func TestUnpackOptions(t *testing.T) { var p tcp.Packet var b packet.Buffer b.Init(test_options) err := p.Unpack(&b) if err != nil { t.Fatalf("Error unpacking: %s", err) } if len(p.Options) != 4 { t.Fatalf("Options number mismatch: %d", len(p.Options)) } if p.Options[0].Type != tcp.MSS { t.Fatalf("Option MSS mismatch: %x", p.Options[0].Data) } if p.Options[1].Type != tcp.SAckOk { t.Fatalf("Option SAckOk mismatch: %x", p.Options[1].Data) } if p.Options[2].Type != tcp.Timestamp { t.Fatalf("Option Timestamp mismatch: %x", p.Options[2].Data) } if p.Options[3].Type != tcp.WindowScale { t.Fatalf("Option WindowScale mismatch: %x", p.Options[3].Data) } }
func BenchmarkUnpack(bn *testing.B) { var p eth.Packet var b packet.Buffer for n := 0; n < bn.N; n++ { b.Init(test_simple) p.Unpack(&b) } }
func BenchmarkPack(bn *testing.B) { var b packet.Buffer b.Init(make([]byte, len(test_simple))) p := MakeTestSimple() for n := 0; n < bn.N; n++ { p.Pack(&b) } }
func (p *Packet) Pack(buf *packet.Buffer) error { tci := uint16(p.Priority)<<13 | p.VLAN if p.DropEligible { tci |= 0x10 } buf.WriteN(tci) buf.WriteN(p.Type) return nil }
func (p *Packet) Unpack(buf *packet.Buffer) error { var tci uint16 buf.ReadN(&tci) p.Priority = (uint8(tci>>8) & 0xE0) >> 5 p.DropEligible = uint8(tci)&0x10 != 0 p.VLAN = tci & 0x0FFF buf.ReadN(&p.Type) return nil }
func (p *Packet) Pack(buf *packet.Buffer) error { buf.WriteN(byte(p.Type)) buf.WriteN(byte(p.Code)) buf.WriteN(uint16(0x00)) buf.WriteN(p.Body) if p.csum_seed != 0 { p.Checksum = ipv4.CalculateChecksum(buf.LayerBytes(), p.csum_seed) buf.PutUint16N(2, p.Checksum) } return nil }
func (p *Packet) Unpack(buf *packet.Buffer) error { p.DstAddr = net.HardwareAddr(buf.Next(6)) p.SrcAddr = net.HardwareAddr(buf.Next(6)) buf.ReadN(&p.Type) if p.Type < 0x0600 { p.Length = uint16(p.Type) p.Type = LLC } return nil }
func (p *Packet) Pack(buf *packet.Buffer) error { buf.WriteN(p.Type) buf.WriteN(p.AddrType) buf.WriteN(p.AddrLen) buf.WriteN(p.SrcAddr) for i := 0; i < 8-int(p.AddrLen); i++ { buf.WriteN(uint8(0x00)) } buf.WriteN(p.EtherType) return nil }
func (p *Packet) Unpack(buf *packet.Buffer) error { buf.ReadN(&p.DSAP) buf.ReadN(&p.SSAP) if buf.Bytes()[:1][0]&0x1 == 0 || buf.Bytes()[:1][0]&0x3 == 0x1 { buf.ReadN(&p.Control) } else { var ctrl uint8 buf.ReadN(&ctrl) p.Control = uint16(ctrl) } return nil }
func TestUnpack(t *testing.T) { var p eth.Packet cmp := MakeTestSimple() var b packet.Buffer b.Init(test_simple) err := p.Unpack(&b) if err != nil { t.Fatalf("Error unpacking: %s", err) } if !p.Equals(cmp) { t.Fatalf("Packet mismatch:\n%s\n%s", &p, cmp) } }
func TestPackWithIPv4(t *testing.T) { var b packet.Buffer b.Init(make([]byte, len(test_with_ipv4))) ip4 := ipv4.Make() ip4.SrcAddr = net.ParseIP(ipsrc_str) ip4.DstAddr = net.ParseIP(ipdst_str) udp := &udp.Packet{ SrcPort: 52134, DstPort: 80, Length: 18, } ip4.SetPayload(udp) err := udp.Pack(&b) if err != nil { t.Fatalf("Error packing: %s", err) } if !bytes.Equal(test_with_ipv4, b.Buffer()) { t.Fatalf("Raw packet mismatch: %x", b.Buffer()) } }
