// logical generates code for || and && operators. func (c *compiler) logical(op scan.Type, e *ast.BinaryExpr, lv *arch.LV) *node { l := []*ast.BinaryExpr{e} for x := e.X; ; { y, ok := x.(*ast.BinaryExpr) if !ok || y.Op.Type != op { break } l = append(l, y) x = y.X } var lx arch.LV n := c.exprInternal(l[len(l)-1].X, lv) for i := len(l) - 1; i >= 0; i-- { var lv2 arch.LV if lx.Addr == 0 { lx.Addr = c.cg.Label() } n = c.rvalue(n, lv) n2 := c.exprInternal(l[i].Y, &lv2) n2 = c.rvalue(n2, &lv2) if op == scan.Lor { n = newNode(opBrTrue, &lx, nil, n, n2) } else { n = newNode(opBrFalse, &lx, nil, n, n2) } } n = newNode(opLab, &lx, nil, n, nil) n = newNode(opBool, nil, nil, n, nil) lv.Type = types.Typ[types.Int] lv.Addressable = false return n }
// ident generates code for an identifier by loading it into the accumulator. func (c *compiler) ident(e *ast.Ident, lv *arch.LV, tv types.TypeAndValue) *node { lv.Ident = true lv.Type = tv.Type.Underlying() lv.Name = e.Name _, isFunc := tv.Type.(*types.Signature) if isFunc { if x, ok := c.Uses[e]; ok { switch x := x.(type) { case *types.Func: lv.Storage = x.Storage() return newNode(opAddr, lv, nil, nil, nil) case *types.Fwrd: return newNode(opAddr, lv, nil, nil, nil) } } } v, found := c.variable(e, c.Uses) if !found { lv.Ident = false return nil } s, found := c.symbol(v) if !found { lv.Ident = false return nil } _, isRecord := lv.Type.(*types.Record) // arrays decay to pointers, so we need to get the original type // because the type and value by the typechecker is recorded as a pointer array, isArray := v.Type().(*types.Array) lv.Addr = s.Addr lv.Value = s.Value lv.Storage = v.Storage() switch { // constants case tv.Value != nil: lv.Value = tv.Value return newNode(opLit, lv, nil, nil, nil) case isArray: lv.Type = types.NewPointer(array.Elem(), nil) return newNode(opAddr, lv, nil, nil, nil) case isRecord: lv.Ident = false return newNode(opAddr, lv, nil, nil, nil) // variable that a integer or a pointer default: lv.Addressable = true return newNode(opIdent, lv, nil, nil, nil) } }
// condExpr generates code for ? and : operators. func (c *compiler) condExpr(e *ast.CondExpr, lv *arch.LV) *node { l := []*ast.CondExpr{e} for x := e.Cond; ; { y, ok := x.(*ast.CondExpr) if !ok { break } l = append(l, y) x = y.Cond } var lx arch.LV var l2 int var typ types.Type n := c.exprInternal(l[len(l)-1].Cond, lv) for i := len(l) - 1; i >= 0; i-- { var lv2 arch.LV n = c.rvalue(n, lv) l1 := c.cg.Label() if l2 == 0 { l2 = c.cg.Label() } n2 := c.exprInternal(l[i].X, &lv2) n2 = c.rvalue(n2, &lv2) lx.Addr = l1 n = newNode(opBrFalse, &lx, nil, n, n2) if typ == nil { typ = lv2.Type } n2 = c.exprInternal(l[i].Y, &lv2) n2 = c.rvalue(n2, &lv2) n = newNode(opGlue, nil, nil, n, n2) } lx.Addr = l2 n = newNode(opIfElse, &lx, nil, n, nil) lv.Type = typ lv.Addressable = false return n }
// defineLocal defines a variable at a function scope. func (c *compiler) defineLocal(v *types.Var, lv *arch.LV) { val := c.cg.Label() lv.Addr = val c.cg.Data() intSize := c.cg.Int() ptrSize := c.cg.Pointer() size := 1 typ := v.Type().Underlying() prim := primType(typ) array, isArray := typ.(*types.Array) isRecord := isRecord(typ, true) if isArray { size = int(array.Len()) } init := 0 if x := v.Value(); x != nil { init, _ = strconv.Atoi(x.String()) } if !isArray && !isRecord { c.cg.Lab(val) } switch { case isRecord: c.cg.BSS(c.cg.Labname(val), c.cg.Sizeof(typ), true) case prim == types.Typ[types.Char]: if isArray { c.cg.BSS(c.cg.Labname(val), size, true) } else { c.cg.Defb(init) c.cg.Align(1, intSize) } case prim == types.Typ[types.Int]: if isArray { c.cg.BSS(c.cg.Labname(val), size*intSize, true) } else { c.cg.Defw(init) } default: if isArray { c.cg.BSS(c.cg.Labname(val), size*ptrSize, true) } else { c.cg.Defp(init) } } }
// exprInternal is the main function for generating code by figuring // out what kind of expression it is. func (c *compiler) exprInternal(e ast.Expr, lv *arch.LV) *node { lv.Ident = false pos := e.Span().Start tv, found := c.typAndValue(e) if !found { return nil } // for constants we can just get the value right away if tv.Value != nil { lv.Type = tv.Type lv.Value = tv.Value switch tv.Type { case types.Typ[types.UntypedString]: str, err := strconv.Unquote(tv.Value.String()) if err != nil { c.errorf(pos, "invalid constant %v: %v", tv.Value, err) } c.cg.Data() lab := c.cg.Label() c.cg.Lab(lab) c.cg.Defs(str) c.cg.Defb(0) c.cg.Align(len(str)+1, c.cg.Int()) lv.Addr = lab return newNode(opLdlab, lv, nil, nil, nil) default: return newNode(opLit, lv, nil, nil, nil) } } switch e := e.(type) { case *ast.BinaryExpr: return c.binaryExpr(e, lv) case *ast.UnaryExpr: return c.unaryExpr(e, lv) case *ast.SizeofExpr: return c.sizeofExpr(e, lv, tv) case *ast.StarExpr: return c.starExpr(e, lv) case *ast.CallExpr: return c.callExpr(e, lv) case *ast.Ident: return c.ident(e, lv, tv) case *ast.ParenExpr: return c.exprInternal(e.X, lv) case *ast.IndexExpr: return c.indexExpr(e, lv) case *ast.SelectorExpr: return c.selectorExpr(e, lv) case *ast.CondExpr: return c.condExpr(e, lv) case *ast.CastExpr: return c.castExpr(e, lv, tv) case *ast.BasicType: lv.Type = tv.Type default: c.errorf(pos, "invalid expression: %T", e) } return nil }