/* If the input argument type is greater than NULL, we return the complement of its Truth() method's return type. If Null or missing return the argument itself. */ func (this *Not) Apply(context Context, arg value.Value) (value.Value, error) { if arg.Type() > value.NULL { return value.NewValue(!arg.Truth()), nil } else { return arg, nil } }
/* Aggregate distinct intermediate results and return them. If no partial result exists(its value is a null) return the cumulative value. If the cumulative input value is null, return the partial value. Get the input partial and cumulative sets and add the smaller set to the bigger. Return this set. */ func cumulateSets(part, cumulative value.Value) (value.Value, error) { if part.Type() == value.NULL { return cumulative, nil } else if cumulative.Type() == value.NULL { return part, nil } pset, e := getSet(part) if e != nil { return nil, e } cset, e := getSet(cumulative) if e != nil { return nil, e } // Add smaller set to bigger var smaller, bigger *value.Set if pset.Len() <= cset.Len() { smaller, bigger = pset, cset } else { smaller, bigger = cset, pset } for _, v := range smaller.Values() { bigger.Add(v) } cumulative.(value.AnnotatedValue).SetAttachment("set", bigger) return cumulative, nil }
/* This method evaluates the Field using the first and second value and returns the result value. If the second operand type is a missing return a missing value. If it is a string, and the field is case insensitive, then convert the second operand to lower case, range through the fields of the first and compare, each field with the second. When equal, return the value. If the field is case sensitive, use the Field method to directly access the field and return it. For all other types, if the first operand expression is missing, return missing, else return null. */ func (this *Field) Apply(context Context, first, second value.Value) (value.Value, error) { switch second.Type() { case value.STRING: s := second.Actual().(string) v, ok := first.Field(s) if !ok && this.caseInsensitive { s = strings.ToLower(s) fields := first.Fields() for f, val := range fields { if s == strings.ToLower(f) { return value.NewValue(val), nil } } } return v, nil case value.MISSING: return value.MISSING_VALUE, nil default: if first.Type() == value.MISSING { return value.MISSING_VALUE, nil } else { return value.NULL_VALUE, nil } } }
/* This method returns an object value. The input of types missing, null and object return themselves. For all other values, return an _EMPTY_OBJECT value. */ func (this *ToObject) Apply(context Context, arg value.Value) (value.Value, error) { switch arg.Type() { case value.MISSING, value.NULL, value.OBJECT: return arg, nil } return _EMPTY_OBJECT, nil }
/* Return the neagation of the input value, if the type of input is a number. For missing return a missing value, and for all other input types return a null. */ func (this *Neg) Apply(context Context, arg value.Value) (value.Value, error) { if arg.Type() == value.NUMBER { return value.NewValue(-arg.Actual().(float64)), nil } else if arg.Type() == value.MISSING { return value.MISSING_VALUE, nil } else { return value.NULL_VALUE, nil } }
/* This method takes in an operand value and context and returns a value. If the type of operand is missing then return it. Call MarshalJSON to get the bytes, and then use Go's encoding/base64 package to encode the bytes to string. Create a newValue using the string and return it. */ func (this *Base64) Apply(context Context, operand value.Value) (value.Value, error) { if operand.Type() == value.MISSING { return operand, nil } bytes, _ := operand.MarshalJSON() // Ignore errors from BINARY values str := base64.StdEncoding.EncodeToString(bytes) return value.NewValue(str), nil }
/* It returns the argument itself if type of the input value is Null, a value below this (N!QL order) or an Array. Otherwise convert the argument to a valid Go type ang cast it to a slice of interface. */ func (this *ToArray) Apply(context Context, arg value.Value) (value.Value, error) { if arg.Type() <= value.NULL { return arg, nil } else if arg.Type() == value.ARRAY { return arg, nil } return value.NewValue([]interface{}{arg.Actual()}), nil }
/* This method takes in an argument value and returns a lowercase string as value. If the input type is missing return missing, and if it isnt string then return null value. Use the ToLower method to convert the string to lower case on a valid Go type from the Actual method on the argument value. Return this lower case string as Value. */ func (this *Lower) Apply(context Context, arg value.Value) (value.Value, error) { if arg.Type() == value.MISSING { return value.MISSING_VALUE, nil } else if arg.Type() != value.STRING { return value.NULL_VALUE, nil } rv := strings.ToLower(arg.Actual().(string)) return value.NewValue(rv), nil }
