Esempio n. 1
0
// NewBlockTemplate returns a new block template that is ready to be solved
// using the transactions from the passed transaction memory pool and a coinbase
// that either pays to the passed address if it is not nil, or a coinbase that
// is redeemable by anyone if the passed address is nil.  The nil address
// functionality is useful since there are cases such as the getblocktemplate
// RPC where external mining software is responsible for creating their own
// coinbase which will replace the one generated for the block template.  Thus
// the need to have configured address can be avoided.
//
// The transactions selected and included are prioritized according to several
// factors.  First, each transaction has a priority calculated based on its
// value, age of inputs, and size.  Transactions which consist of larger
// amounts, older inputs, and small sizes have the highest priority.  Second, a
// fee per kilobyte is calculated for each transaction.  Transactions with a
// higher fee per kilobyte are preferred.  Finally, the block generation related
// configuration options are all taken into account.
//
// Transactions which only spend outputs from other transactions already in the
// block chain are immediately added to a priority queue which either
// prioritizes based on the priority (then fee per kilobyte) or the fee per
// kilobyte (then priority) depending on whether or not the BlockPrioritySize
// configuration option allots space for high-priority transactions.
// Transactions which spend outputs from other transactions in the memory pool
// are added to a dependency map so they can be added to the priority queue once
// the transactions they depend on have been included.
//
// Once the high-priority area (if configured) has been filled with transactions,
// or the priority falls below what is considered high-priority, the priority
// queue is updated to prioritize by fees per kilobyte (then priority).
//
// When the fees per kilobyte drop below the TxMinFreeFee configuration option,
// the transaction will be skipped unless there is a BlockMinSize set, in which
// case the block will be filled with the low-fee/free transactions until the
// block size reaches that minimum size.
//
// Any transactions which would cause the block to exceed the BlockMaxSize
// configuration option, exceed the maximum allowed signature operations per
// block, or otherwise cause the block to be invalid are skipped.
//
// Given the above, a block generated by this function is of the following form:
//
//   -----------------------------------  --  --
//  |      Coinbase Transaction         |   |   |
//  |-----------------------------------|   |   |
//  |                                   |   |   | ----- cfg.BlockPrioritySize
//  |   High-priority Transactions      |   |   |
//  |                                   |   |   |
//  |-----------------------------------|   | --
//  |                                   |   |
//  |                                   |   |
//  |                                   |   |--- cfg.BlockMaxSize
//  |  Transactions prioritized by fee  |   |
//  |  until <= cfg.TxMinFreeFee        |   |
//  |                                   |   |
//  |                                   |   |
//  |                                   |   |
//  |-----------------------------------|   |
//  |  Low-fee/Non high-priority (free) |   |
//  |  transactions (while block size   |   |
//  |  <= cfg.BlockMinSize)             |   |
//   -----------------------------------  --
func NewBlockTemplate(mempool *txMemPool, payToAddress btcutil.Address) (*BlockTemplate, error) {
	blockManager := mempool.server.blockManager
	chainState := &blockManager.chainState
	chain := blockManager.blockChain

	// Extend the most recently known best block.
	chainState.Lock()
	prevHash := chainState.newestHash
	nextBlockHeight := chainState.newestHeight + 1
	chainState.Unlock()

	// Create a standard coinbase transaction paying to the provided
	// address.  NOTE: The coinbase value will be updated to include the
	// fees from the selected transactions later after they have actually
	// been selected.  It is created here to detect any errors early
	// before potentially doing a lot of work below.  The extra nonce helps
	// ensure the transaction is not a duplicate transaction (paying the
	// same value to the same public key address would otherwise be an
	// identical transaction for block version 1).
	extraNonce := uint64(0)
	coinbaseScript := standardCoinbaseScript(nextBlockHeight, extraNonce)
	coinbaseTx, err := createCoinbaseTx(coinbaseScript, nextBlockHeight,
		payToAddress)
	if err != nil {
		return nil, err
	}
	numCoinbaseSigOps := int64(btcchain.CountSigOps(coinbaseTx))

	// Get the current memory pool transactions and create a priority queue
	// to hold the transactions which are ready for inclusion into a block
	// along with some priority related and fee metadata.  Reserve the same
	// number of items that are in the memory pool for the priority queue.
	// Also, choose the initial sort order for the priority queue based on
	// whether or not there is an area allocated for high-priority
	// transactions.
	mempoolTxns := mempool.TxDescs()
	sortedByFee := cfg.BlockPrioritySize == 0
	priorityQueue := newTxPriorityQueue(len(mempoolTxns), sortedByFee)

	// Create a slice to hold the transactions to be included in the
	// generated block with reserved space.  Also create a transaction
	// store to house all of the input transactions so multiple lookups
	// can be avoided.
	blockTxns := make([]*btcutil.Tx, 0, len(mempoolTxns))
	blockTxns = append(blockTxns, coinbaseTx)
	blockTxStore := make(btcchain.TxStore)

