Esempio n. 1
0
File: ggen.go Progetto: ckeyer/gosrc
/*
 * generate division.
 * generates one of:
 *	res = nl / nr
 *	res = nl % nr
 * according to op.
 */
func dodiv(op gc.Op, nl *gc.Node, nr *gc.Node, res *gc.Node) {
	t := nl.Type

	t0 := t

	if t.Width < 8 {
		if gc.Issigned[t.Etype] {
			t = gc.Types[gc.TINT64]
		} else {
			t = gc.Types[gc.TUINT64]
		}
	}

	a := optoas(gc.ODIV, t)

	var tl gc.Node
	gc.Regalloc(&tl, t0, nil)
	var tr gc.Node
	gc.Regalloc(&tr, t0, nil)
	if nl.Ullman >= nr.Ullman {
		gc.Cgen(nl, &tl)
		gc.Cgen(nr, &tr)
	} else {
		gc.Cgen(nr, &tr)
		gc.Cgen(nl, &tl)
	}

	if t != t0 {
		// Convert
		tl2 := tl

		tr2 := tr
		tl.Type = t
		tr.Type = t
		gmove(&tl2, &tl)
		gmove(&tr2, &tr)
	}

	// Handle divide-by-zero panic.
	p1 := ginsbranch(mips.ABNE, nil, &tr, nil, 0)
	if panicdiv == nil {
		panicdiv = gc.Sysfunc("panicdivide")
	}
	gc.Ginscall(panicdiv, -1)
	gc.Patch(p1, gc.Pc)

	gins3(a, &tr, &tl, nil)
	gc.Regfree(&tr)
	if op == gc.ODIV {
		var lo gc.Node
		gc.Nodreg(&lo, gc.Types[gc.TUINT64], mips.REG_LO)
		gins(mips.AMOVV, &lo, &tl)
	} else { // remainder in REG_HI
		var hi gc.Node
		gc.Nodreg(&hi, gc.Types[gc.TUINT64], mips.REG_HI)
		gins(mips.AMOVV, &hi, &tl)
	}
	gmove(&tl, res)
	gc.Regfree(&tl)
}
Esempio n. 2
0
/*
 * n is a 64-bit value.  fill in lo and hi to refer to its 32-bit halves.
 */
func split64(n *gc.Node, lo *gc.Node, hi *gc.Node) {
	if !gc.Is64(n.Type) {
		gc.Fatalf("split64 %v", n.Type)
	}

	if nsclean >= len(sclean) {
		gc.Fatalf("split64 clean")
	}
	sclean[nsclean].Op = gc.OEMPTY
	nsclean++
	switch n.Op {
	default:
		switch n.Op {
		default:
			var n1 gc.Node
			if !dotaddable(n, &n1) {
				gc.Igen(n, &n1, nil)
				sclean[nsclean-1] = n1
			}

			n = &n1

		case gc.ONAME:
			if n.Class == gc.PPARAMREF {
				var n1 gc.Node
				gc.Cgen(n.Name.Heapaddr, &n1)
				sclean[nsclean-1] = n1
				n = &n1
			}

			// nothing
		case gc.OINDREG:
			break
		}

		*lo = *n
		*hi = *n
		lo.Type = gc.Types[gc.TUINT32]
		if n.Type.Etype == gc.TINT64 {
			hi.Type = gc.Types[gc.TINT32]
		} else {
			hi.Type = gc.Types[gc.TUINT32]
		}
		hi.Xoffset += 4

	case gc.OLITERAL:
		var n1 gc.Node
		n.Convconst(&n1, n.Type)
		i := n1.Int()
		gc.Nodconst(lo, gc.Types[gc.TUINT32], int64(uint32(i)))
		i >>= 32
		if n.Type.Etype == gc.TINT64 {
			gc.Nodconst(hi, gc.Types[gc.TINT32], int64(int32(i)))
		} else {
			gc.Nodconst(hi, gc.Types[gc.TUINT32], int64(uint32(i)))
		}
	}
}
Esempio n. 3
0
File: ggen.go Progetto: ckeyer/gosrc
func restx(x *gc.Node, oldx *gc.Node) {
	if oldx.Op != 0 {
		x.Type = gc.Types[gc.TINT64]
		gc.SetReg(int(x.Reg), int(oldx.Etype))
		gmove(oldx, x)
		gc.Regfree(oldx)
	}
}
Esempio n. 4
0
File: ggen.go Progetto: ckeyer/gosrc
func restx(x *gc.Node, oldx *gc.Node) {
	gc.Regfree(x)

	if oldx.Op != 0 {
		x.Type = gc.Types[gc.TINT32]
		gmove(oldx, x)
	}
}
Esempio n. 5
0
File: ggen.go Progetto: ckeyer/gosrc
/*
 * register dr is one of the special ones (AX, CX, DI, SI, etc.).
 * we need to use it.  if it is already allocated as a temporary
 * (r > 1; can only happen if a routine like sgen passed a
 * special as cgen's res and then cgen used regalloc to reuse
 * it as its own temporary), then move it for now to another
 * register.  caller must call restx to move it back.
 * the move is not necessary if dr == res, because res is
 * known to be dead.
 */
func savex(dr int, x *gc.Node, oldx *gc.Node, res *gc.Node, t *gc.Type) {
	r := uint8(gc.GetReg(dr))

