Esempio n. 1
0
func cNodes(nodes []FeatureValue) *C.feature_node_t {
	n := newNodes(C.size_t(len(nodes)))

	for idx, val := range nodes {
		C.nodes_put(n, C.size_t(idx), C.int(val.Index), C.double(val.Value))
	}

	return n
}
Esempio n. 2
0
func (problem *Problem) Add(trainInst TrainingInstance) {
	features := sortedFeatureVector(trainInst.Features)

	nodes := C.nodes_new(C.size_t(len(features)))

	for idx, val := range features {
		C.nodes_put(nodes, C.size_t(idx), C.int(val.Index), C.double(val.Value))
	}

	C.problem_add_train_inst(problem.problem, nodes, C.double(trainInst.Label))
}
Esempio n. 3
0
func (problem *Problem) AddManySorted(trainInsts []TrainingInstance) error {
	for _, trainInst := range trainInsts {
		if err := verifyFeatureIndices(trainInst.Features); err != nil {
			return err
		}
	}

	//nodesArr := make([][]C.feature_node_t, len(trainInsts))
	nodesArr := make([]*C.feature_node_t, len(trainInsts))
	for i, nodes := range trainInsts {
		//nodesArr[i] = make([]C.feature_node_t, len(nodes.Features) + 1)
		//nodesArr[i][len(nodesArr[i])-1].index = -1
		//nodesArr[i][len(nodesArr[i])-1].value = 0.0
		nodesArr[i] = newNodes(C.size_t(len(nodes.Features)))
		//fmt.Printf("%v ", nodesArr[i][len(nodesArr[i])-1])
	}
	fmt.Println()

	for _, nodes := range nodesArr {
		problem.insts = append(problem.insts, nodes)
	}

	for i, inst := range trainInsts {
		nodes := nodesArr[i]
		for idx, val := range inst.Features {
			//nodes[idx].index = C.int(val.Index)
			//nodes[idx].value = C.double(val.Value)
			C.nodes_put(nodes, C.size_t(idx), C.int(val.Index), C.double(val.Value))
		}
	}

	labels := make([]C.double, len(trainInsts))
	for i, inst := range trainInsts {
		labels[i] = C.double(inst.Label)
	}
	/*
		nodePtrs := make([]*C.feature_node_t, len(trainInsts))
		for i, val := range nodesArr {
			nodePtrs[i] = &val[0]
		}
	*/

	C.problem_add_train_insts(problem.problem, &nodesArr[0], C.size_t(len(nodesArr)), &labels[0])

	return nil
}
Esempio n. 4
0
// Add adds a training instance to the problem.
func (problem *Problem) Add(trainInst TrainingInstance) error {
	if err := verifyFeatureIndices(trainInst.Features); err != nil {
		return err
	}

	features := sortedFeatureVector(trainInst.Features)

	nodes := newNodes(C.size_t(len(features)))
	problem.insts = append(problem.insts, nodes)

	for idx, val := range features {
		C.nodes_put(nodes, C.size_t(idx), C.int(val.Index), C.double(val.Value))
	}

	C.problem_add_train_inst(problem.problem, nodes, C.double(trainInst.Label))

	return nil
}