	// dependers is used to track transactions which depend on another
	// transaction in the memory pool.  This, in conjunction with the
	// dependsOn map kept with each dependent transaction helps quickly
	// determine which dependent transactions are now eligible for inclusion
	// in the block once each transaction has been included.
	dependers := make(map[btcwire.ShaHash]*list.List)

	// Create slices to hold the fees and number of signature operations
	// for each of the selected transactions and add an entry for the
	// coinbase.  This allows the code below to simply append details about
	// a transaction as it is selected for inclusion in the final block.
	// However, since the total fees aren't known yet, use a dummy value for
	// the coinbase fee which will be updated later.
	txFees := make([]int64, 0, len(mempoolTxns))
	txSigOpCounts := make([]int64, 0, len(mempoolTxns))
	txFees = append(txFees, -1) // Updated once known
	txSigOpCounts = append(txSigOpCounts, numCoinbaseSigOps)

	minrLog.Debugf("Considering %d mempool transactions for inclusion to "+
		"new block", len(mempoolTxns))

mempoolLoop:
	for _, txDesc := range mempoolTxns {
		// A block can't have more than one coinbase or contain
		// non-finalized transactions.
		tx := txDesc.Tx
		if btcchain.IsCoinBase(tx) {
			minrLog.Tracef("Skipping coinbase tx %s", tx.Sha())
			continue
		}
		if !btcchain.IsFinalizedTransaction(tx, nextBlockHeight, time.Now()) {
			minrLog.Tracef("Skipping non-finalized tx %s", tx.Sha())
			continue
		}

		// Fetch all of the transactions referenced by the inputs to
		// this transaction.  NOTE: This intentionally does not fetch
		// inputs from the mempool since a transaction which depends on
		// other transactions in the mempool must come after those
		// dependencies in the final generated block.
		txStore, err := chain.FetchTransactionStore(tx)
		if err != nil {
			minrLog.Warnf("Unable to fetch transaction store for "+
				"tx %s: %v", tx.Sha(), err)
			continue
		}

		// Calculate the input value age sum for the transaction.  This
		// is comprised of the sum all of input amounts multiplied by
		// their respective age (number of confirmations since the
		// referenced input transaction).  While doing the above, also
		// setup dependencies for any transactions which reference other
		// transactions in the mempool so they can be properly ordered
		// below.
		prioItem := &txPrioItem{tx: txDesc.Tx}
		inputValueAge := float64(0.0)
		for _, txIn := range tx.MsgTx().TxIn {
			originHash := &txIn.PreviousOutPoint.Hash
			originIndex := txIn.PreviousOutPoint.Index
			txData, exists := txStore[*originHash]
			if !exists || txData.Err != nil || txData.Tx == nil {
				if !mempool.HaveTransaction(originHash) {
					minrLog.Tracef("Skipping tx %s because "+
						"it references tx %s which is "+
						"not available", tx.Sha,
						originHash)
					continue mempoolLoop
				}

				// The transaction is referencing another
				// transaction in the memory pool, so setup an
				// ordering dependency.
				depList, exists := dependers[*originHash]
				if !exists {
					depList = list.New()
					dependers[*originHash] = depList
				}
				depList.PushBack(prioItem)
				if prioItem.dependsOn == nil {
					prioItem.dependsOn = make(
						map[btcwire.ShaHash]struct{})
				}
				prioItem.dependsOn[*originHash] = struct{}{}

				// No need to calculate or sum input value age
				// for this input since it's zero due to
				// the input age multiplier of 0.
				continue
			}

			// Ensure the output index in the referenced transaction
			// is available.
			msgTx := txData.Tx.MsgTx()
			if originIndex > uint32(len(msgTx.TxOut)) {
				minrLog.Tracef("Skipping tx %s because "+
					"it references output %d of tx %s "+
					"which is out of bounds", tx.Sha,
					originIndex, originHash)
				continue mempoolLoop
			}

			// Sum the input value times age.
			originTxOut := txData.Tx.MsgTx().TxOut[originIndex]
			inputValue := originTxOut.Value
			inputAge := nextBlockHeight - txData.BlockHeight
			inputValueAge += float64(inputValue * inputAge)
		}

		// Calculate the final transaction priority using the input
		// value age sum as well as the adjusted transaction size.  The
		// formula is: sum(inputValue * inputAge) / adjustedTxSize
		txSize := tx.MsgTx().SerializeSize()
		prioItem.priority = calcPriority(tx, txSize, inputValueAge)

		// Calculate the fee in Satoshi/KB.
		// NOTE: This is a more precise value than the one calculated
		// during calcMinRelayFee which rounds up to the nearest full
		// kilobyte boundary.  This is beneficial since it provides an
		// incentive to create smaller transactions.
		prioItem.feePerKB = float64(txDesc.Fee) / (float64(txSize) / 1000)
		prioItem.fee = txDesc.Fee

		// Add the transaction to the priority queue to mark it ready
		// for inclusion in the block unless it has dependencies.
		if prioItem.dependsOn == nil {
			heap.Push(priorityQueue, prioItem)
		}

