreateExtractValue(v.value, 1, "")
	if _, ok := ty.Underlying().(*types.Pointer); ok {
		val = fr.builder.CreateSelect(cond, val, llvm.ConstNull(val.Type()), "")
	} else {
		val = fr.loadOrNull(cond, val, ty).value
	}
	return newValue(val, ty)
}
Exemple #6
0
func (x array) eq(t types.Type, _y interface{}) bool {
	y := _y.(array)
	tElt := t.Underlying().(*types.Array).Elem()
	for i, xi := range x {
		if !equals(tElt, xi, y[i]) {
			return false
		}
	}
	return true
}
Exemple #7
0
func (x structure) hash(t types.Type) int {
	tStruct := t.Underlying().(*types.Struct)
	h := 0
	for i, n := 0, tStruct.NumFields(); i < n; i++ {
		if f := tStruct.Field(i); !f.Anonymous() {
			h += hash(f.Type(), x[i])
		}
	}
	return h
}
Exemple #8
0
// usesBuiltinMap returns true if the built-in hash function and
// equivalence relation for type t are consistent with those of the
// interpreter's representation of type t.  Such types are: all basic
// types (bool, numbers, string), pointers and channels.
//
// usesBuiltinMap returns false for types that require a custom map
// implementation: interfaces, arrays and structs.
//
// Panic ensues if t is an invalid map key type: function, map or slice.
func usesBuiltinMap(t types.Type) bool {
	switch t := t.(type) {
	case *types.Basic, *types.Chan, *types.Pointer:
		return true
	case *types.Named:
		return usesBuiltinMap(t.Underlying())
	case *types.Interface, *types.Array, *types.Struct:
		return false
	}
	panic(fmt.Sprintf("invalid map key type: %T", t))
}
Exemple #9
0
// CanHaveDynamicTypes reports whether the type T can "hold" dynamic types,
// i.e. is an interface (incl. reflect.Type) or a reflect.Value.
//
func CanHaveDynamicTypes(T types.Type) bool {
	switch T := T.(type) {
	case *types.Named:
		if obj := T.Obj(); obj.Name() == "Value" && obj.Pkg().Path() == "reflect" {
			return true // reflect.Value
		}
		return CanHaveDynamicTypes(T.Underlying())
	case *types.Interface:
		return true
	}
	return false
}
Exemple #10
0
func (fr *frame) interfaceTypeAssert(val *govalue, ty types.Type) *govalue {
	if _, ok := ty.Underlying().(*types.Interface); ok {
		return fr.changeInterface(val, ty, true)
	} else {
		valtytd := fr.types.ToRuntime(val.Type())
		valtd := fr.getInterfaceTypeDescriptor(val)
		tytd := fr.types.ToRuntime(ty)
		fr.runtime.checkInterfaceType.call(fr, valtd, tytd, valtytd)

		return fr.getInterfaceValue(val, ty)
	}
}
Exemple #11
0
func (x structure) eq(t types.Type, _y interface{}) bool {
	y := _y.(structure)
	tStruct := t.Underlying().(*types.Struct)
	for i, n := 0, tStruct.NumFields(); i < n; i++ {
		if f := tStruct.Field(i); !f.Anonymous() {
			if !equals(f.Type(), x[i], y[i]) {
				return false
			}
		}
	}
	return true
}
Exemple #12
0
// CanPoint reports whether the type T is pointerlike,
// for the purposes of this analysis.
func CanPoint(T types.Type) bool {
	switch T := T.(type) {
	case *types.Named:
		if obj := T.Obj(); obj.Name() == "Value" && obj.Pkg().Path() == "reflect" {
			return true // treat reflect.Value like interface{}
		}
		return CanPoint(T.Underlying())

	case *types.Pointer, *types.Interface, *types.Map, *types.Chan, *types.Signature, *types.Slice:
		return true
	}