// Unpack the given byte slice into the packet list supplied. Note that this // will not check whether the packet types provided match the raw data. If the // packet types to be decoded are unknown, UnpackAll() should be used instead. // // Note that unpacking is done without copying the input slice, which means that // if the slice is modifed, it may affect the packets that where unpacked from // it. If you can't guarantee that the data slice won't change, you'll need to // copy it and pass the copy to Unpack(). func Unpack(buf []byte, pkts ...packet.Packet) (packet.Packet, error) { var b packet.Buffer b.Init(buf) prev_pkt := packet.Packet(nil) for _, p := range pkts { if b.Len() <= 0 { break } b.NewLayer() err := p.Unpack(&b) if err != nil { return nil, err } if prev_pkt != nil { prev_pkt.SetPayload(p) } if p.GuessPayloadType() == packet.None { break } prev_pkt = p } return pkts[0], nil }
func TestUnpackWithIPv6(t *testing.T) { var p icmpv6.Packet cmp := MakeTestSimple() cmp.Checksum = 0x5bed var b packet.Buffer b.Init(test_with_ipv6) err := p.Unpack(&b) if err != nil { t.Fatalf("Error unpacking: %s", err) } if !p.Equals(cmp) { t.Fatalf("Packet mismatch:\n%s\n%s", &p, cmp) } }
func (p *Packet) Unpack(buf *packet.Buffer) error { buf.ReadN(&p.Type) buf.ReadN(&p.Code) buf.ReadN(&p.Checksum) buf.ReadN(&p.Id) buf.ReadN(&p.Seq) /* TODO: data */ return nil }
func (p *Packet) Pack(buf *packet.Buffer) error { buf.WriteN(p.SrcPort) buf.WriteN(p.DstPort) buf.WriteN(p.Length) if p.csum_seed != 0 { p.Checksum = ipv4.CalculateChecksum(buf.LayerBytes(), p.csum_seed) } buf.WriteN(p.Checksum) return nil }
func TestPackOptions(t *testing.T) { var b packet.Buffer b.Init(make([]byte, len(test_options))) p := MakeTestSimple() p.DataOff = 10 p.Options = append(p.Options, tcp.Option{ Type: tcp.MSS, Len: 4, Data: []byte{0x05, 0x78}, }, ) p.Options = append(p.Options, tcp.Option{ Type: tcp.SAckOk, Len: 2, }, ) p.Options = append(p.Options, tcp.Option{ Type: tcp.Timestamp, Len: 10, Data: []byte{0x61, 0x25, 0xE5, 0xB2, 0x00, 0x13, 0x15, 0x66}, }, ) p.Options = append(p.Options, tcp.Option{ Type: tcp.WindowScale, Len: 3, Data: []byte{0x0A}, }, ) p.Options = append(p.Options, tcp.Option{ Type: tcp.End, }, ) err := p.Pack(&b) if err != nil { t.Fatalf("Error packing: %s", err) } if !bytes.Equal(test_options, b.Buffer()) { t.Fatalf("Raw packet mismatch: %x", b.Buffer()) } }
func (p *Packet) Unpack(buf *packet.Buffer) error { buf.ReadN(&p.SrcPort) buf.ReadN(&p.DstPort) buf.ReadN(&p.Length) buf.ReadN(&p.Checksum) return nil }
func TestPack(t *testing.T) { var b packet.Buffer b.Init(make([]byte, len(test_simple))) p := MakeTestSimple() err := p.Pack(&b) if err != nil { t.Fatalf("Error packing: %s", err) } if !bytes.Equal(test_simple, b.Buffer()) { t.Fatalf("Raw packet mismatch: %x", b.Buffer()) } }
func (p *Packet) Pack(buf *packet.Buffer) error { buf.Write(p.DstAddr) buf.Write(p.SrcAddr) if p.Type != LLC { buf.WriteN(p.Type) } else { buf.WriteN(p.Length) } return nil }