		// Merge the store which contains all of the input transactions
		// for this transaction into the input transaction store.  This
		// allows the code below to avoid a second lookup.
		mergeTxStore(blockTxStore, txStore)
	}

	minrLog.Tracef("Priority queue len %d, dependers len %d",
		priorityQueue.Len(), len(dependers))

	// The starting block size is the size of the block header plus the max
	// possible transaction count size, plus the size of the coinbase
	// transaction.
	blockSize := blockHeaderOverhead + uint32(coinbaseTx.MsgTx().SerializeSize())
	blockSigOps := numCoinbaseSigOps
	totalFees := int64(0)

	// Choose which transactions make it into the block.
	for priorityQueue.Len() > 0 {
		// Grab the highest priority (or highest fee per kilobyte
		// depending on the sort order) transaction.
		prioItem := heap.Pop(priorityQueue).(*txPrioItem)
		tx := prioItem.tx

		// Grab the list of transactions which depend on this one (if
		// any) and remove the entry for this transaction as it will
		// either be included or skipped, but in either case the deps
		// are no longer needed.
		deps := dependers[*tx.Sha()]
		delete(dependers, *tx.Sha())

		// Enforce maximum block size.  Also check for overflow.
		txSize := uint32(tx.MsgTx().SerializeSize())
		blockPlusTxSize := blockSize + txSize
		if blockPlusTxSize < blockSize || blockPlusTxSize >= cfg.BlockMaxSize {
			minrLog.Tracef("Skipping tx %s because it would exceed "+
				"the max block size", tx.Sha())
			logSkippedDeps(tx, deps)
			continue
		}

		// Enforce maximum signature operations per block.  Also check
		// for overflow.
		numSigOps := int64(btcchain.CountSigOps(tx))
		if blockSigOps+numSigOps < blockSigOps ||
			blockSigOps+numSigOps > btcchain.MaxSigOpsPerBlock {
			minrLog.Tracef("Skipping tx %s because it would "+
				"exceed the maximum sigops per block", tx.Sha())
			logSkippedDeps(tx, deps)
			continue
		}
		numP2SHSigOps, err := btcchain.CountP2SHSigOps(tx, false,
			blockTxStore)
		if err != nil {
			minrLog.Tracef("Skipping tx %s due to error in "+
				"CountP2SHSigOps: %v", tx.Sha(), err)
			logSkippedDeps(tx, deps)
			continue
		}
		numSigOps += int64(numP2SHSigOps)
		if blockSigOps+numSigOps < blockSigOps ||
			blockSigOps+numSigOps > btcchain.MaxSigOpsPerBlock {
			minrLog.Tracef("Skipping tx %s because it would "+
				"exceed the maximum sigops per block (p2sh)",
				tx.Sha())
			logSkippedDeps(tx, deps)
			continue
		}

		// Skip free transactions once the block is larger than the
		// minimum block size.
		if sortedByFee && prioItem.feePerKB < minTxRelayFee &&
			blockPlusTxSize >= cfg.BlockMinSize {

			minrLog.Tracef("Skipping tx %s with feePerKB %.2f "+
				"< minTxRelayFee %d and block size %d >= "+
				"minBlockSize %d", tx.Sha(), prioItem.feePerKB,
				minTxRelayFee, blockPlusTxSize,
				cfg.BlockMinSize)
			logSkippedDeps(tx, deps)
			continue
		}

		// Prioritize by fee per kilobyte once the block is larger than
		// the priority size or there are no more high-priority
		// transactions.
		if !sortedByFee && (blockPlusTxSize >= cfg.BlockPrioritySize ||
			prioItem.priority <= minHighPriority) {

			minrLog.Tracef("Switching to sort by fees per "+
				"kilobyte blockSize %d >= BlockPrioritySize "+
				"%d || priority %.2f <= minHighPriority %.2f",
				blockPlusTxSize, cfg.BlockPrioritySize,
				prioItem.priority, minHighPriority)

			sortedByFee = true
			priorityQueue.SetLessFunc(txPQByFee)

			// Put the transaction back into the priority queue and
			// skip it so it is re-priortized by fees if it won't
			// fit into the high-priority section or the priority is
			// too low.  Otherwise this transaction will be the
			// final one in the high-priority section, so just fall
			// though to the code below so it is added now.
			if blockPlusTxSize > cfg.BlockPrioritySize ||
				prioItem.priority < minHighPriority {

				heap.Push(priorityQueue, prioItem)
				continue
			}
		}

		// Ensure the transaction inputs pass all of the necessary
		// preconditions before allowing it to be added to the block.
		_, err = btcchain.CheckTransactionInputs(tx, nextBlockHeight,
			blockTxStore)
		if err != nil {
			minrLog.Tracef("Skipping tx %s due to error in "+
				"CheckTransactionInputs: %v", tx.Sha(), err)
			logSkippedDeps(tx, deps)
			continue
		}
		err = btcchain.ValidateTransactionScripts(tx, blockTxStore,
			standardScriptVerifyFlags)
		if err != nil {
			minrLog.Tracef("Skipping tx %s due to error in "+
				"ValidateTransactionScripts: %v", tx.Sha(), err)
			logSkippedDeps(tx, deps)
			continue
		}