/* This method returns true if he value is an array and contains at least one element. This is done by checking the length of the array. If the type of input value is missing then return a missing value, and for all other types return null. */ func (this *Exists) Apply(context Context, arg value.Value) (value.Value, error) { if arg.Type() == value.ARRAY { a := arg.Actual().([]interface{}) return value.NewValue(len(a) > 0), nil } else if arg.Type() == value.MISSING { return value.MISSING_VALUE, nil } else { return value.NULL_VALUE, nil } }
/* Evaluates the Is Null comparison operation for expressions. If the type of input argument is a null value, return true, if missing return a missing value and by for all other types return a false value. */ func (this *IsNull) Apply(context Context, arg value.Value) (value.Value, error) { switch arg.Type() { case value.NULL: return value.TRUE_VALUE, nil case value.MISSING: return value.MISSING_VALUE, nil default: return value.FALSE_VALUE, nil } }
/* It returns a string based on the input expr value. Values missing, null and strings return themselves. False, true (boolean) and numbers return their string representation. This is done using the Sprint method defined in fmt for Go. All other values map to null. */ func (this *ToString) Apply(context Context, arg value.Value) (value.Value, error) { switch arg.Type() { case value.MISSING, value.NULL, value.STRING: return arg, nil case value.BOOLEAN, value.NUMBER: return value.NewValue(fmt.Sprint(arg.Actual())), nil default: return value.NULL_VALUE, nil } }
/* This method returns the length of the input array using the len method. If the input value is of type missing return a missing value, and for all non array values return null. */ func (this *ArrayLength) Apply(context Context, arg value.Value) (value.Value, error) { if arg.Type() == value.MISSING { return value.MISSING_VALUE, nil } else if arg.Type() != value.ARRAY { return value.NULL_VALUE, nil } aa := arg.Actual().([]interface{}) return value.NewValue(float64(len(aa))), nil }
/* This method takes in an argument value and returns its length as value. If the input type is missing return missing, and if it isnt string then return null value. Use the len method to return the length of the input string. Convert it into valid N1QL value and return. */ func (this *Length) Apply(context Context, arg value.Value) (value.Value, error) { if arg.Type() == value.MISSING { return value.MISSING_VALUE, nil } else if arg.Type() != value.STRING { return value.NULL_VALUE, nil } rv := len(arg.Actual().(string)) return value.NewValue(float64(rv)), nil }
/* This method returns the length of the object. If the type of input is missing then return a missing value, and if not an object return a null value. Convert it to a valid Go type. Cast it to a map from string to interface and return its length by using the len function by casting it to float64. */ func (this *ObjectLength) Apply(context Context, arg value.Value) (value.Value, error) { if arg.Type() == value.MISSING { return value.MISSING_VALUE, nil } else if arg.Type() != value.OBJECT { return value.NULL_VALUE, nil } oa := arg.Actual().(map[string]interface{}) return value.NewValue(float64(len(oa))), nil }
func (this *Sum) CumulateInitial(item, cumulative value.Value, context Context) (value.Value, error) { item, e := this.Operand().Evaluate(item, context) if e != nil { return nil, e } if item.Type() != value.NUMBER { return cumulative, nil } return this.cumulatePart(item, cumulative, context) }
/* This method takes in an operand value and context and returns a value. If the type of operand is missing then return it. If the operand type is AnnotatedValue then we call NewValue using the GetAttachment method on the operand with input string meta. In the event the there is no attachment present, the default case is to return a NULL value. */ func (this *Meta) Apply(context Context, operand value.Value) (value.Value, error) { if operand.Type() == value.MISSING { return operand, nil } switch operand := operand.(type) { case value.AnnotatedValue: return value.NewValue(operand.GetAttachment("meta")), nil default: return value.NULL_VALUE, nil } }