	return false // array struct tuple builtin basic
}
Exemple #13
0
// eqnil returns the comparison x == y using the equivalence relation
// appropriate for type t.
// If t is a reference type, at most one of x or y may be a nil value
// of that type.
//
func eqnil(t types.Type, x, y value) bool {
	switch t.Underlying().(type) {
	case *types.Map, *types.Signature, *types.Slice:
		// Since these types don't support comparison,
		// one of the operands must be a literal nil.
		switch x := x.(type) {
		case *hashmap:
			return (x != nil) == (y.(*hashmap) != nil)
		case map[value]value:
			return (x != nil) == (y.(map[value]value) != nil)
		case *ssa.Function:
			switch y := y.(type) {
			case *ssa.Function:
				return (x != nil) == (y != nil)
			case *closure:
				return true
			}
		case *closure:
			return (x != nil) == (y.(*ssa.Function) != nil)
		case []value:
			return (x != nil) == (y.([]value) != nil)
		}
		panic(fmt.Sprintf("eqnil(%s): illegal dynamic type: %T", t, x))
	}

	return equals(t, x, y)
}
Exemple #14
0
// zeroValue emits to f code to produce a zero value of type t,
// and returns it.
//
func zeroValue(f *Function, t types.Type) Value {
	switch t.Underlying().(type) {
	case *types.Struct, *types.Array:
		return emitLoad(f, f.addLocal(t, token.NoPos))
	default:
		return zeroConst(t)
	}
}
Exemple #15
0
// store stores value v of type T into *addr.
func store(T types.Type, addr *value, v value) {
	switch T := T.Underlying().(type) {
	case *types.Struct:
		lhs := (*addr).(structure)
		rhs := v.(structure)
		for i := range lhs {
			store(T.Field(i).Type(), &lhs[i], rhs[i])
		}
	case *types.Array:
		lhs := (*addr).(array)
		rhs := v.(array)
		for i := range lhs {
			store(T.Elem(), &lhs[i], rhs[i])
		}
	default:
		*addr = v
	}
}
Exemple #16
0
// IntuitiveMethodSet returns the intuitive method set of a type, T.
//
// The result contains MethodSet(T) and additionally, if T is a
// concrete type, methods belonging to *T if there is no identically
// named method on T itself.  This corresponds to user intuition about
// method sets; this function is intended only for user interfaces.
//
// The order of the result is as for types.MethodSet(T).
//
func IntuitiveMethodSet(T types.Type, msets *types.MethodSetCache) []*types.Selection {
	var result []*types.Selection
	mset := msets.MethodSet(T)
	if _, ok := T.Underlying().(*types.Interface); ok {
		for i, n := 0, mset.Len(); i < n; i++ {
			result = append(result, mset.At(i))
		}
	} else {
		pmset := msets.MethodSet(types.NewPointer(T))
		for i, n := 0, pmset.Len(); i < n; i++ {
			meth := pmset.At(i)
			if m := mset.Lookup(meth.Obj().Pkg(), meth.Obj().Name()); m != nil {
				meth = m
			}
			result = append(result, meth)
		}
	}
	return result
}
Exemple #17
0
// load returns the value of type T in *addr.
func load(T types.Type, addr *value) value {
	switch T := T.Underlying().(type) {
	case *types.Struct:
		v := (*addr).(structure)
		a := make(structure, len(v))
		for i := range a {
			a[i] = load(T.Field(i).Type(), &v[i])
		}
		return a
	case *types.Array:
		v := (*addr).(array)
		a := make(array, len(v))
		for i := range a {
			a[i] = load(T.Elem(), &v[i])
		}
		return a
	default:
		return *addr
	}
}
Exemple #18
0
func (fr *frame) interfaceTypeCheck(val *govalue, ty types.Type) (v *govalue, okval *govalue) {
	tytd := fr.types.ToRuntime(ty)
	if _, ok := ty.Underlying().(*types.Interface); ok {
		var result []llvm.Value
		if val.Type().Underlying().(*types.Interface).NumMethods() > 0 {
			result = fr.runtime.ifaceI2I2.call(fr, tytd, val.value)
		} else {
			result = fr.runtime.ifaceE2I2.call(fr, tytd, val.value)
		}
		v = newValue(result[0], ty)
		okval = newValue(result[1], types.Typ[types.Bool])
	} else {
		valtd := fr.getInterfaceTypeDescriptor(val)
		tyequal := fr.runtime.typeDescriptorsEqual.call(fr, valtd, tytd)[0]
		okval = newValue(tyequal, types.Typ[types.Bool])
		tyequal = fr.builder.CreateTrunc(tyequal, llvm.Int1Type(), "")