		// Spend the transaction inputs in the block transaction store
		// and add an entry for it to ensure any transactions which
		// reference this one have it available as an input and can
		// ensure they aren't double spending.
		spendTransaction(blockTxStore, tx, nextBlockHeight)

		// Add the transaction to the block, increment counters, and
		// save the fees and signature operation counts to the block
		// template.
		blockTxns = append(blockTxns, tx)
		blockSize += txSize
		blockSigOps += numSigOps
		totalFees += prioItem.fee
		txFees = append(txFees, prioItem.fee)
		txSigOpCounts = append(txSigOpCounts, numSigOps)

		minrLog.Tracef("Adding tx %s (priority %.2f, feePerKB %.2f)",
			prioItem.tx.Sha(), prioItem.priority, prioItem.feePerKB)

		// Add transactions which depend on this one (and also do not
		// have any other unsatisified dependencies) to the priority
		// queue.
		if deps != nil {
			for e := deps.Front(); e != nil; e = e.Next() {
				// Add the transaction to the priority queue if
				// there are no more dependencies after this
				// one.
				item := e.Value.(*txPrioItem)
				delete(item.dependsOn, *tx.Sha())
				if len(item.dependsOn) == 0 {
					heap.Push(priorityQueue, item)
				}
			}
		}
	}

	// Now that the actual transactions have been selected, update the
	// block size for the real transaction count and coinbase value with
	// the total fees accordingly.
	blockSize -= btcwire.MaxVarIntPayload -
		uint32(btcwire.VarIntSerializeSize(uint64(len(blockTxns))))
	coinbaseTx.MsgTx().TxOut[0].Value += totalFees
	txFees[0] = -totalFees

	// Calculate the required difficulty for the block.  The timestamp
	// is potentially adjusted to ensure it comes after the median time of
	// the last several blocks per the chain consensus rules.
	ts, err := medianAdjustedTime(chainState)
	if err != nil {
		return nil, err
	}
	requiredDifficulty, err := blockManager.CalcNextRequiredDifficulty(ts)
	if err != nil {
		return nil, err
	}

	// Create a new block ready to be solved.
	merkles := btcchain.BuildMerkleTreeStore(blockTxns)
	var msgBlock btcwire.MsgBlock
	msgBlock.Header = btcwire.BlockHeader{
		Version:    generatedBlockVersion,
		PrevBlock:  *prevHash,
		MerkleRoot: *merkles[len(merkles)-1],
		Timestamp:  ts,
		Bits:       requiredDifficulty,
	}
	for _, tx := range blockTxns {
		if err := msgBlock.AddTransaction(tx.MsgTx()); err != nil {
			return nil, err
		}
	}

	// Finally, perform a full check on the created block against the chain
	// consensus rules to ensure it properly connects to the current best
	// chain with no issues.
	block := btcutil.NewBlock(&msgBlock)
	block.SetHeight(nextBlockHeight)
	if err := blockManager.CheckConnectBlock(block); err != nil {
		return nil, err
	}

	minrLog.Debugf("Created new block template (%d transactions, %d in "+
		"fees, %d signature operations, %d bytes, target difficulty "+
		"%064x)", len(msgBlock.Transactions), totalFees, blockSigOps,
		blockSize, btcchain.CompactToBig(msgBlock.Header.Bits))

	return &BlockTemplate{
		block:           &msgBlock,
		fees:            txFees,
		sigOpCounts:     txSigOpCounts,
		height:          nextBlockHeight,
		validPayAddress: payToAddress != nil,
	}, nil
}
Esempio n. 2
0
// maybeAcceptTransaction is the main workhorse for handling insertion of new
// free-standing transactions into a memory pool.  It includes functionality
// such as rejecting duplicate transactions, ensuring transactions follow all
// rules, orphan transaction handling, and insertion into the memory pool.
func (mp *txMemPool) maybeAcceptTransaction(tx *btcwire.MsgTx, isOrphan *bool) error {
	*isOrphan = false
	txHash, err := tx.TxSha()
	if err != nil {
		return err
	}

	// Don't accept the transaction if it already exists in the pool.  This
	// applies to orphan transactions as well.  This check is intended to
	// be a quick check to weed out duplicates.  It is more expensive to
	// detect a duplicate transaction in the main chain, so that is done
	// later.
	if mp.isTransactionInPool(&txHash) {
		str := fmt.Sprintf("already have transaction %v", txHash)
		return TxRuleError(str)
	}

	// Perform preliminary sanity checks on the transaction.  This makes
	// use of btcchain which contains the invariant rules for what
	// transactions are allowed into blocks.
	err = btcchain.CheckTransactionSanity(tx)
	if err != nil {
		if _, ok := err.(btcchain.RuleError); ok {
			return TxRuleError(err.Error())
		}
		return err
	}

	// A standalone transaction must not be a coinbase transaction.
	if btcchain.IsCoinBase(tx) {
		str := fmt.Sprintf("transaction %v is an individual coinbase",
			txHash)
		return TxRuleError(str)
	}