	// save current ax and dx if they are live
	// and not the destination
	*oldx = gc.Node{}

	gc.Nodreg(x, t, dr)
	if r > 1 && !gc.Samereg(x, res) {
		gc.Regalloc(oldx, gc.Types[gc.TINT64], nil)
		x.Type = gc.Types[gc.TINT64]
		gmove(x, oldx)
		x.Type = t
		// TODO(marvin): Fix Node.EType type union.
		oldx.Etype = gc.EType(r) // squirrel away old r value
		gc.SetReg(dr, 1)
	}
}
Esempio n. 6
0
func dotaddable(n *gc.Node, n1 *gc.Node) bool {
	if n.Op != gc.ODOT {
		return false
	}

	var oary [10]int64
	var nn *gc.Node
	o := gc.Dotoffset(n, oary[:], &nn)
	if nn != nil && nn.Addable && o == 1 && oary[0] >= 0 {
		*n1 = *nn
		n1.Type = n.Type
		n1.Xoffset += oary[0]
		return true
	}

	return false
}
Esempio n. 7
0
File: ggen.go Progetto: ckeyer/gosrc
/*
 * generate division.
 * generates one of:
 *	res = nl / nr
 *	res = nl % nr
 * according to op.
 */
func dodiv(op gc.Op, nl *gc.Node, nr *gc.Node, res *gc.Node) {
	// Have to be careful about handling
	// most negative int divided by -1 correctly.
	// The hardware will generate undefined result.
	// Also need to explicitly trap on division on zero,
	// the hardware will silently generate undefined result.
	// DIVW will leave unpredicable result in higher 32-bit,
	// so always use DIVD/DIVDU.
	t := nl.Type

	t0 := t
	check := false
	if gc.Issigned[t.Etype] {
		check = true
		if gc.Isconst(nl, gc.CTINT) && nl.Int() != -(1<<uint64(t.Width*8-1)) {
			check = false
		} else if gc.Isconst(nr, gc.CTINT) && nr.Int() != -1 {
			check = false
		}
	}

	if t.Width < 8 {
		if gc.Issigned[t.Etype] {
			t = gc.Types[gc.TINT64]
		} else {
			t = gc.Types[gc.TUINT64]
		}
		check = false
	}

	a := optoas(gc.ODIV, t)

	var tl gc.Node
	gc.Regalloc(&tl, t0, nil)
	var tr gc.Node
	gc.Regalloc(&tr, t0, nil)
	if nl.Ullman >= nr.Ullman {
		gc.Cgen(nl, &tl)
		gc.Cgen(nr, &tr)
	} else {
		gc.Cgen(nr, &tr)
		gc.Cgen(nl, &tl)
	}

	if t != t0 {
		// Convert
		tl2 := tl

		tr2 := tr
		tl.Type = t
		tr.Type = t
		gmove(&tl2, &tl)
		gmove(&tr2, &tr)
	}

	// Handle divide-by-zero panic.
	p1 := gins(optoas(gc.OCMP, t), &tr, nil)
	p1.Reg = arm64.REGZERO
	p1 = gc.Gbranch(optoas(gc.ONE, t), nil, +1)
	if panicdiv == nil {
		panicdiv = gc.Sysfunc("panicdivide")
	}
	gc.Ginscall(panicdiv, -1)
	gc.Patch(p1, gc.Pc)

	var p2 *obj.Prog
	if check {
		var nm1 gc.Node
		gc.Nodconst(&nm1, t, -1)
		gcmp(optoas(gc.OCMP, t), &tr, &nm1)
		p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1)
		if op == gc.ODIV {
			// a / (-1) is -a.
			gins(optoas(gc.OMINUS, t), &tl, &tl)

			gmove(&tl, res)
		} else {
			// a % (-1) is 0.
			var nz gc.Node
			gc.Nodconst(&nz, t, 0)

			gmove(&nz, res)
		}

		p2 = gc.Gbranch(obj.AJMP, nil, 0)
		gc.Patch(p1, gc.Pc)
	}

	p1 = gins(a, &tr, &tl)
	if op == gc.ODIV {
		gc.Regfree(&tr)
		gmove(&tl, res)
	} else {
		// A%B = A-(A/B*B)
		var tm gc.Node
		gc.Regalloc(&tm, t, nil)

		// patch div to use the 3 register form
		// TODO(minux): add gins3?
		p1.Reg = p1.To.Reg

		p1.To.Reg = tm.Reg
		gins(optoas(gc.OMUL, t), &tr, &tm)
		gc.Regfree(&tr)
		gins(optoas(gc.OSUB, t), &tm, &tl)
		gc.Regfree(&tm)
		gmove(&tl, res)
	}

	gc.Regfree(&tl)
	if check {
		gc.Patch(p2, gc.Pc)
	}
}
Esempio n. 8
0
File: ggen.go Progetto: ckeyer/gosrc
func clearfat_tail(n1 *gc.Node, b int64) {
	if b >= 16 {
		var vec_zero gc.Node
		gc.Regalloc(&vec_zero, gc.Types[gc.TFLOAT64], nil)
		gins(x86.AXORPS, &vec_zero, &vec_zero)

		for b >= 16 {
			gins(x86.AMOVUPS, &vec_zero, n1)
			n1.Xoffset += 16
			b -= 16
		}