		v = fr.getInterfaceValueOrNull(tyequal, val, ty)
	}
	return
}
Exemple #19
0
// offsetOf returns the (abstract) offset of field index within struct
// or tuple typ.
func (a *analysis) offsetOf(typ types.Type, index int) uint32 {
	var offset uint32
	switch t := typ.Underlying().(type) {
	case *types.Tuple:
		for i := 0; i < index; i++ {
			offset += a.sizeof(t.At(i).Type())
		}
	case *types.Struct:
		offset++ // the node for the struct itself
		for i := 0; i < index; i++ {
			offset += a.sizeof(t.Field(i).Type())
		}
	default:
		panic(fmt.Sprintf("offsetOf(%s : %T)", typ, typ))
	}
	return offset
}
Exemple #20
0
// zero returns a new "zero" value of the specified type.
func zero(t types.Type) value {
	switch t := t.(type) {
	case *types.Basic:
		if t.Kind() == types.UntypedNil {
			panic("untyped nil has no zero value")
		}
		if t.Info()&types.IsUntyped != 0 {
			// TODO(adonovan): make it an invariant that
			// this is unreachable.  Currently some
			// constants have 'untyped' types when they
			// should be defaulted by the typechecker.
			t = ssa.DefaultType(t).(*types.Basic)
		}
		switch t.Kind() {
		case types.Bool:
			return false
		case types.Int:
			return int(0)
		case types.Int8:
			return int8(0)
		case types.Int16:
			return int16(0)
		case types.Int32:
			return int32(0)
		case types.Int64:
			return int64(0)
		case types.Uint:
			return uint(0)
		case types.Uint8:
			return uint8(0)
		case types.Uint16:
			return uint16(0)
		case types.Uint32:
			return uint32(0)
		case types.Uint64:
			return uint64(0)
		case types.Uintptr:
			return uintptr(0)
		case types.Float32:
			return float32(0)
		case types.Float64:
			return float64(0)
		case types.Complex64:
			return complex64(0)
		case types.Complex128:
			return complex128(0)
		case types.String:
			return ""
		case types.UnsafePointer:
			return unsafe.Pointer(nil)
		default:
			panic(fmt.Sprint("zero for unexpected type:", t))
		}
	case *types.Pointer:
		return (*value)(nil)
	case *types.Array:
		a := make(array, t.Len())
		for i := range a {
			a[i] = zero(t.Elem())
		}
		return a
	case *types.Named:
		return zero(t.Underlying())
	case *types.Interface:
		return iface{} // nil type, methodset and value
	case *types.Slice:
		return []value(nil)
	case *types.Struct:
		s := make(structure, t.NumFields())
		for i := range s {
			s[i] = zero(t.Field(i).Type())
		}
		return s
	case *types.Tuple:
		if t.Len() == 1 {
			return zero(t.At(0).Type())
		}
		s := make(tuple, t.Len())
		for i := range s {
			s[i] = zero(t.At(i).Type())
		}
		return s
	case *types.Chan:
		return chan value(nil)
	case *types.Map:
		if usesBuiltinMap(t.Key()) {
			return map[value]value(nil)
		}
		return (*hashmap)(nil)
	case *types.Signature:
		return (*ssa.Function)(nil)
	}
	panic(fmt.Sprint("zero: unexpected ", t))
}
Exemple #21
0
// isPointer returns true for types whose underlying type is a pointer.
func isPointer(typ types.Type) bool {
	_, ok := typ.Underlying().(*types.Pointer)
	return ok
}
Exemple #22
0
func (tm *llvmTypeMap) getBackendType(t types.Type) backendType {
	switch t := t.(type) {
	case *types.Named:
		return tm.getBackendType(t.Underlying())