	// Don't accept transactions with a lock time after the maximum int32
	// value for now.  This is an artifact of older bitcoind clients which
	// treated this field as an int32 and would treat anything larger
	// incorrectly (as negative).
	if tx.LockTime > math.MaxInt32 {
		str := fmt.Sprintf("transaction %v is has a lock time after "+
			"2038 which is not accepted yet", txHash)
		return TxRuleError(str)
	}

	// Get the current height of the main chain.  A standalone transaction
	// will be mined into the next block at best, so
	_, curHeight, err := mp.server.db.NewestSha()
	if err != nil {
		return err
	}
	nextBlockHeight := curHeight + 1

	// Don't allow non-standard transactions on the main network.
	if activeNetParams.btcnet == btcwire.MainNet {
		err := checkTransactionStandard(tx, nextBlockHeight)
		if err != nil {
			str := fmt.Sprintf("transaction %v is not a standard "+
				"transaction: %v", txHash, err)
			return TxRuleError(str)
		}
	}

	// The transaction may not use any of the same outputs as other
	// transactions already in the pool as that would ultimately result in a
	// double spend.  This check is intended to be quick and therefore only
	// detects double spends within the transaction pool itself.  The
	// transaction could still be double spending coins from the main chain
	// at this point.  There is a more in-depth check that happens later
	// after fetching the referenced transaction inputs from the main chain
	// which examines the actual spend data and prevents double spends.
	err = mp.checkPoolDoubleSpend(tx)
	if err != nil {
		return err
	}

	// Fetch all of the transactions referenced by the inputs to this
	// transaction.  This function also attempts to fetch the transaction
	// itself to be used for detecting a duplicate transaction without
	// needing to do a separate lookup.
	txStore, err := mp.fetchInputTransactions(tx)
	if err != nil {
		return err
	}

	// Don't allow the transaction if it exists in the main chain and is not
	// not already fully spent.
	if txD, exists := txStore[txHash]; exists && txD.Err == nil {
		for _, isOutputSpent := range txD.Spent {
			if !isOutputSpent {
				str := fmt.Sprintf("transaction already exists")
				return TxRuleError(str)
			}
		}
	}
	delete(txStore, txHash)

	// Transaction is an orphan if any of the inputs don't exist.
	for _, txD := range txStore {
		if txD.Err == btcdb.TxShaMissing {
			*isOrphan = true
			return nil
		}
	}

	// Perform several checks on the transaction inputs using the invariant
	// rules in btcchain for what transactions are allowed into blocks.
	// Also returns the fees associated with the transaction which will be
	// used later.
	txFee, err := btcchain.CheckTransactionInputs(tx, nextBlockHeight, txStore)
	if err != nil {
		return err
	}

	// Don't allow transactions with non-standard inputs on the main
	// network.
	if activeNetParams.btcnet == btcwire.MainNet {
		err := checkInputsStandard(tx)
		if err != nil {
			str := fmt.Sprintf("transaction %v has a non-standard "+
				"input: %v", txHash, err)
			return TxRuleError(str)
		}
	}

	// Note: if you modify this code to accept non-standard transactions,
	// you should add code here to check that the transaction does a
	// reasonable number of ECDSA signature verifications.

	// TODO(davec): Don't allow the transaction if the transation fee
	// would be too low to get into an empty block.
	_ = txFee

	// Verify crypto signatures for each input and reject the transaction if
	// any don't verify.
	err = btcchain.ValidateTransactionScripts(tx, &txHash, time.Now(), txStore)
	if err != nil {
		return err
	}

	// TODO(davec): Rate-limit free transactions

	// Add to transaction pool.
	mp.addTransaction(tx, &txHash)

	mp.lock.RLock()
	log.Debugf("[TXMP] Accepted transaction %v (pool size: %v)", txHash,
		len(mp.pool))
	mp.lock.RUnlock()

	// TODO(davec): Notifications

	// Generate the inventory vector and relay it.
	iv := btcwire.NewInvVect(btcwire.InvVect_Tx, &txHash)
	mp.server.RelayInventory(iv)

	return nil
}
Esempio n. 3
0
// maybeAcceptTransaction is the internal function which implements the public
// MaybeAcceptTransaction.  See the comment for MaybeAcceptTransaction for
// more details.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *txMemPool) maybeAcceptTransaction(tx *btcutil.Tx, isOrphan *bool, isNew, rateLimit bool) error {
	if isOrphan != nil {
		*isOrphan = false
	}
	txHash := tx.Sha()

	// Don't accept the transaction if it already exists in the pool.  This
	// applies to orphan transactions as well.  This check is intended to
	// be a quick check to weed out duplicates.
	if mp.haveTransaction(txHash) {
		str := fmt.Sprintf("already have transaction %v", txHash)
		return TxRuleError(str)
	}

	// Perform preliminary sanity checks on the transaction.  This makes
	// use of btcchain which contains the invariant rules for what
	// transactions are allowed into blocks.
	err := btcchain.CheckTransactionSanity(tx)
	if err != nil {
		if _, ok := err.(btcchain.RuleError); ok {
			return TxRuleError(err.Error())
		}
		return err
	}