func (p *Packet) Pack(buf *packet.Buffer) error { buf.WriteN(p.DSAP) buf.WriteN(p.SSAP) if p.Control&0x1 == 0 || p.Control&0x3 == 0x1 { buf.WriteN(p.Control) } else { buf.WriteN(uint8(p.Control)) } return nil }
func TestPackWithIPv6(t *testing.T) { var b packet.Buffer b.Init(make([]byte, len(test_with_ipv6))) ip6 := ipv6.Make() ip6.SrcAddr = net.ParseIP(ipsrc_str) ip6.DstAddr = net.ParseIP(ipdst_str) icmp6 := MakeTestSimple() ip6.SetPayload(icmp6) err := icmp6.Pack(&b) if err != nil { t.Fatalf("Error packing: %s", err) } if !bytes.Equal(test_with_ipv6, b.Buffer()) { t.Fatalf("Raw packet mismatch: %x", b.Buffer()) } }
// Pack packets into their binary form. This will stack the packets before // encoding them (see the Compose() method) and also calculate the checksums. func Pack(pkts ...packet.Packet) ([]byte, error) { var buf packet.Buffer base_pkt, err := Compose(pkts...) if err != nil { return nil, err } tot_len := int(base_pkt.GetLength()) buf.Init(make([]byte, tot_len)) for i := len(pkts) - 1; i >= 0; i-- { cur_pkt := pkts[i] cur_len := int(cur_pkt.GetLength()) buf.SetOffset(tot_len - cur_len) buf.NewLayer() err := cur_pkt.Pack(&buf) if err != nil { return nil, err } } buf.SetOffset(0) return buf.Bytes(), nil }
func (p *Packet) Unpack(buf *packet.Buffer) error { buf.ReadN(&p.SrcPort) buf.ReadN(&p.DstPort) buf.ReadN(&p.Seq) buf.ReadN(&p.Ack) var offns uint8 buf.ReadN(&offns) p.DataOff = offns >> 4 if offns&0x01 != 0 { p.Flags |= NS } var flags uint8 buf.ReadN(&flags) if flags&0x01 != 0 { p.Flags |= Fin } if flags&0x02 != 0 { p.Flags |= Syn } if flags&0x04 != 0 { p.Flags |= Rst } if flags&0x08 != 0 { p.Flags |= PSH } if flags&0x10 != 0 { p.Flags |= Ack } if flags&0x20 != 0 { p.Flags |= Urg } if flags&0x40 != 0 { p.Flags |= ECE } if flags&0x80 != 0 { p.Flags |= Cwr } buf.ReadN(&p.WindowSize) buf.ReadN(&p.Checksum) buf.ReadN(&p.Urgent) options: for buf.LayerLen() < int(p.DataOff)*4 { var opt_type OptType buf.ReadN(&opt_type) switch opt_type { case End: /* end of options */ break options case Nop: /* padding */ continue default: opt := Option{Type: opt_type} buf.ReadN(&opt.Len) opt.Data = buf.Next(int(opt.Len) - 2) p.Options = append(p.Options, opt) } } /* remove padding */ if buf.LayerLen() < int(p.DataOff)*4 { buf.Next(int(p.DataOff)*4 - buf.LayerLen()) } return nil }
func (p *Packet) Pack(buf *packet.Buffer) error { buf.WriteN((p.Version << 4) | p.IHL) buf.WriteN(p.TOS) buf.WriteN(p.Length) buf.WriteN(p.Id) buf.WriteN((uint16(p.Flags) << 13) | p.FragOff) buf.WriteN(p.TTL) buf.WriteN(p.Protocol) buf.WriteN(uint16(0x00)) buf.Write(p.SrcAddr.To4()) buf.Write(p.DstAddr.To4()) p.checksum(buf.LayerBytes()[:20]) buf.PutUint16N(10, p.Checksum) return nil }
func (p *Packet) Pack(buf *packet.Buffer) error { buf.WriteN(p.HWType) buf.WriteN(p.ProtoType) buf.WriteN(p.HWAddrLen) buf.WriteN(p.ProtoAddrLen) buf.WriteN(p.Operation) buf.Write(p.HWSrcAddr[len(p.HWSrcAddr)-int(p.HWAddrLen):]) buf.Write(p.ProtoSrcAddr[len(p.ProtoSrcAddr)-int(p.ProtoAddrLen):]) buf.Write(p.HWDstAddr[len(p.HWDstAddr)-int(p.HWAddrLen):]) buf.Write(p.ProtoDstAddr[len(p.ProtoDstAddr)-int(p.ProtoAddrLen):]) return nil }