/* Aggregates input data by evaluating operands.For all values other than Number, return the input value itself. Call setAdd to compute the intermediate aggregate value and return it. */ func (this *AvgDistinct) CumulateInitial(item, cumulative value.Value, context Context) (value.Value, error) { item, e := this.Operand().Evaluate(item, context) if e != nil { return nil, e } if item.Type() != value.NUMBER { return cumulative, nil } return setAdd(item, cumulative) }
/* This method sorts the input array value, in N1QL collation order. It uses the Sort method in the sort package. If the input value is of type missing return a missing value, and for all non array values return null. */ func (this *ArraySort) Apply(context Context, arg value.Value) (value.Value, error) { if arg.Type() == value.MISSING { return value.MISSING_VALUE, nil } else if arg.Type() != value.ARRAY { return value.NULL_VALUE, nil } cv := arg.Copy() sorter := value.NewSorter(cv) sort.Sort(sorter) return cv, nil }
/* Aggregates input data by evaluating operands. For missing item values, return the input value itself. Call cumulatePart to compute the intermediate aggregate value and return it. */ func (this *ArrayAgg) CumulateInitial(item, cumulative value.Value, context Context) (value.Value, error) { item, e := this.Operand().Evaluate(item, context) if e != nil { return nil, e } if item.Type() <= value.MISSING { return cumulative, nil } return this.cumulatePart(value.NewValue([]interface{}{item}), cumulative, context) }
/* Aggregates input data by evaluating operands. For all values other than Number, return the input value itself. Call cumulatePart to compute the intermediate aggregate value and return it. */ func (this *Avg) CumulateInitial(item, cumulative value.Value, context Context) (value.Value, error) { item, e := this.Operand().Evaluate(item, context) if e != nil { return nil, e } if item.Type() != value.NUMBER { return cumulative, nil } part := value.NewValue(map[string]interface{}{"sum": item.Actual(), "count": 1}) return this.cumulatePart(part, cumulative, context) }
/* This method takes in two values and returns a value that corresponds to the first position of the regular expression pattern (already set or populated using the second value) in the first string value, or -1 if it isnt found. If the input type is missing return missing, and if it isnt string then return null value. Use the FindStringIndex method in the regexp package to return a two-element slice of integers defining the location of the leftmost match in the string of the regular expression as per the Go Docs. Return the first element of this slice as a value. If a FindStringIndex returns nil, then the regexp pattern isnt found. Hence return -1. */ func (this *RegexpPosition) Apply(context Context, first, second value.Value) (value.Value, error) { if first.Type() == value.MISSING || second.Type() == value.MISSING { return value.MISSING_VALUE, nil } else if first.Type() != value.STRING || second.Type() != value.STRING { return value.NULL_VALUE, nil } f := first.Actual().(string) s := second.Actual().(string) re := this.re if re == nil { var err error re, err = regexp.Compile(s) if err != nil { return nil, err } } loc := re.FindStringIndex(f) if loc == nil { return value.NewValue(-1.0), nil } return value.NewValue(float64(loc[0])), nil }
/* Aggregates input data by evaluating operands. For missing and null values return the input value itself. Call cumulatePart to compute the intermediate aggregate value and return it. */ func (this *Count) CumulateInitial(item, cumulative value.Value, context Context) (value.Value, error) { if this.Operand() != nil { item, e := this.Operand().Evaluate(item, context) if e != nil { return nil, e } if item.Type() <= value.NULL { return cumulative, nil } } return this.cumulatePart(value.ONE_VALUE, cumulative, context) }
/* This method returns the input array with distinct elements. If the input value is of type missing return a missing value, and for all non array values return null. Create a new set and add all distinct values to the set. Return it. */ func (this *ArrayDistinct) Apply(context Context, arg value.Value) (value.Value, error) { if arg.Type() == value.MISSING { return value.MISSING_VALUE, nil } else if arg.Type() != value.ARRAY { return value.NULL_VALUE, nil } aa := arg.Actual().([]interface{}) set := value.NewSet(len(aa)) for _, a := range aa { set.Add(value.NewValue(a)) } return value.NewValue(set.Actuals()), nil }
