func (this *TrainingSet) Variance_sum(i0, i1 int, mean *Matrix.Matrix, res **Matrix.Matrix, sustract *Matrix.Matrix, done chan<- bool) { di := i1 - i0 if di >= THRESHOLD { mi := i0 + di/2 done2 := make(chan bool, THRESHOLD) res1 := Matrix.NullMatrixP(1, this.Xs.GetNColumns()) res2 := Matrix.NullMatrixP(1, this.Xs.GetNColumns()) go this.Variance_sum(i0, mi, mean, &res1, sustract, done2) go this.Variance_sum(mi, i1, mean, &res1, sustract, done2) <-done2 <-done2 SP, _ := Matrix.Sum(res1, res2) *res = SP } else { for i := i0; i <= i1; i++ { xsi := this.Xs.GetRow(i) Sustract, _ := Matrix.Sustract(mean, xsi) Square := Matrix.DotMultiplication(Sustract, Sustract) sustract.SetRow(i, Sustract) SP, _ := Matrix.Sum(Square, *res) *res = SP } } done <- true }
func DSoftmax(X *Matrix.Matrix) *Matrix.Matrix { Total := 1 / X.TaxicabNorm() Y := X.Scalar(complex(Total, 0)) S, _ := Matrix.Sustract(Matrix.FixValueMatrix(X.GetNColumns(), X.GetNColumns(), 1.0), X) YD := Matrix.DotMultiplication(Y, S) return YD }
func (this *ANN) BackPropagation(As, AsDerviate *[](*Matrix.Matrix), ForwardOutput *Matrix.Matrix, Y *Matrix.Matrix, flen float64) { ð := this.DerviateCostFunction(ForwardOutput, Y) this.ð[len(this.ð)-1] = ð this.AcumatedError, _ = Matrix.Sum(this.CostFunction(ForwardOutput, Y), this.AcumatedError) for i := len(this.Weights) - 1; i >= 0; i-- { A := (*As)[i] Aderviate := (*AsDerviate)[i] var ðtemp *Matrix.Matrix if i == len(this.Weights)-1 { ðtemp = this.ð[i+1].Transpose() } else { ðtemp = this.ð[i+1].MatrixWithoutLastRow().Transpose() } //Calc ð //fmt.Println("ð(i+1)", this.ð[i+1].ToString()) //fmt.Println("W(i)", this.Weights[i].ToString()) Product := Matrix.Product(this.Weights[i], ðtemp.Transpose()) //fmt.Println("Product", i, " ", Product.ToString()) this.ð[i] = Matrix.DotMultiplication(Product, Aderviate.AddRowsToDown(Matrix.I(1))) //Calc of Derivate with respect to the Weights //ðtemp:= i==len(this.Weights) - 1? this.ð[i+1].Transpose() : this.ð[i+1].MatrixWithoutLastRow().Transpose() Dw := Matrix.Product(A, ðtemp) this.Δ[i], _ = Matrix.Sum(this.Δ[i], Dw) } return }
func CorssEntorpy(T, O *Matrix.Matrix) *Matrix.Matrix { log := func(x complex128) complex128 { return cmplx.Log(x) } return Matrix.DotMultiplication(T, O.Apply(log)) }