func (p *Packet) Unpack(buf *packet.Buffer) error { buf.ReadN(&p.OUI) buf.ReadN(&p.Type) return nil }
func (p *Packet) Pack(buf *packet.Buffer) error { buf.WriteN(p.OUI) buf.WriteN(p.Type) return nil }
func (p *Packet) Unpack(buf *packet.Buffer) error { var versihl uint8 buf.ReadN(&versihl) p.Version = versihl >> 4 p.IHL = versihl & 0x0F buf.ReadN(&p.TOS) buf.ReadN(&p.Length) buf.ReadN(&p.Id) var flagsfrag uint16 buf.ReadN(&flagsfrag) p.Flags = Flags(flagsfrag >> 13) p.FragOff = flagsfrag & 0x1FFF buf.ReadN(&p.TTL) buf.ReadN(&p.Protocol) buf.ReadN(&p.Checksum) p.SrcAddr = net.IP(buf.Next(4)) p.DstAddr = net.IP(buf.Next(4)) /* TODO: Options */ return nil }
func (p *Packet) Pack(buf *packet.Buffer) error { buf.WriteN(p.SrcPort) buf.WriteN(p.DstPort) buf.WriteN(p.Seq) buf.WriteN(p.Ack) flags := uint16(p.DataOff) << 12 if p.Flags&Fin != 0 { flags |= 0x0001 } if p.Flags&Syn != 0 { flags |= 0x0002 } if p.Flags&Rst != 0 { flags |= 0x0004 } if p.Flags&PSH != 0 { flags |= 0x0008 } if p.Flags&Ack != 0 { flags |= 0x0010 } if p.Flags&Urg != 0 { flags |= 0x0020 } if p.Flags&ECE != 0 { flags |= 0x0040 } if p.Flags&Cwr != 0 { flags |= 0x0080 } if p.Flags&NS != 0 { flags |= 0x0100 } buf.WriteN(flags) buf.WriteN(p.WindowSize) buf.WriteN(uint16(0x0000)) buf.WriteN(p.Urgent) for _, opt := range p.Options { buf.WriteN(opt.Type) buf.WriteN(opt.Len) buf.WriteN(opt.Data) } if p.csum_seed != 0 { p.Checksum = ipv4.CalculateChecksum(buf.LayerBytes(), p.csum_seed) } buf.PutUint16N(16, p.Checksum) /* add padding */ for buf.LayerLen() < int(p.DataOff)*4 { buf.WriteN(uint8(0x00)) } return nil }
// Recursively unpack the given byte slice into a packet. The link_type argument // must specify the type of the first layer in the input data, successive layers // will be detected automatically. // // Note that unpacking is done without copying the input slice, which means that // if the slice is modifed, it may affect the packets that where unpacked from // it. If you can't guarantee that the data slice won't change, you'll need to // copy it and pass the copy to UnpackAll(). func UnpackAll(buf []byte, link_type packet.Type) (packet.Packet, error) { var b packet.Buffer b.Init(buf) first_pkt := packet.Packet(nil) prev_pkt := packet.Packet(nil) for link_type != packet.None { var p packet.Packet if b.Len() <= 0 { break } switch link_type { case packet.ARP: p = &arp.Packet{} case packet.Eth: p = ð.Packet{} case packet.ICMPv4: p = &icmpv4.Packet{} case packet.ICMPv6: p = &icmpv6.Packet{} case packet.IPv4: p = &ipv4.Packet{} case packet.IPv6: p = &ipv6.Packet{} case packet.LLC: p = &llc.Packet{} case packet.RadioTap: p = &radiotap.Packet{} case packet.SLL: p = &sll.Packet{} case packet.SNAP: p = &snap.Packet{} case packet.TCP: p = &tcp.Packet{} case packet.UDP: p = &udp.Packet{} case packet.VLAN: p = &vlan.Packet{} default: p = &raw.Packet{} } if p == nil { break } b.NewLayer() err := p.Unpack(&b) if err != nil { return nil, err } if prev_pkt != nil { prev_pkt.SetPayload(p) } else { first_pkt = p } prev_pkt = p link_type = p.GuessPayloadType() } return first_pkt, nil }