	case *types.Basic:
		switch t.Kind() {
		case types.Bool, types.Uint8:
			return &intBType{1, false}
		case types.Int8:
			return &intBType{1, true}
		case types.Uint16:
			return &intBType{2, false}
		case types.Int16:
			return &intBType{2, true}
		case types.Uint32:
			return &intBType{4, false}
		case types.Int32:
			return &intBType{4, true}
		case types.Uint64:
			return &intBType{8, false}
		case types.Int64:
			return &intBType{8, true}
		case types.Uint, types.Uintptr:
			return &intBType{tm.target.PointerSize(), false}
		case types.Int:
			return &intBType{tm.target.PointerSize(), true}
		case types.Float32:
			return &floatBType{false}
		case types.Float64:
			return &floatBType{true}
		case types.UnsafePointer:
			return &ptrBType{}
		case types.Complex64:
			f32 := &floatBType{false}
			return &structBType{[]backendType{f32, f32}}
		case types.Complex128:
			f64 := &floatBType{true}
			return &structBType{[]backendType{f64, f64}}
		case types.String:
			return &structBType{[]backendType{&ptrBType{}, &intBType{tm.target.PointerSize(), false}}}
		}

	case *types.Struct:
		var fields []backendType
		for i := 0; i != t.NumFields(); i++ {
			f := t.Field(i)
			fields = append(fields, tm.getBackendType(f.Type()))
		}
		return &structBType{fields}

	case *types.Pointer, *types.Signature, *types.Map, *types.Chan:
		return &ptrBType{}

	case *types.Interface:
		i8ptr := &ptrBType{}
		return &structBType{[]backendType{i8ptr, i8ptr}}

	case *types.Slice:
		return tm.sliceBackendType()

	case *types.Array:
		return &arrayBType{uint64(t.Len()), tm.getBackendType(t.Elem())}
	}

	panic("unhandled type: " + t.String())
}
Exemple #23
0
func deref(t types.Type) types.Type {
	return t.Underlying().(*types.Pointer).Elem()
}
Exemple #24
0
func (fr *frame) slice(x llvm.Value, xtyp types.Type, low, high, max llvm.Value) llvm.Value {
	if !low.IsNil() {
		low = fr.createZExtOrTrunc(low, fr.types.inttype, "")
	} else {
		low = llvm.ConstNull(fr.types.inttype)
	}
	if !high.IsNil() {
		high = fr.createZExtOrTrunc(high, fr.types.inttype, "")
	}
	if !max.IsNil() {
		max = fr.createZExtOrTrunc(max, fr.types.inttype, "")
	}

	var arrayptr, arraylen, arraycap llvm.Value
	var elemtyp types.Type
	var errcode uint64
	switch typ := xtyp.Underlying().(type) {
	case *types.Pointer: // *array
		errcode = gccgoRuntimeErrorARRAY_SLICE_OUT_OF_BOUNDS
		arraytyp := typ.Elem().Underlying().(*types.Array)
		elemtyp = arraytyp.Elem()
		arrayptr = x
		arrayptr = fr.builder.CreateBitCast(arrayptr, llvm.PointerType(llvm.Int8Type(), 0), "")
		arraylen = llvm.ConstInt(fr.llvmtypes.inttype, uint64(arraytyp.Len()), false)
		arraycap = arraylen
	case *types.Slice:
		errcode = gccgoRuntimeErrorSLICE_SLICE_OUT_OF_BOUNDS
		elemtyp = typ.Elem()
		arrayptr = fr.builder.CreateExtractValue(x, 0, "")
		arraylen = fr.builder.CreateExtractValue(x, 1, "")
		arraycap = fr.builder.CreateExtractValue(x, 2, "")
	case *types.Basic:
		if high.IsNil() {
			high = llvm.ConstAllOnes(fr.types.inttype) // -1
		}
		result := fr.runtime.stringSlice.call(fr, x, low, high)
		return result[0]
	default:
		panic("unimplemented")
	}
	if high.IsNil() {
		high = arraylen
	}
	if max.IsNil() {
		max = arraycap
	}