		// MOVUPS X0, off(base) is a few bytes shorter than MOV 0, off(base)
		if b != 0 {
			n1.Xoffset -= 16 - b
			gins(x86.AMOVUPS, &vec_zero, n1)
		}

		gc.Regfree(&vec_zero)
		return
	}

	// Write sequence of MOV 0, off(base) instead of using STOSQ.
	// The hope is that although the code will be slightly longer,
	// the MOVs will have no dependencies and pipeline better
	// than the unrolled STOSQ loop.
	var z gc.Node
	gc.Nodconst(&z, gc.Types[gc.TUINT64], 0)
	if b >= 8 {
		n1.Type = z.Type
		gins(x86.AMOVQ, &z, n1)
		n1.Xoffset += 8
		b -= 8

		if b != 0 {
			n1.Xoffset -= 8 - b
			gins(x86.AMOVQ, &z, n1)
		}
		return
	}

	if b >= 4 {
		gc.Nodconst(&z, gc.Types[gc.TUINT32], 0)
		n1.Type = z.Type
		gins(x86.AMOVL, &z, n1)
		n1.Xoffset += 4
		b -= 4

		if b != 0 {
			n1.Xoffset -= 4 - b
			gins(x86.AMOVL, &z, n1)
		}
		return
	}

	if b >= 2 {
		gc.Nodconst(&z, gc.Types[gc.TUINT16], 0)
		n1.Type = z.Type
		gins(x86.AMOVW, &z, n1)
		n1.Xoffset += 2
		b -= 2
	}

	gc.Nodconst(&z, gc.Types[gc.TUINT8], 0)
	for b > 0 {
		n1.Type = z.Type
		gins(x86.AMOVB, &z, n1)
		n1.Xoffset++
		b--
	}

}
Esempio n. 9
0
File: ggen.go Progetto: ckeyer/gosrc
/*
 * generate shift according to op, one of:
 *	res = nl << nr
 *	res = nl >> nr
 */
func cgen_shift(op gc.Op, bounded bool, nl *gc.Node, nr *gc.Node, res *gc.Node) {
	a := optoas(op, nl.Type)

	if nr.Op == gc.OLITERAL {
		var n1 gc.Node
		gc.Regalloc(&n1, nl.Type, res)
		gc.Cgen(nl, &n1)
		sc := uint64(nr.Int())
		if sc >= uint64(nl.Type.Width*8) {
			// large shift gets 2 shifts by width-1
			var n3 gc.Node
			gc.Nodconst(&n3, gc.Types[gc.TUINT32], nl.Type.Width*8-1)

			gins(a, &n3, &n1)
			gins(a, &n3, &n1)
		} else {
			gins(a, nr, &n1)
		}
		gmove(&n1, res)
		gc.Regfree(&n1)
		return
	}

	if nl.Ullman >= gc.UINF {
		var n4 gc.Node
		gc.Tempname(&n4, nl.Type)
		gc.Cgen(nl, &n4)
		nl = &n4
	}

	if nr.Ullman >= gc.UINF {
		var n5 gc.Node
		gc.Tempname(&n5, nr.Type)
		gc.Cgen(nr, &n5)
		nr = &n5
	}

	rcx := gc.GetReg(x86.REG_CX)
	var n1 gc.Node
	gc.Nodreg(&n1, gc.Types[gc.TUINT32], x86.REG_CX)

	// Allow either uint32 or uint64 as shift type,
	// to avoid unnecessary conversion from uint32 to uint64
	// just to do the comparison.
	tcount := gc.Types[gc.Simtype[nr.Type.Etype]]

	if tcount.Etype < gc.TUINT32 {
		tcount = gc.Types[gc.TUINT32]
	}

	gc.Regalloc(&n1, nr.Type, &n1) // to hold the shift type in CX
	var n3 gc.Node
	gc.Regalloc(&n3, tcount, &n1) // to clear high bits of CX

	var cx gc.Node
	gc.Nodreg(&cx, gc.Types[gc.TUINT64], x86.REG_CX)

	var oldcx gc.Node
	if rcx > 0 && !gc.Samereg(&cx, res) {
		gc.Regalloc(&oldcx, gc.Types[gc.TUINT64], nil)
		gmove(&cx, &oldcx)
	}

	cx.Type = tcount

	var n2 gc.Node
	if gc.Samereg(&cx, res) {
		gc.Regalloc(&n2, nl.Type, nil)
	} else {
		gc.Regalloc(&n2, nl.Type, res)
	}
	if nl.Ullman >= nr.Ullman {
		gc.Cgen(nl, &n2)
		gc.Cgen(nr, &n1)
		gmove(&n1, &n3)
	} else {
		gc.Cgen(nr, &n1)
		gmove(&n1, &n3)
		gc.Cgen(nl, &n2)
	}

	gc.Regfree(&n3)

	// test and fix up large shifts
	if !bounded {
		gc.Nodconst(&n3, tcount, nl.Type.Width*8)
		gins(optoas(gc.OCMP, tcount), &n1, &n3)
		p1 := gc.Gbranch(optoas(gc.OLT, tcount), nil, +1)
		if op == gc.ORSH && gc.Issigned[nl.Type.Etype] {
			gc.Nodconst(&n3, gc.Types[gc.TUINT32], nl.Type.Width*8-1)
			gins(a, &n3, &n2)
		} else {
			gc.Nodconst(&n3, nl.Type, 0)
			gmove(&n3, &n2)
		}

		gc.Patch(p1, gc.Pc)
	}

	gins(a, &n1, &n2)

	if oldcx.Op != 0 {
		cx.Type = gc.Types[gc.TUINT64]
		gmove(&oldcx, &cx)
		gc.Regfree(&oldcx)
	}

	gmove(&n2, res)

