Esempio n. 1
0
func (ops *OnePassSignature) parse(r io.Reader) (err error) {
	var buf [13]byte

	_, err = readFull(r, buf[:])
	if err != nil {
		return
	}
	if buf[0] != onePassSignatureVersion {
		err = errors.UnsupportedError("one-pass-signature packet version " + strconv.Itoa(int(buf[0])))
	}

	var ok bool
	ops.Hash, ok = s2k.HashIdToHash(buf[2])
	if !ok {
		return errors.UnsupportedError("hash function: " + strconv.Itoa(int(buf[2])))
	}

	ops.SigType = SignatureType(buf[1])
	ops.PubKeyAlgo = PublicKeyAlgorithm(buf[3])
	ops.KeyId = binary.BigEndian.Uint64(buf[4:12])
	ops.IsLast = buf[12] != 0
	return
}
Esempio n. 2
0
func (sig *Signature) parse(r io.Reader) (err error) {
	// RFC 4880, section 5.2.3
	var buf [5]byte
	_, err = readFull(r, buf[:1])
	if err != nil {
		return
	}
	if buf[0] != 4 {
		err = errors.UnsupportedError("signature packet version " + strconv.Itoa(int(buf[0])))
		return
	}

	_, err = readFull(r, buf[:5])
	if err != nil {
		return
	}
	sig.SigType = SignatureType(buf[0])
	sig.PubKeyAlgo = PublicKeyAlgorithm(buf[1])
	switch sig.PubKeyAlgo {
	case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly, PubKeyAlgoDSA, PubKeyAlgoECDSA:
	default:
		err = errors.UnsupportedError("public key algorithm " + strconv.Itoa(int(sig.PubKeyAlgo)))
		return
	}

	var ok bool
	sig.Hash, ok = s2k.HashIdToHash(buf[2])
	if !ok {
		return errors.UnsupportedError("hash function " + strconv.Itoa(int(buf[2])))
	}

	hashedSubpacketsLength := int(buf[3])<<8 | int(buf[4])
	l := 6 + hashedSubpacketsLength
	sig.HashSuffix = make([]byte, l+6)
	sig.HashSuffix[0] = 4
	copy(sig.HashSuffix[1:], buf[:5])
	hashedSubpackets := sig.HashSuffix[6:l]
	_, err = readFull(r, hashedSubpackets)
	if err != nil {
		return
	}
	// See RFC 4880, section 5.2.4
	trailer := sig.HashSuffix[l:]
	trailer[0] = 4
	trailer[1] = 0xff
	trailer[2] = uint8(l >> 24)
	trailer[3] = uint8(l >> 16)
	trailer[4] = uint8(l >> 8)
	trailer[5] = uint8(l)

	err = parseSignatureSubpackets(sig, hashedSubpackets, true)
	if err != nil {
		return
	}

	_, err = readFull(r, buf[:2])
	if err != nil {
		return
	}
	unhashedSubpacketsLength := int(buf[0])<<8 | int(buf[1])
	unhashedSubpackets := make([]byte, unhashedSubpacketsLength)
	_, err = readFull(r, unhashedSubpackets)
	if err != nil {
		return
	}
	err = parseSignatureSubpackets(sig, unhashedSubpackets, false)
	if err != nil {
		return
	}