	// Bounds checking: 0 <= low <= high <= max <= cap
	zero := llvm.ConstNull(fr.types.inttype)
	l0 := fr.builder.CreateICmp(llvm.IntSLT, low, zero, "")
	hl := fr.builder.CreateICmp(llvm.IntSLT, high, low, "")
	mh := fr.builder.CreateICmp(llvm.IntSLT, max, high, "")
	cm := fr.builder.CreateICmp(llvm.IntSLT, arraycap, max, "")

	cond := fr.builder.CreateOr(l0, hl, "")
	cond = fr.builder.CreateOr(cond, mh, "")
	cond = fr.builder.CreateOr(cond, cm, "")

	fr.condBrRuntimeError(cond, errcode)

	slicelen := fr.builder.CreateSub(high, low, "")
	slicecap := fr.builder.CreateSub(max, low, "")

	elemsize := llvm.ConstInt(fr.llvmtypes.inttype, uint64(fr.llvmtypes.Sizeof(elemtyp)), false)
	offset := fr.builder.CreateMul(low, elemsize, "")

	sliceptr := fr.builder.CreateInBoundsGEP(arrayptr, []llvm.Value{offset}, "")

	llslicetyp := fr.llvmtypes.sliceBackendType().ToLLVM(fr.llvmtypes.ctx)
	sliceValue := llvm.Undef(llslicetyp)
	sliceValue = fr.builder.CreateInsertValue(sliceValue, sliceptr, 0, "")
	sliceValue = fr.builder.CreateInsertValue(sliceValue, slicelen, 1, "")
	sliceValue = fr.builder.CreateInsertValue(sliceValue, slicecap, 2, "")

	return sliceValue
}
Exemple #25
0
// zeroConst returns a new "zero" constant of the specified type,
// which must not be an array or struct type: the zero values of
// aggregates are well-defined but cannot be represented by Const.
//
func zeroConst(t types.Type) *Const {
	switch t := t.(type) {
	case *types.Basic:
		switch {
		case t.Info()&types.IsBoolean != 0:
			return NewConst(exact.MakeBool(false), t)
		case t.Info()&types.IsNumeric != 0:
			return NewConst(exact.MakeInt64(0), t)
		case t.Info()&types.IsString != 0:
			return NewConst(exact.MakeString(""), t)
		case t.Kind() == types.UnsafePointer:
			fallthrough
		case t.Kind() == types.UntypedNil:
			return nilConst(t)
		default:
			panic(fmt.Sprint("zeroConst for unexpected type:", t))
		}
	case *types.Pointer, *types.Slice, *types.Interface, *types.Chan, *types.Map, *types.Signature:
		return nilConst(t)
	case *types.Named:
		return NewConst(zeroConst(t.Underlying()).Value, t)
	case *types.Array, *types.Struct, *types.Tuple:
		panic(fmt.Sprint("zeroConst applied to aggregate:", t))
	}
	panic(fmt.Sprint("zeroConst: unexpected ", t))
}
Exemple #26
0
// deref returns a pointer's element type; otherwise it returns typ.
func deref(typ types.Type) types.Type {
	if p, ok := typ.Underlying().(*types.Pointer); ok {
		return p.Elem()
	}
	return typ
}
Exemple #27
0
// mustDeref returns the element type of its argument, which must be a
// pointer; panic ensues otherwise.
func mustDeref(typ types.Type) types.Type {
	return typ.Underlying().(*types.Pointer).Elem()
}
Exemple #28
0
// flatten returns a list of directly contained fields in the preorder
// traversal of the type tree of t.  The resulting elements are all
// scalars (basic types or pointerlike types), except for struct/array
// "identity" nodes, whose type is that of the aggregate.
//
// reflect.Value is considered pointerlike, similar to interface{}.
//
// Callers must not mutate the result.
//
func (a *analysis) flatten(t types.Type) []*fieldInfo {
	fl, ok := a.flattenMemo[t]
	if !ok {
		switch t := t.(type) {
		case *types.Named:
			u := t.Underlying()
			if isInterface(u) {
				// Debuggability hack: don't remove
				// the named type from interfaces as
				// they're very verbose.
				fl = append(fl, &fieldInfo{typ: t})
			} else {
				fl = a.flatten(u)
			}