	gc.Regfree(&n1)
	gc.Regfree(&n2)
}
Esempio n. 10
0
File: ggen.go Progetto: ckeyer/gosrc
/*
 * generate division.
 * generates one of:
 *	res = nl / nr
 *	res = nl % nr
 * according to op.
 */
func dodiv(op gc.Op, nl *gc.Node, nr *gc.Node, res *gc.Node) {
	// Have to be careful about handling
	// most negative int divided by -1 correctly.
	// The hardware will trap.
	// Also the byte divide instruction needs AH,
	// which we otherwise don't have to deal with.
	// Easiest way to avoid for int8, int16: use int32.
	// For int32 and int64, use explicit test.
	// Could use int64 hw for int32.
	t := nl.Type

	t0 := t
	check := false
	if gc.Issigned[t.Etype] {
		check = true
		if gc.Isconst(nl, gc.CTINT) && nl.Int() != -(1<<uint64(t.Width*8-1)) {
			check = false
		} else if gc.Isconst(nr, gc.CTINT) && nr.Int() != -1 {
			check = false
		}
	}

	if t.Width < 4 {
		if gc.Issigned[t.Etype] {
			t = gc.Types[gc.TINT32]
		} else {
			t = gc.Types[gc.TUINT32]
		}
		check = false
	}

	a := optoas(op, t)

	var n3 gc.Node
	gc.Regalloc(&n3, t0, nil)
	var ax gc.Node
	var oldax gc.Node
	if nl.Ullman >= nr.Ullman {
		savex(x86.REG_AX, &ax, &oldax, res, t0)
		gc.Cgen(nl, &ax)
		gc.Regalloc(&ax, t0, &ax) // mark ax live during cgen
		gc.Cgen(nr, &n3)
		gc.Regfree(&ax)
	} else {
		gc.Cgen(nr, &n3)
		savex(x86.REG_AX, &ax, &oldax, res, t0)
		gc.Cgen(nl, &ax)
	}

	if t != t0 {
		// Convert
		ax1 := ax

		n31 := n3
		ax.Type = t
		n3.Type = t
		gmove(&ax1, &ax)
		gmove(&n31, &n3)
	}

	var n4 gc.Node
	if gc.Nacl {
		// Native Client does not relay the divide-by-zero trap
		// to the executing program, so we must insert a check
		// for ourselves.
		gc.Nodconst(&n4, t, 0)

		gins(optoas(gc.OCMP, t), &n3, &n4)
		p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1)
		if panicdiv == nil {
			panicdiv = gc.Sysfunc("panicdivide")
		}
		gc.Ginscall(panicdiv, -1)
		gc.Patch(p1, gc.Pc)
	}

	var p2 *obj.Prog
	if check {
		gc.Nodconst(&n4, t, -1)
		gins(optoas(gc.OCMP, t), &n3, &n4)
		p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1)
		if op == gc.ODIV {
			// a / (-1) is -a.
			gins(optoas(gc.OMINUS, t), nil, &ax)

			gmove(&ax, res)
		} else {
			// a % (-1) is 0.
			gc.Nodconst(&n4, t, 0)

			gmove(&n4, res)
		}

		p2 = gc.Gbranch(obj.AJMP, nil, 0)
		gc.Patch(p1, gc.Pc)
	}

	var olddx gc.Node
	var dx gc.Node
	savex(x86.REG_DX, &dx, &olddx, res, t)
	if !gc.Issigned[t.Etype] {
		gc.Nodconst(&n4, t, 0)
		gmove(&n4, &dx)
	} else {
		gins(optoas(gc.OEXTEND, t), nil, nil)
	}
	gins(a, &n3, nil)
	gc.Regfree(&n3)
	if op == gc.ODIV {
		gmove(&ax, res)
	} else {
		gmove(&dx, res)
	}
	restx(&dx, &olddx)
	if check {
		gc.Patch(p2, gc.Pc)
	}
	restx(&ax, &oldax)
}
Esempio n. 11
0
/*
 * attempt to generate 64-bit
 *	res = n
 * return 1 on success, 0 if op not handled.
 */
func cgen64(n *gc.Node, res *gc.Node) {
	if res.Op != gc.OINDREG && res.Op != gc.ONAME {
		gc.Dump("n", n)
		gc.Dump("res", res)
		gc.Fatalf("cgen64 %v of %v", gc.Oconv(int(n.Op), 0), gc.Oconv(int(res.Op), 0))
	}

	switch n.Op {
	default:
		gc.Fatalf("cgen64 %v", gc.Oconv(int(n.Op), 0))

	case gc.OMINUS:
		gc.Cgen(n.Left, res)
		var hi1 gc.Node
		var lo1 gc.Node
		split64(res, &lo1, &hi1)
		gins(x86.ANEGL, nil, &lo1)
		gins(x86.AADCL, ncon(0), &hi1)
		gins(x86.ANEGL, nil, &hi1)
		splitclean()
		return

	case gc.OCOM:
		gc.Cgen(n.Left, res)
		var lo1 gc.Node
		var hi1 gc.Node
		split64(res, &lo1, &hi1)
		gins(x86.ANOTL, nil, &lo1)
		gins(x86.ANOTL, nil, &hi1)
		splitclean()
		return

		// binary operators.
	// common setup below.
	case gc.OADD,
		gc.OSUB,
		gc.OMUL,
		gc.OLROT,
		gc.OLSH,
		gc.ORSH,
		gc.OAND,
		gc.OOR,
		gc.OXOR:
		break
	}

	l := n.Left
	r := n.Right
	if !l.Addable {
		var t1 gc.Node
		gc.Tempname(&t1, l.Type)
		gc.Cgen(l, &t1)
		l = &t1
	}

	if r != nil && !r.Addable {
		var t2 gc.Node
		gc.Tempname(&t2, r.Type)
		gc.Cgen(r, &t2)
		r = &t2
	}

	var ax gc.Node
	gc.Nodreg(&ax, gc.Types[gc.TINT32], x86.REG_AX)
	var cx gc.Node
	gc.Nodreg(&cx, gc.Types[gc.TINT32], x86.REG_CX)
	var dx gc.Node
	gc.Nodreg(&dx, gc.Types[gc.TINT32], x86.REG_DX)