	_, err = readFull(r, sig.HashTag[:2])
	if err != nil {
		return
	}

	switch sig.PubKeyAlgo {
	case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
		sig.RSASignature.bytes, sig.RSASignature.bitLength, err = readMPI(r)
	case PubKeyAlgoDSA:
		sig.DSASigR.bytes, sig.DSASigR.bitLength, err = readMPI(r)
		if err == nil {
			sig.DSASigS.bytes, sig.DSASigS.bitLength, err = readMPI(r)
		}
	case PubKeyAlgoECDSA:
		sig.ECDSASigR.bytes, sig.ECDSASigR.bitLength, err = readMPI(r)
		if err == nil {
			sig.ECDSASigS.bytes, sig.ECDSASigS.bitLength, err = readMPI(r)
		}
	default:
		panic("unreachable")
	}
	return
}
Esempio n. 3
0
func (sig *SignatureV3) parse(r io.Reader) (err error) {
	// RFC 4880, section 5.2.2
	var buf [8]byte
	if _, err = readFull(r, buf[:1]); err != nil {
		return
	}
	if buf[0] < 2 || buf[0] > 3 {
		err = errors.UnsupportedError("signature packet version " + strconv.Itoa(int(buf[0])))
		return
	}
	if _, err = readFull(r, buf[:1]); err != nil {
		return
	}
	if buf[0] != 5 {
		err = errors.UnsupportedError(
			"invalid hashed material length " + strconv.Itoa(int(buf[0])))
		return
	}

	// Read hashed material: signature type + creation time
	if _, err = readFull(r, buf[:5]); err != nil {
		return
	}
	sig.SigType = SignatureType(buf[0])
	t := binary.BigEndian.Uint32(buf[1:5])
	sig.CreationTime = time.Unix(int64(t), 0)

	// Eight-octet Key ID of signer.
	if _, err = readFull(r, buf[:8]); err != nil {
		return
	}
	sig.IssuerKeyId = binary.BigEndian.Uint64(buf[:])

	// Public-key and hash algorithm
	if _, err = readFull(r, buf[:2]); err != nil {
		return
	}
	sig.PubKeyAlgo = PublicKeyAlgorithm(buf[0])
	switch sig.PubKeyAlgo {
	case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly, PubKeyAlgoDSA:
	default:
		err = errors.UnsupportedError("public key algorithm " + strconv.Itoa(int(sig.PubKeyAlgo)))
		return
	}
	var ok bool
	if sig.Hash, ok = s2k.HashIdToHash(buf[1]); !ok {
		return errors.UnsupportedError("hash function " + strconv.Itoa(int(buf[2])))
	}

	// Two-octet field holding left 16 bits of signed hash value.
	if _, err = readFull(r, sig.HashTag[:2]); err != nil {
		return
	}

	switch sig.PubKeyAlgo {
	case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
		sig.RSASignature.bytes, sig.RSASignature.bitLength, err = readMPI(r)
	case PubKeyAlgoDSA:
		if sig.DSASigR.bytes, sig.DSASigR.bitLength, err = readMPI(r); err != nil {
			return
		}
		sig.DSASigS.bytes, sig.DSASigS.bitLength, err = readMPI(r)
	default:
		panic("unreachable")
	}
	return
}
Esempio n. 4
0
// Encrypt encrypts a message to a number of recipients and, optionally, signs
// it. hints contains optional information, that is also encrypted, that aids
// the recipients in processing the message. The resulting WriteCloser must
// be closed after the contents of the file have been written.
// If config is nil, sensible defaults will be used.
func Encrypt(ciphertext io.Writer, to []*Entity, signed *Entity, hints *FileHints, config *packet.Config) (plaintext io.WriteCloser, err error) {
	var signer *packet.PrivateKey
	if signed != nil {
		signKey, ok := signed.signingKey(config.Now())
		if !ok {
			return nil, errors.InvalidArgumentError("no valid signing keys")
		}
		signer = signKey.PrivateKey
		if signer == nil {
			return nil, errors.InvalidArgumentError("no private key in signing key")
		}
		if signer.Encrypted {
			return nil, errors.InvalidArgumentError("signing key must be decrypted")
		}
	}

	// These are the possible ciphers that we'll use for the message.
	candidateCiphers := []uint8{
		uint8(packet.CipherAES128),
		uint8(packet.CipherAES256),
		uint8(packet.CipherCAST5),
	}
	// These are the possible hash functions that we'll use for the signature.
	candidateHashes := []uint8{
		hashToHashId(crypto.SHA256),
		hashToHashId(crypto.SHA512),
		hashToHashId(crypto.SHA1),
		hashToHashId(crypto.RIPEMD160),
	}
	// In the event that a recipient doesn't specify any supported ciphers
	// or hash functions, these are the ones that we assume that every
	// implementation supports.
	defaultCiphers := candidateCiphers[len(candidateCiphers)-1:]
	defaultHashes := candidateHashes[len(candidateHashes)-1:]