		case *types.Basic,
			*types.Signature,
			*types.Chan,
			*types.Map,
			*types.Interface,
			*types.Slice,
			*types.Pointer:
			fl = append(fl, &fieldInfo{typ: t})

		case *types.Array:
			fl = append(fl, &fieldInfo{typ: t}) // identity node
			for _, fi := range a.flatten(t.Elem()) {
				fl = append(fl, &fieldInfo{typ: fi.typ, op: true, tail: fi})
			}

		case *types.Struct:
			fl = append(fl, &fieldInfo{typ: t}) // identity node
			for i, n := 0, t.NumFields(); i < n; i++ {
				f := t.Field(i)
				for _, fi := range a.flatten(f.Type()) {
					fl = append(fl, &fieldInfo{typ: fi.typ, op: f, tail: fi})
				}
			}

		case *types.Tuple:
			// No identity node: tuples are never address-taken.
			n := t.Len()
			if n == 1 {
				// Don't add a fieldInfo link for singletons,
				// e.g. in params/results.
				fl = append(fl, a.flatten(t.At(0).Type())...)
			} else {
				for i := 0; i < n; i++ {
					f := t.At(i)
					for _, fi := range a.flatten(f.Type()) {
						fl = append(fl, &fieldInfo{typ: fi.typ, op: i, tail: fi})
					}
				}
			}

		default:
			panic(t)
		}

		a.flattenMemo[t] = fl
	}

	return fl
}
Exemple #29
0
// sliceToArray returns the type representing the arrays to which
// slice type slice points.
func sliceToArray(slice types.Type) *types.Array {
	return types.NewArray(slice.Underlying().(*types.Slice).Elem(), 1)
}
Exemple #30
0
// conv converts the value x of type t_src to type t_dst and returns
// the result.
// Possible cases are described with the ssa.Convert operator.
//
func conv(t_dst, t_src types.Type, x value) value {
	ut_src := t_src.Underlying()
	ut_dst := t_dst.Underlying()

	// Destination type is not an "untyped" type.
	if b, ok := ut_dst.(*types.Basic); ok && b.Info()&types.IsUntyped != 0 {
		panic("oops: conversion to 'untyped' type: " + b.String())
	}

	// Nor is it an interface type.
	if _, ok := ut_dst.(*types.Interface); ok {
		if _, ok := ut_src.(*types.Interface); ok {
			panic("oops: Convert should be ChangeInterface")
		} else {
			panic("oops: Convert should be MakeInterface")
		}
	}

	// Remaining conversions:
	//    + untyped string/number/bool constant to a specific
	//      representation.
	//    + conversions between non-complex numeric types.
	//    + conversions between complex numeric types.
	//    + integer/[]byte/[]rune -> string.
	//    + string -> []byte/[]rune.
	//
	// All are treated the same: first we extract the value to the
	// widest representation (int64, uint64, float64, complex128,
	// or string), then we convert it to the desired type.

	switch ut_src := ut_src.(type) {
	case *types.Pointer:
		switch ut_dst := ut_dst.(type) {
		case *types.Basic:
			// *value to unsafe.Pointer?
			if ut_dst.Kind() == types.UnsafePointer {
				return unsafe.Pointer(x.(*value))
			}
		}

	case *types.Slice:
		// []byte or []rune -> string
		// TODO(adonovan): fix: type B byte; conv([]B -> string).
		switch ut_src.Elem().(*types.Basic).Kind() {
		case types.Byte:
			x := x.([]value)
			b := make([]byte, 0, len(x))
			for i := range x {
				b = append(b, x[i].(byte))
			}
			return string(b)

		case types.Rune:
			x := x.([]value)
			r := make([]rune, 0, len(x))
			for i := range x {
				r = append(r, x[i].(rune))
			}
			return string(r)
		}

	case *types.Basic:
		x = widen(x)