	// Setup for binary operation.
	var hi1 gc.Node
	var lo1 gc.Node
	split64(l, &lo1, &hi1)

	var lo2 gc.Node
	var hi2 gc.Node
	if gc.Is64(r.Type) {
		split64(r, &lo2, &hi2)
	}

	// Do op.  Leave result in DX:AX.
	switch n.Op {
	// TODO: Constants
	case gc.OADD:
		gins(x86.AMOVL, &lo1, &ax)

		gins(x86.AMOVL, &hi1, &dx)
		gins(x86.AADDL, &lo2, &ax)
		gins(x86.AADCL, &hi2, &dx)

		// TODO: Constants.
	case gc.OSUB:
		gins(x86.AMOVL, &lo1, &ax)

		gins(x86.AMOVL, &hi1, &dx)
		gins(x86.ASUBL, &lo2, &ax)
		gins(x86.ASBBL, &hi2, &dx)

	case gc.OMUL:
		// let's call the next three EX, FX and GX
		var ex, fx, gx gc.Node
		gc.Regalloc(&ex, gc.Types[gc.TPTR32], nil)
		gc.Regalloc(&fx, gc.Types[gc.TPTR32], nil)
		gc.Regalloc(&gx, gc.Types[gc.TPTR32], nil)

		// load args into DX:AX and EX:GX.
		gins(x86.AMOVL, &lo1, &ax)

		gins(x86.AMOVL, &hi1, &dx)
		gins(x86.AMOVL, &lo2, &gx)
		gins(x86.AMOVL, &hi2, &ex)

		// if DX and EX are zero, use 32 x 32 -> 64 unsigned multiply.
		gins(x86.AMOVL, &dx, &fx)

		gins(x86.AORL, &ex, &fx)
		p1 := gc.Gbranch(x86.AJNE, nil, 0)
		gins(x86.AMULL, &gx, nil) // implicit &ax
		p2 := gc.Gbranch(obj.AJMP, nil, 0)
		gc.Patch(p1, gc.Pc)

		// full 64x64 -> 64, from 32x32 -> 64.
		gins(x86.AIMULL, &gx, &dx)

		gins(x86.AMOVL, &ax, &fx)
		gins(x86.AIMULL, &ex, &fx)
		gins(x86.AADDL, &dx, &fx)
		gins(x86.AMOVL, &gx, &dx)
		gins(x86.AMULL, &dx, nil) // implicit &ax
		gins(x86.AADDL, &fx, &dx)
		gc.Patch(p2, gc.Pc)

		gc.Regfree(&ex)
		gc.Regfree(&fx)
		gc.Regfree(&gx)

	// We only rotate by a constant c in [0,64).
	// if c >= 32:
	//	lo, hi = hi, lo
	//	c -= 32
	// if c == 0:
	//	no-op
	// else:
	//	t = hi
	//	shld hi:lo, c
	//	shld lo:t, c
	case gc.OLROT:
		v := uint64(r.Int())

		if v >= 32 {
			// reverse during load to do the first 32 bits of rotate
			v -= 32

			gins(x86.AMOVL, &lo1, &dx)
			gins(x86.AMOVL, &hi1, &ax)
		} else {
			gins(x86.AMOVL, &lo1, &ax)
			gins(x86.AMOVL, &hi1, &dx)
		}

		if v == 0 {
		} else // done
		{
			gins(x86.AMOVL, &dx, &cx)
			p1 := gins(x86.ASHLL, ncon(uint32(v)), &dx)
			p1.From.Index = x86.REG_AX // double-width shift
			p1.From.Scale = 0
			p1 = gins(x86.ASHLL, ncon(uint32(v)), &ax)
			p1.From.Index = x86.REG_CX // double-width shift
			p1.From.Scale = 0
		}

	case gc.OLSH:
		if r.Op == gc.OLITERAL {
			v := uint64(r.Int())
			if v >= 64 {
				if gc.Is64(r.Type) {
					splitclean()
				}
				splitclean()
				split64(res, &lo2, &hi2)
				gins(x86.AMOVL, ncon(0), &lo2)
				gins(x86.AMOVL, ncon(0), &hi2)
				splitclean()
				return
			}

			if v >= 32 {
				if gc.Is64(r.Type) {
					splitclean()
				}
				split64(res, &lo2, &hi2)
				gmove(&lo1, &hi2)
				if v > 32 {
					gins(x86.ASHLL, ncon(uint32(v-32)), &hi2)
				}

				gins(x86.AMOVL, ncon(0), &lo2)
				splitclean()
				splitclean()
				return
			}

			// general shift
			gins(x86.AMOVL, &lo1, &ax)

			gins(x86.AMOVL, &hi1, &dx)
			p1 := gins(x86.ASHLL, ncon(uint32(v)), &dx)
			p1.From.Index = x86.REG_AX // double-width shift
			p1.From.Scale = 0
			gins(x86.ASHLL, ncon(uint32(v)), &ax)
			break
		}

		// load value into DX:AX.
		gins(x86.AMOVL, &lo1, &ax)

		gins(x86.AMOVL, &hi1, &dx)