	encryptKeys := make([]Key, len(to))
	for i := range to {
		var ok bool
		encryptKeys[i], ok = to[i].encryptionKey(config.Now())
		if !ok {
			return nil, errors.InvalidArgumentError("cannot encrypt a message to key id " + strconv.FormatUint(to[i].PrimaryKey.KeyId, 16) + " because it has no encryption keys")
		}

		sig := to[i].primaryIdentity().SelfSignature

		preferredSymmetric := sig.PreferredSymmetric
		if len(preferredSymmetric) == 0 {
			preferredSymmetric = defaultCiphers
		}
		preferredHashes := sig.PreferredHash
		if len(preferredHashes) == 0 {
			preferredHashes = defaultHashes
		}
		candidateCiphers = intersectPreferences(candidateCiphers, preferredSymmetric)
		candidateHashes = intersectPreferences(candidateHashes, preferredHashes)
	}

	if len(candidateCiphers) == 0 || len(candidateHashes) == 0 {
		return nil, errors.InvalidArgumentError("cannot encrypt because recipient set shares no common algorithms")
	}

	cipher := packet.CipherFunction(candidateCiphers[0])
	// If the cipher specifed by config is a candidate, we'll use that.
	configuredCipher := config.Cipher()
	for _, c := range candidateCiphers {
		cipherFunc := packet.CipherFunction(c)
		if cipherFunc == configuredCipher {
			cipher = cipherFunc
			break
		}
	}

	var hash crypto.Hash
	for _, hashId := range candidateHashes {
		if h, ok := s2k.HashIdToHash(hashId); ok && h.Available() {
			hash = h
			break
		}
	}

	// If the hash specified by config is a candidate, we'll use that.
	if configuredHash := config.Hash(); configuredHash.Available() {
		for _, hashId := range candidateHashes {
			if h, ok := s2k.HashIdToHash(hashId); ok && h == configuredHash {
				hash = h
				break
			}
		}
	}

	if hash == 0 {
		hashId := candidateHashes[0]
		name, ok := s2k.HashIdToString(hashId)
		if !ok {
			name = "#" + strconv.Itoa(int(hashId))
		}
		return nil, errors.InvalidArgumentError("cannot encrypt because no candidate hash functions are compiled in. (Wanted " + name + " in this case.)")
	}

	symKey := make([]byte, cipher.KeySize())
	if _, err := io.ReadFull(config.Random(), symKey); err != nil {
		return nil, err
	}

	for _, key := range encryptKeys {
		if err := packet.SerializeEncryptedKey(ciphertext, key.PublicKey, cipher, symKey, config); err != nil {
			return nil, err
		}
	}

	encryptedData, err := packet.SerializeSymmetricallyEncrypted(ciphertext, cipher, symKey, config)
	if err != nil {
		return
	}

	if signer != nil {
		ops := &packet.OnePassSignature{
			SigType:    packet.SigTypeBinary,
			Hash:       hash,
			PubKeyAlgo: signer.PubKeyAlgo,
			KeyId:      signer.KeyId,
			IsLast:     true,
		}
		if err := ops.Serialize(encryptedData); err != nil {
			return nil, err
		}
	}

	if hints == nil {
		hints = &FileHints{}
	}

	w := encryptedData
	if signer != nil {
		// If we need to write a signature packet after the literal
		// data then we need to stop literalData from closing
		// encryptedData.
		w = noOpCloser{encryptedData}

	}
	var epochSeconds uint32
	if !hints.ModTime.IsZero() {
		epochSeconds = uint32(hints.ModTime.Unix())
	}
	literalData, err := packet.SerializeLiteral(w, hints.IsBinary, hints.FileName, epochSeconds)
	if err != nil {
		return nil, err
	}

	if signer != nil {
		return signatureWriter{encryptedData, literalData, hash, hash.New(), signer, config}, nil
	}
	return literalData, nil
}