	// A standalone transaction must not be a coinbase transaction.
	if btcchain.IsCoinBase(tx) {
		str := fmt.Sprintf("transaction %v is an individual coinbase",
			txHash)
		return TxRuleError(str)
	}

	// Don't accept transactions with a lock time after the maximum int32
	// value for now.  This is an artifact of older bitcoind clients which
	// treated this field as an int32 and would treat anything larger
	// incorrectly (as negative).
	if tx.MsgTx().LockTime > math.MaxInt32 {
		str := fmt.Sprintf("transaction %v has a lock time after "+
			"2038 which is not accepted yet", txHash)
		return TxRuleError(str)
	}

	// Get the current height of the main chain.  A standalone transaction
	// will be mined into the next block at best, so it's height is at least
	// one more than the current height.
	_, curHeight, err := mp.server.db.NewestSha()
	if err != nil {
		return err
	}
	nextBlockHeight := curHeight + 1

	// Don't allow non-standard transactions if the network parameters
	// forbid their relaying.
	if !activeNetParams.RelayNonStdTxs {
		err := checkTransactionStandard(tx, nextBlockHeight)
		if err != nil {
			str := fmt.Sprintf("transaction %v is not a standard "+
				"transaction: %v", txHash, err)
			return TxRuleError(str)
		}
	}

	// The transaction may not use any of the same outputs as other
	// transactions already in the pool as that would ultimately result in a
	// double spend.  This check is intended to be quick and therefore only
	// detects double spends within the transaction pool itself.  The
	// transaction could still be double spending coins from the main chain
	// at this point.  There is a more in-depth check that happens later
	// after fetching the referenced transaction inputs from the main chain
	// which examines the actual spend data and prevents double spends.
	err = mp.checkPoolDoubleSpend(tx)
	if err != nil {
		return err
	}

	// Fetch all of the transactions referenced by the inputs to this
	// transaction.  This function also attempts to fetch the transaction
	// itself to be used for detecting a duplicate transaction without
	// needing to do a separate lookup.
	txStore, err := mp.fetchInputTransactions(tx)
	if err != nil {
		return err
	}

	// Don't allow the transaction if it exists in the main chain and is not
	// not already fully spent.
	if txD, exists := txStore[*txHash]; exists && txD.Err == nil {
		for _, isOutputSpent := range txD.Spent {
			if !isOutputSpent {
				return TxRuleError("transaction already exists")
			}
		}
	}
	delete(txStore, *txHash)

	// Transaction is an orphan if any of the inputs don't exist.
	for _, txD := range txStore {
		if txD.Err == btcdb.TxShaMissing {
			if isOrphan != nil {
				*isOrphan = true
			}
			return nil
		}
	}

	// Perform several checks on the transaction inputs using the invariant
	// rules in btcchain for what transactions are allowed into blocks.
	// Also returns the fees associated with the transaction which will be
	// used later.
	txFee, err := btcchain.CheckTransactionInputs(tx, nextBlockHeight, txStore)
	if err != nil {
		if _, ok := err.(btcchain.RuleError); ok {
			return TxRuleError(err.Error())
		}
		return err
	}

	// Don't allow transactions with non-standard inputs if the network
	// parameters forbid their relaying.
	if !activeNetParams.RelayNonStdTxs {
		err := checkInputsStandard(tx, txStore)
		if err != nil {
			str := fmt.Sprintf("transaction %v has a non-standard "+
				"input: %v", txHash, err)
			return TxRuleError(str)
		}
	}

	// NOTE: if you modify this code to accept non-standard transactions,
	// you should add code here to check that the transaction does a
	// reasonable number of ECDSA signature verifications.

	// Don't allow transactions with fees too low to get into a mined block.
	minRequiredFee := calcMinRelayFee(tx)
	if txFee < minRequiredFee {
		str := fmt.Sprintf("transaction %v has %d fees which is under "+
			"the required amount of %d", txHash, txFee,
			minRequiredFee)
		return TxRuleError(str)
	}

	// Free-to-relay transactions are rate limited here to prevent
	// penny-flooding with tiny transactions as a form of attack.
	if rateLimit && minRequiredFee == 0 {
		nowUnix := time.Now().Unix()
		// we decay passed data with an exponentially decaying ~10
		// minutes window - matches bitcoind handling.
		mp.pennyTotal *= math.Pow(1.0-1.0/600.0,
			float64(nowUnix-mp.lastPennyUnix))
		mp.lastPennyUnix = nowUnix

		// Are we still over the limit?
		if mp.pennyTotal >= cfg.FreeTxRelayLimit*10*1000 {
			str := fmt.Sprintf("transaction %v has 0 fees and has "+
				"been rejected by the rate limiter", txHash)
			return TxRuleError(str)
		}
		oldTotal := mp.pennyTotal

		mp.pennyTotal += float64(tx.MsgTx().SerializeSize())
		txmpLog.Tracef("rate limit: curTotal %v, nextTotal: %v, "+
			"limit %v", oldTotal, mp.pennyTotal,
			cfg.FreeTxRelayLimit*10*1000)
	}