		// load shift value into register.
		// if high bits are set, zero value.
		var p1 *obj.Prog

		if gc.Is64(r.Type) {
			gins(x86.ACMPL, &hi2, ncon(0))
			p1 = gc.Gbranch(x86.AJNE, nil, +1)
			gins(x86.AMOVL, &lo2, &cx)
		} else {
			cx.Type = gc.Types[gc.TUINT32]
			gmove(r, &cx)
		}

		// if shift count is >=64, zero value
		gins(x86.ACMPL, &cx, ncon(64))

		p2 := gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TUINT32]), nil, +1)
		if p1 != nil {
			gc.Patch(p1, gc.Pc)
		}
		gins(x86.AXORL, &dx, &dx)
		gins(x86.AXORL, &ax, &ax)
		gc.Patch(p2, gc.Pc)

		// if shift count is >= 32, zero low.
		gins(x86.ACMPL, &cx, ncon(32))

		p1 = gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TUINT32]), nil, +1)
		gins(x86.AMOVL, &ax, &dx)
		gins(x86.ASHLL, &cx, &dx) // SHLL only uses bottom 5 bits of count
		gins(x86.AXORL, &ax, &ax)
		p2 = gc.Gbranch(obj.AJMP, nil, 0)
		gc.Patch(p1, gc.Pc)

		// general shift
		p1 = gins(x86.ASHLL, &cx, &dx)

		p1.From.Index = x86.REG_AX // double-width shift
		p1.From.Scale = 0
		gins(x86.ASHLL, &cx, &ax)
		gc.Patch(p2, gc.Pc)

	case gc.ORSH:
		if r.Op == gc.OLITERAL {
			v := uint64(r.Int())
			if v >= 64 {
				if gc.Is64(r.Type) {
					splitclean()
				}
				splitclean()
				split64(res, &lo2, &hi2)
				if hi1.Type.Etype == gc.TINT32 {
					gmove(&hi1, &lo2)
					gins(x86.ASARL, ncon(31), &lo2)
					gmove(&hi1, &hi2)
					gins(x86.ASARL, ncon(31), &hi2)
				} else {
					gins(x86.AMOVL, ncon(0), &lo2)
					gins(x86.AMOVL, ncon(0), &hi2)
				}

				splitclean()
				return
			}

			if v >= 32 {
				if gc.Is64(r.Type) {
					splitclean()
				}
				split64(res, &lo2, &hi2)
				gmove(&hi1, &lo2)
				if v > 32 {
					gins(optoas(gc.ORSH, hi1.Type), ncon(uint32(v-32)), &lo2)
				}
				if hi1.Type.Etype == gc.TINT32 {
					gmove(&hi1, &hi2)
					gins(x86.ASARL, ncon(31), &hi2)
				} else {
					gins(x86.AMOVL, ncon(0), &hi2)
				}
				splitclean()
				splitclean()
				return
			}

			// general shift
			gins(x86.AMOVL, &lo1, &ax)

			gins(x86.AMOVL, &hi1, &dx)
			p1 := gins(x86.ASHRL, ncon(uint32(v)), &ax)
			p1.From.Index = x86.REG_DX // double-width shift
			p1.From.Scale = 0
			gins(optoas(gc.ORSH, hi1.Type), ncon(uint32(v)), &dx)
			break
		}

		// load value into DX:AX.
		gins(x86.AMOVL, &lo1, &ax)

		gins(x86.AMOVL, &hi1, &dx)

		// load shift value into register.
		// if high bits are set, zero value.
		var p1 *obj.Prog

		if gc.Is64(r.Type) {
			gins(x86.ACMPL, &hi2, ncon(0))
			p1 = gc.Gbranch(x86.AJNE, nil, +1)
			gins(x86.AMOVL, &lo2, &cx)
		} else {
			cx.Type = gc.Types[gc.TUINT32]
			gmove(r, &cx)
		}

		// if shift count is >=64, zero or sign-extend value
		gins(x86.ACMPL, &cx, ncon(64))

		p2 := gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TUINT32]), nil, +1)
		if p1 != nil {
			gc.Patch(p1, gc.Pc)
		}
		if hi1.Type.Etype == gc.TINT32 {
			gins(x86.ASARL, ncon(31), &dx)
			gins(x86.AMOVL, &dx, &ax)
		} else {
			gins(x86.AXORL, &dx, &dx)
			gins(x86.AXORL, &ax, &ax)
		}

		gc.Patch(p2, gc.Pc)

		// if shift count is >= 32, sign-extend hi.
		gins(x86.ACMPL, &cx, ncon(32))

		p1 = gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TUINT32]), nil, +1)
		gins(x86.AMOVL, &dx, &ax)
		if hi1.Type.Etype == gc.TINT32 {
			gins(x86.ASARL, &cx, &ax) // SARL only uses bottom 5 bits of count
			gins(x86.ASARL, ncon(31), &dx)
		} else {
			gins(x86.ASHRL, &cx, &ax)
			gins(x86.AXORL, &dx, &dx)
		}

		p2 = gc.Gbranch(obj.AJMP, nil, 0)
		gc.Patch(p1, gc.Pc)

		// general shift
		p1 = gins(x86.ASHRL, &cx, &ax)

		p1.From.Index = x86.REG_DX // double-width shift
		p1.From.Scale = 0
		gins(optoas(gc.ORSH, hi1.Type), &cx, &dx)
		gc.Patch(p2, gc.Pc)