/* This method evaluates the input value and returns the length based on its type. If the input argument is a missing then return a missing value. Convert it to a valid Go type. If it is a string slice of interfaces or object then return its length cast as a number float64. By default return a null value. */ func (this *PolyLength) Apply(context Context, arg value.Value) (value.Value, error) { if arg.Type() == value.MISSING { return value.MISSING_VALUE, nil } switch oa := arg.Actual().(type) { case string: return value.NewValue(float64(len(oa))), nil case []interface{}: return value.NewValue(float64(len(oa))), nil case map[string]interface{}: return value.NewValue(float64(len(oa))), nil default: return value.NULL_VALUE, nil } }
/* This method evaluates the less than equal to condition and returns a value representing if the two operands satisfy the condition or not. If either of the input operands are missing, return missing value, and if they are null, then return null value. For all other types call the Collate method and check if it is less than equal to 0 for the two values. If it is, then return true. */ func (this *LE) Apply(context Context, first, second value.Value) (value.Value, error) { if first.Type() == value.MISSING || second.Type() == value.MISSING { return value.MISSING_VALUE, nil } else if first.Type() == value.NULL || second.Type() == value.NULL { return value.NULL_VALUE, nil } return value.NewValue(first.Collate(second) <= 0), nil }
/* This method ranges through the array and returns the first non null value in the array. It returns missing if input type is missing and null for non array values. */ func (this *ArrayIfNull) Apply(context Context, arg value.Value) (value.Value, error) { if arg.Type() == value.MISSING { return value.MISSING_VALUE, nil } else if arg.Type() != value.ARRAY { return value.NULL_VALUE, nil } aa := arg.Actual().([]interface{}) for _, a := range aa { v := value.NewValue(a) if v.Type() > value.NULL { return v, nil } } return value.NULL_VALUE, nil }
/* This method reverses the input array value and returns it. If the input value is of type missing return a missing value, and for all non array values return null. Range through the array and add it to a new slice in reverse. */ func (this *ArrayReverse) Apply(context Context, arg value.Value) (value.Value, error) { if arg.Type() == value.MISSING { return value.MISSING_VALUE, nil } else if arg.Type() != value.ARRAY { return value.NULL_VALUE, nil } aa := arg.Actual().([]interface{}) n := len(aa) ra := make([]interface{}, n) n-- for i, _ := range aa { ra[i] = aa[n-i] } return value.NewValue(ra), nil }
/* Evaluate the difference for the first and second input values to return a value. If both values are numbers, calculate the difference and return it. If either of the expressions are missing then return a missing value. For all other cases return a null value. */ func (this *Sub) Apply(context Context, first, second value.Value) (value.Value, error) { if first.Type() == value.NUMBER && second.Type() == value.NUMBER { diff := first.Actual().(float64) - second.Actual().(float64) return value.NewValue(diff), nil } else if first.Type() == value.MISSING || second.Type() == value.MISSING { return value.MISSING_VALUE, nil } else { return value.NULL_VALUE, nil } }
/* This method takes in two values and returns new value that returns a boolean value that depicts if the second value is contained within the first. If either of the input values are missing, return a missing value, and if they arent strings then return a null value. Use the Contains method from the string package to return a boolean value that is true if substring (second) is within the string(first). */ func (this *Contains) Apply(context Context, first, second value.Value) (value.Value, error) { if first.Type() == value.MISSING || second.Type() == value.MISSING { return value.MISSING_VALUE, nil } else if first.Type() != value.STRING || second.Type() != value.STRING { return value.NULL_VALUE, nil } rv := strings.Contains(first.Actual().(string), second.Actual().(string)) return value.NewValue(rv), nil }
/* This method takes in two values and returns a value that corresponds to the second expressions position in the first. If the input type is missing return missing, and if it isnt string then return null value. Use the Index method defined by the strings package to calculate the offset position of the second string. Return that value. */ func (this *Position) Apply(context Context, first, second value.Value) (value.Value, error) { if first.Type() == value.MISSING || second.Type() == value.MISSING { return value.MISSING_VALUE, nil } else if first.Type() != value.STRING || second.Type() != value.STRING { return value.NULL_VALUE, nil } rv := strings.Index(first.Actual().(string), second.Actual().(string)) return value.NewValue(float64(rv)), nil }