		// integer -> string?
		// TODO(adonovan): fix: test integer -> named alias of string.
		if ut_src.Info()&types.IsInteger != 0 {
			if ut_dst, ok := ut_dst.(*types.Basic); ok && ut_dst.Kind() == types.String {
				return string(asInt(x))
			}
		}

		// string -> []rune, []byte or string?
		if s, ok := x.(string); ok {
			switch ut_dst := ut_dst.(type) {
			case *types.Slice:
				var res []value
				// TODO(adonovan): fix: test named alias of rune, byte.
				switch ut_dst.Elem().(*types.Basic).Kind() {
				case types.Rune:
					for _, r := range []rune(s) {
						res = append(res, r)
					}
					return res
				case types.Byte:
					for _, b := range []byte(s) {
						res = append(res, b)
					}
					return res
				}
			case *types.Basic:
				if ut_dst.Kind() == types.String {
					return x.(string)
				}
			}
			break // fail: no other conversions for string
		}

		// unsafe.Pointer -> *value
		if ut_src.Kind() == types.UnsafePointer {
			// TODO(adonovan): this is wrong and cannot
			// really be fixed with the current design.
			//
			// return (*value)(x.(unsafe.Pointer))
			// creates a new pointer of a different
			// type but the underlying interface value
			// knows its "true" type and so cannot be
			// meaningfully used through the new pointer.
			//
			// To make this work, the interpreter needs to
			// simulate the memory layout of a real
			// compiled implementation.
			//
			// To at least preserve type-safety, we'll
			// just return the zero value of the
			// destination type.
			return zero(t_dst)
		}

		// Conversions between complex numeric types?
		if ut_src.Info()&types.IsComplex != 0 {
			switch ut_dst.(*types.Basic).Kind() {
			case types.Complex64:
				return complex64(x.(complex128))
			case types.Complex128:
				return x.(complex128)
			}
			break // fail: no other conversions for complex
		}

		// Conversions between non-complex numeric types?
		if ut_src.Info()&types.IsNumeric != 0 {
			kind := ut_dst.(*types.Basic).Kind()
			switch x := x.(type) {
			case int64: // signed integer -> numeric?
				switch kind {
				case types.Int:
					return int(x)
				case types.Int8:
					return int8(x)
				case types.Int16:
					return int16(x)
				case types.Int32:
					return int32(x)
				case types.Int64:
					return int64(x)
				case types.Uint:
					return uint(x)
				case types.Uint8:
					return uint8(x)
				case types.Uint16:
					return uint16(x)
				case types.Uint32:
					return uint32(x)
				case types.Uint64:
					return uint64(x)
				case types.Uintptr:
					return uintptr(x)
				case types.Float32:
					return float32(x)
				case types.Float64:
					return float64(x)
				}

			case uint64: // unsigned integer -> numeric?
				switch kind {
				case types.Int:
					return int(x)
				case types.Int8:
					return int8(x)
				case types.Int16:
					return int16(x)
				case types.Int32:
					return int32(x)
				case types.Int64:
					return int64(x)
				case types.Uint:
					return uint(x)
				case types.Uint8:
					return uint8(x)
				case types.Uint16:
					return uint16(x)
				case types.Uint32:
					return uint32(x)
				case types.Uint64:
					return uint64(x)
				case types.Uintptr:
					return uintptr(x)
				case types.Float32:
					return float32(x)
				case types.Float64:
					return float64(x)
				}

			case float64: // floating point -> numeric?
				switch kind {
				case types.Int:
					return int(x)
				case types.Int8:
					return int8(x)
				case types.Int16:
					return int16(x)
				case types.Int32:
					return int32(x)
				case types.Int64:
					return int64(x)
				case types.Uint:
					return uint(x)
				case types.Uint8:
					return uint8(x)
				case types.Uint16:
					return uint16(x)
				case types.Uint32:
					return uint32(x)
				case types.Uint64:
					return uint64(x)
				case types.Uintptr:
					return uintptr(x)
				case types.Float32:
					return float32(x)
				case types.Float64:
					return float64(x)
				}
			}
		}
	}

	panic(fmt.Sprintf("unsupported conversion: %s  -> %s, dynamic type %T", t_src, t_dst, x))
}