		// make constant the right side (it usually is anyway).
	case gc.OXOR,
		gc.OAND,
		gc.OOR:
		if lo1.Op == gc.OLITERAL {
			nswap(&lo1, &lo2)
			nswap(&hi1, &hi2)
		}

		if lo2.Op == gc.OLITERAL {
			// special cases for constants.
			lv := uint32(lo2.Int())
			hv := uint32(hi2.Int())
			splitclean() // right side
			split64(res, &lo2, &hi2)
			switch n.Op {
			case gc.OXOR:
				gmove(&lo1, &lo2)
				gmove(&hi1, &hi2)
				switch lv {
				case 0:
					break

				case 0xffffffff:
					gins(x86.ANOTL, nil, &lo2)

				default:
					gins(x86.AXORL, ncon(lv), &lo2)
				}

				switch hv {
				case 0:
					break

				case 0xffffffff:
					gins(x86.ANOTL, nil, &hi2)

				default:
					gins(x86.AXORL, ncon(hv), &hi2)
				}

			case gc.OAND:
				switch lv {
				case 0:
					gins(x86.AMOVL, ncon(0), &lo2)

				default:
					gmove(&lo1, &lo2)
					if lv != 0xffffffff {
						gins(x86.AANDL, ncon(lv), &lo2)
					}
				}

				switch hv {
				case 0:
					gins(x86.AMOVL, ncon(0), &hi2)

				default:
					gmove(&hi1, &hi2)
					if hv != 0xffffffff {
						gins(x86.AANDL, ncon(hv), &hi2)
					}
				}

			case gc.OOR:
				switch lv {
				case 0:
					gmove(&lo1, &lo2)

				case 0xffffffff:
					gins(x86.AMOVL, ncon(0xffffffff), &lo2)

				default:
					gmove(&lo1, &lo2)
					gins(x86.AORL, ncon(lv), &lo2)
				}

				switch hv {
				case 0:
					gmove(&hi1, &hi2)

				case 0xffffffff:
					gins(x86.AMOVL, ncon(0xffffffff), &hi2)

				default:
					gmove(&hi1, &hi2)
					gins(x86.AORL, ncon(hv), &hi2)
				}
			}

			splitclean()
			splitclean()
			return
		}

		gins(x86.AMOVL, &lo1, &ax)
		gins(x86.AMOVL, &hi1, &dx)
		gins(optoas(n.Op, lo1.Type), &lo2, &ax)
		gins(optoas(n.Op, lo1.Type), &hi2, &dx)
	}

	if gc.Is64(r.Type) {
		splitclean()
	}
	splitclean()

	split64(res, &lo1, &hi1)
	gins(x86.AMOVL, &ax, &lo1)
	gins(x86.AMOVL, &dx, &hi1)
	splitclean()
}
Esempio n. 12
0
File: cgen.go Progetto: ckeyer/gosrc
func blockcopy(n, ns *gc.Node, osrc, odst, w int64) {
	var noddi gc.Node
	gc.Nodreg(&noddi, gc.Types[gc.Tptr], x86.REG_DI)
	var nodsi gc.Node
	gc.Nodreg(&nodsi, gc.Types[gc.Tptr], x86.REG_SI)

	var nodl gc.Node
	var nodr gc.Node
	if n.Ullman >= ns.Ullman {
		gc.Agenr(n, &nodr, &nodsi)
		if ns.Op == gc.ONAME {
			gc.Gvardef(ns)
		}
		gc.Agenr(ns, &nodl, &noddi)
	} else {
		if ns.Op == gc.ONAME {
			gc.Gvardef(ns)
		}
		gc.Agenr(ns, &nodl, &noddi)
		gc.Agenr(n, &nodr, &nodsi)
	}

	if nodl.Reg != x86.REG_DI {
		gmove(&nodl, &noddi)
	}
	if nodr.Reg != x86.REG_SI {
		gmove(&nodr, &nodsi)
	}
	gc.Regfree(&nodl)
	gc.Regfree(&nodr)

	c := w % 8 // bytes
	q := w / 8 // quads

	var oldcx gc.Node
	var cx gc.Node
	savex(x86.REG_CX, &cx, &oldcx, nil, gc.Types[gc.TINT64])

	// if we are copying forward on the stack and
	// the src and dst overlap, then reverse direction
	if osrc < odst && odst < osrc+w {
		// reverse direction
		gins(x86.ASTD, nil, nil) // set direction flag
		if c > 0 {
			gconreg(addptr, w-1, x86.REG_SI)
			gconreg(addptr, w-1, x86.REG_DI)

			gconreg(movptr, c, x86.REG_CX)
			gins(x86.AREP, nil, nil)   // repeat
			gins(x86.AMOVSB, nil, nil) // MOVB *(SI)-,*(DI)-
		}

		if q > 0 {
			if c > 0 {
				gconreg(addptr, -7, x86.REG_SI)
				gconreg(addptr, -7, x86.REG_DI)
			} else {
				gconreg(addptr, w-8, x86.REG_SI)
				gconreg(addptr, w-8, x86.REG_DI)
			}

			gconreg(movptr, q, x86.REG_CX)
			gins(x86.AREP, nil, nil)   // repeat
			gins(x86.AMOVSQ, nil, nil) // MOVQ *(SI)-,*(DI)-
		}

		// we leave with the flag clear
		gins(x86.ACLD, nil, nil)
	} else {
		// normal direction
		if q > 128 || (gc.Nacl && q >= 4) || (obj.Getgoos() == "plan9" && q >= 4) {
			gconreg(movptr, q, x86.REG_CX)
			gins(x86.AREP, nil, nil)   // repeat
			gins(x86.AMOVSQ, nil, nil) // MOVQ *(SI)+,*(DI)+
		} else if q >= 4 {
			var oldx0 gc.Node
			var x0 gc.Node
			savex(x86.REG_X0, &x0, &oldx0, nil, gc.Types[gc.TFLOAT64])

			p := gins(obj.ADUFFCOPY, nil, nil)
			p.To.Type = obj.TYPE_ADDR
			p.To.Sym = gc.Linksym(gc.Pkglookup("duffcopy", gc.Runtimepkg))