	// Verify crypto signatures for each input and reject the transaction if
	// any don't verify.
	err = btcchain.ValidateTransactionScripts(tx, txStore,
		standardScriptVerifyFlags)
	if err != nil {
		return err
	}

	// Add to transaction pool.
	mp.addTransaction(tx, curHeight, txFee)

	txmpLog.Debugf("Accepted transaction %v (pool size: %v)", txHash,
		len(mp.pool))

	// Notify websocket clients about mempool transactions.
	if mp.server.rpcServer != nil {
		mp.server.rpcServer.ntfnMgr.NotifyMempoolTx(tx, isNew)
	}

	return nil
}
Esempio n. 4
0
// maybeAcceptTransaction is the internal function which implements the public
// MaybeAcceptTransaction.  See the comment for MaybeAcceptTransaction for
// more details.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *txMemPool) maybeAcceptTransaction(tx *btcutil.Tx, isOrphan *bool, isNew, rateLimit bool) error {
	if isOrphan != nil {
		*isOrphan = false
	}
	txHash := tx.Sha()

	// Don't accept the transaction if it already exists in the pool.  This
	// applies to orphan transactions as well.  This check is intended to
	// be a quick check to weed out duplicates.
	if mp.haveTransaction(txHash) {
		str := fmt.Sprintf("already have transaction %v", txHash)
		return txRuleError(btcwire.RejectDuplicate, str)
	}

	// Perform preliminary sanity checks on the transaction.  This makes
	// use of btcchain which contains the invariant rules for what
	// transactions are allowed into blocks.
	err := btcchain.CheckTransactionSanity(tx)
	if err != nil {
		if cerr, ok := err.(btcchain.RuleError); ok {
			return chainRuleError(cerr)
		}
		return err
	}

	// A standalone transaction must not be a coinbase transaction.
	if btcchain.IsCoinBase(tx) {
		str := fmt.Sprintf("transaction %v is an individual coinbase",
			txHash)
		return txRuleError(btcwire.RejectInvalid, str)
	}

	// Don't accept transactions with a lock time after the maximum int32
	// value for now.  This is an artifact of older bitcoind clients which
	// treated this field as an int32 and would treat anything larger
	// incorrectly (as negative).
	if tx.MsgTx().LockTime > math.MaxInt32 {
		str := fmt.Sprintf("transaction %v has a lock time after "+
			"2038 which is not accepted yet", txHash)
		return txRuleError(btcwire.RejectNonstandard, str)
	}

	// Get the current height of the main chain.  A standalone transaction
	// will be mined into the next block at best, so it's height is at least
	// one more than the current height.
	_, curHeight, err := mp.server.db.NewestSha()
	if err != nil {
		// This is an unexpected error so don't turn it into a rule
		// error.
		return err
	}
	nextBlockHeight := curHeight + 1

	// Don't allow non-standard transactions if the network parameters
	// forbid their relaying.
	if !activeNetParams.RelayNonStdTxs {
		err := checkTransactionStandard(tx, nextBlockHeight)
		if err != nil {
			// Attempt to extract a reject code from the error so
			// it can be retained.  When not possible, fall back to
			// a non standard error.
			rejectCode, found := extractRejectCode(err)
			if !found {
				rejectCode = btcwire.RejectNonstandard
			}
			str := fmt.Sprintf("transaction %v is not standard: %v",
				txHash, err)
			return txRuleError(rejectCode, str)
		}
	}

	// The transaction may not use any of the same outputs as other
	// transactions already in the pool as that would ultimately result in a
	// double spend.  This check is intended to be quick and therefore only
	// detects double spends within the transaction pool itself.  The
	// transaction could still be double spending coins from the main chain
	// at this point.  There is a more in-depth check that happens later
	// after fetching the referenced transaction inputs from the main chain
	// which examines the actual spend data and prevents double spends.
	err = mp.checkPoolDoubleSpend(tx)
	if err != nil {
		return err
	}

	// Fetch all of the transactions referenced by the inputs to this
	// transaction.  This function also attempts to fetch the transaction
	// itself to be used for detecting a duplicate transaction without
	// needing to do a separate lookup.
	txStore, err := mp.fetchInputTransactions(tx)
	if err != nil {
		if cerr, ok := err.(btcchain.RuleError); ok {
			return chainRuleError(cerr)
		}
		return err
	}

	// Don't allow the transaction if it exists in the main chain and is not
	// not already fully spent.
	if txD, exists := txStore[*txHash]; exists && txD.Err == nil {
		for _, isOutputSpent := range txD.Spent {
			if !isOutputSpent {
				return txRuleError(btcwire.RejectDuplicate,
					"transaction already exists")
			}
		}
	}
	delete(txStore, *txHash)

	// Transaction is an orphan if any of the inputs don't exist.
	for _, txD := range txStore {
		if txD.Err == btcdb.ErrTxShaMissing {
			if isOrphan != nil {
				*isOrphan = true
			}
			return nil
		}
	}