			// 64 blocks taking 14 bytes each
			// see ../../../../runtime/mkduff.go
			p.To.Offset = 14 * (64 - q/2)
			restx(&x0, &oldx0)

			if q%2 != 0 {
				gins(x86.AMOVSQ, nil, nil) // MOVQ *(SI)+,*(DI)+
			}
		} else if !gc.Nacl && c == 0 {
			// We don't need the MOVSQ side-effect of updating SI and DI,
			// and issuing a sequence of MOVQs directly is faster.
			nodsi.Op = gc.OINDREG

			noddi.Op = gc.OINDREG
			for q > 0 {
				gmove(&nodsi, &cx) // MOVQ x+(SI),CX
				gmove(&cx, &noddi) // MOVQ CX,x+(DI)
				nodsi.Xoffset += 8
				noddi.Xoffset += 8
				q--
			}
		} else {
			for q > 0 {
				gins(x86.AMOVSQ, nil, nil) // MOVQ *(SI)+,*(DI)+
				q--
			}
		}

		// copy the remaining c bytes
		if w < 4 || c <= 1 || (odst < osrc && osrc < odst+w) {
			for c > 0 {
				gins(x86.AMOVSB, nil, nil) // MOVB *(SI)+,*(DI)+
				c--
			}
		} else if w < 8 || c <= 4 {
			nodsi.Op = gc.OINDREG
			noddi.Op = gc.OINDREG
			cx.Type = gc.Types[gc.TINT32]
			nodsi.Type = gc.Types[gc.TINT32]
			noddi.Type = gc.Types[gc.TINT32]
			if c > 4 {
				nodsi.Xoffset = 0
				noddi.Xoffset = 0
				gmove(&nodsi, &cx)
				gmove(&cx, &noddi)
			}

			nodsi.Xoffset = c - 4
			noddi.Xoffset = c - 4
			gmove(&nodsi, &cx)
			gmove(&cx, &noddi)
		} else {
			nodsi.Op = gc.OINDREG
			noddi.Op = gc.OINDREG
			cx.Type = gc.Types[gc.TINT64]
			nodsi.Type = gc.Types[gc.TINT64]
			noddi.Type = gc.Types[gc.TINT64]
			nodsi.Xoffset = c - 8
			noddi.Xoffset = c - 8
			gmove(&nodsi, &cx)
			gmove(&cx, &noddi)
		}
	}

	restx(&cx, &oldcx)
}
Esempio n. 13
0
File: ggen.go Progetto: ckeyer/gosrc
func clearfat(nl *gc.Node) {
	/* clear a fat object */
	if gc.Debug['g'] != 0 {
		gc.Dump("\nclearfat", nl)
	}

	w := uint32(nl.Type.Width)

	// Avoid taking the address for simple enough types.
	if gc.Componentgen(nil, nl) {
		return
	}

	c := w % 4 // bytes
	q := w / 4 // quads

	if q < 4 {
		// Write sequence of MOV 0, off(base) instead of using STOSL.
		// The hope is that although the code will be slightly longer,
		// the MOVs will have no dependencies and pipeline better
		// than the unrolled STOSL loop.
		// NOTE: Must use agen, not igen, so that optimizer sees address
		// being taken. We are not writing on field boundaries.
		var n1 gc.Node
		gc.Regalloc(&n1, gc.Types[gc.Tptr], nil)

		gc.Agen(nl, &n1)
		n1.Op = gc.OINDREG
		var z gc.Node
		gc.Nodconst(&z, gc.Types[gc.TUINT64], 0)
		for ; q > 0; q-- {
			n1.Type = z.Type
			gins(x86.AMOVL, &z, &n1)
			n1.Xoffset += 4
		}

		gc.Nodconst(&z, gc.Types[gc.TUINT8], 0)
		for ; c > 0; c-- {
			n1.Type = z.Type
			gins(x86.AMOVB, &z, &n1)
			n1.Xoffset++
		}

		gc.Regfree(&n1)
		return
	}

	var n1 gc.Node
	gc.Nodreg(&n1, gc.Types[gc.Tptr], x86.REG_DI)
	gc.Agen(nl, &n1)
	gconreg(x86.AMOVL, 0, x86.REG_AX)

	if q > 128 || (q >= 4 && gc.Nacl) {
		gconreg(x86.AMOVL, int64(q), x86.REG_CX)
		gins(x86.AREP, nil, nil)   // repeat
		gins(x86.ASTOSL, nil, nil) // STOL AL,*(DI)+
	} else if q >= 4 {
		p := gins(obj.ADUFFZERO, nil, nil)
		p.To.Type = obj.TYPE_ADDR
		p.To.Sym = gc.Linksym(gc.Pkglookup("duffzero", gc.Runtimepkg))

		// 1 and 128 = magic constants: see ../../runtime/asm_386.s
		p.To.Offset = 1 * (128 - int64(q))
	} else {
		for q > 0 {
			gins(x86.ASTOSL, nil, nil) // STOL AL,*(DI)+
			q--
		}
	}

	for c > 0 {
		gins(x86.ASTOSB, nil, nil) // STOB AL,*(DI)+
		c--
	}
}