	// Perform several checks on the transaction inputs using the invariant
	// rules in btcchain for what transactions are allowed into blocks.
	// Also returns the fees associated with the transaction which will be
	// used later.
	txFee, err := btcchain.CheckTransactionInputs(tx, nextBlockHeight, txStore)
	if err != nil {
		if cerr, ok := err.(btcchain.RuleError); ok {
			return chainRuleError(cerr)
		}
		return err
	}

	// Don't allow transactions with non-standard inputs if the network
	// parameters forbid their relaying.
	if !activeNetParams.RelayNonStdTxs {
		err := checkInputsStandard(tx, txStore)
		if err != nil {
			// Attempt to extract a reject code from the error so
			// it can be retained.  When not possible, fall back to
			// a non standard error.
			rejectCode, found := extractRejectCode(err)
			if !found {
				rejectCode = btcwire.RejectNonstandard
			}
			str := fmt.Sprintf("transaction %v has a non-standard "+
				"input: %v", txHash, err)
			return txRuleError(rejectCode, str)
		}
	}

	// NOTE: if you modify this code to accept non-standard transactions,
	// you should add code here to check that the transaction does a
	// reasonable number of ECDSA signature verifications.

	// Don't allow transactions with an excessive number of signature
	// operations which would result in making it impossible to mine.  Since
	// the coinbase address itself can contain signature operations, the
	// maximum allowed signature operations per transaction is less than
	// the maximum allowed signature operations per block.
	numSigOps, err := btcchain.CountP2SHSigOps(tx, false, txStore)
	if err != nil {
		if cerr, ok := err.(btcchain.RuleError); ok {
			return chainRuleError(cerr)
		}
		return err
	}
	numSigOps += btcchain.CountSigOps(tx)
	if numSigOps > maxSigOpsPerTx {
		str := fmt.Sprintf("transaction %v has too many sigops: %d > %d",
			txHash, numSigOps, maxSigOpsPerTx)
		return txRuleError(btcwire.RejectNonstandard, str)
	}

	// Don't allow transactions with fees too low to get into a mined block.
	//
	// Most miners allow a free transaction area in blocks they mine to go
	// alongside the area used for high-priority transactions as well as
	// transactions with fees.  A transaction size of up to 1000 bytes is
	// considered safe to go into this section.  Further, the minimum fee
	// calculated below on its own would encourage several small
	// transactions to avoid fees rather than one single larger transaction
	// which is more desirable.  Therefore, as long as the size of the
	// transaction does not exceeed 1000 less than the reserved space for
	// high-priority transactions, don't require a fee for it.
	serializedSize := int64(tx.MsgTx().SerializeSize())
	minFee := calcMinRequiredTxRelayFee(serializedSize)
	if serializedSize >= (defaultBlockPrioritySize-1000) && txFee < minFee {
		str := fmt.Sprintf("transaction %v has %d fees which is under "+
			"the required amount of %d", txHash, txFee,
			minFee)
		return txRuleError(btcwire.RejectInsufficientFee, str)
	}

	// Free-to-relay transactions are rate limited here to prevent
	// penny-flooding with tiny transactions as a form of attack.
	if rateLimit && txFee < minFee {
		nowUnix := time.Now().Unix()
		// we decay passed data with an exponentially decaying ~10
		// minutes window - matches bitcoind handling.
		mp.pennyTotal *= math.Pow(1.0-1.0/600.0,
			float64(nowUnix-mp.lastPennyUnix))
		mp.lastPennyUnix = nowUnix

		// Are we still over the limit?
		if mp.pennyTotal >= cfg.FreeTxRelayLimit*10*1000 {
			str := fmt.Sprintf("transaction %v has been rejected "+
				"by the rate limiter due to low fees", txHash)
			return txRuleError(btcwire.RejectInsufficientFee, str)
		}
		oldTotal := mp.pennyTotal

		mp.pennyTotal += float64(serializedSize)
		txmpLog.Tracef("rate limit: curTotal %v, nextTotal: %v, "+
			"limit %v", oldTotal, mp.pennyTotal,
			cfg.FreeTxRelayLimit*10*1000)
	}

	// Verify crypto signatures for each input and reject the transaction if
	// any don't verify.
	err = btcchain.ValidateTransactionScripts(tx, txStore,
		standardScriptVerifyFlags)
	if err != nil {
		if cerr, ok := err.(btcchain.RuleError); ok {
			return chainRuleError(cerr)
		}
		return err
	}

	// Add to transaction pool.
	mp.addTransaction(tx, curHeight, txFee)

	txmpLog.Debugf("Accepted transaction %v (pool size: %v)", txHash,
		len(mp.pool))

	if mp.server.rpcServer != nil {
		// Notify websocket clients about mempool transactions.
		mp.server.rpcServer.ntfnMgr.NotifyMempoolTx(tx, isNew)

		// Potentially notify any getblocktemplate long poll clients
		// about stale block templates due to the new transaction.
		mp.server.rpcServer.gbtWorkState.NotifyMempoolTx(mp.lastUpdated)
	}

	return nil
}