Esempio n. 1
0
// fieldByProtoName looks up a field whose corresponding protobuf field name is "name".
// "m" must be a struct value. It returns zero reflect.Value if no such field found.
func fieldByProtoName(m reflect.Value, name string) reflect.Value {
	props := proto.GetProperties(m.Type())
	for _, p := range props.Prop {
		if p.OrigName == name {
			return m.FieldByName(p.Name)
		}
	}
	return reflect.Value{}
}
Esempio n. 2
0
// unmarshalValue converts/copies a value into the target.
func unmarshalValue(target reflect.Value, inputValue json.RawMessage) error {
	targetType := target.Type()

	// Allocate memory for pointer fields.
	if targetType.Kind() == reflect.Ptr {
		target.Set(reflect.New(targetType.Elem()))
		return unmarshalValue(target.Elem(), inputValue)
	}

	// Handle nested messages.
	if targetType.Kind() == reflect.Struct {
		var jsonFields map[string]json.RawMessage
		if err := json.Unmarshal(inputValue, &jsonFields); err != nil {
			return err
		}

		sprops := proto.GetProperties(targetType)
		for i := 0; i < target.NumField(); i++ {
			ft := target.Type().Field(i)
			if strings.HasPrefix(ft.Name, "XXX_") {
				continue
			}
			fieldName := jsonFieldName(ft)

			valueForField, ok := jsonFields[fieldName]
			if !ok {
				continue
			}
			delete(jsonFields, fieldName)

			// Handle enums, which have an underlying type of int32,
			// and may appear as strings. We do this while handling
			// the struct so we have access to the enum info.
			// The case of an enum appearing as a number is handled
			// by the recursive call to unmarshalValue.
			if enum := sprops.Prop[i].Enum; valueForField[0] == '"' && enum != "" {
				vmap := proto.EnumValueMap(enum)
				// Don't need to do unquoting; valid enum names
				// are from a limited character set.
				s := valueForField[1 : len(valueForField)-1]
				n, ok := vmap[string(s)]
				if !ok {
					return fmt.Errorf("unknown value %q for enum %s", s, enum)
				}
				f := target.Field(i)
				if f.Kind() == reflect.Ptr { // proto2
					f.Set(reflect.New(f.Type().Elem()))
					f = f.Elem()
				}
				f.SetInt(int64(n))
				continue
			}

			if err := unmarshalValue(target.Field(i), valueForField); err != nil {
				return err
			}
		}
		// Check for any oneof fields.
		for fname, raw := range jsonFields {
			if oop, ok := sprops.OneofTypes[fname]; ok {
				nv := reflect.New(oop.Type.Elem())
				target.Field(oop.Field).Set(nv)
				if err := unmarshalValue(nv.Elem().Field(0), raw); err != nil {
					return err
				}
				delete(jsonFields, fname)
			}
		}
		if len(jsonFields) > 0 {
			// Pick any field to be the scapegoat.
			var f string
			for fname := range jsonFields {
				f = fname
				break
			}
			return fmt.Errorf("unknown field %q in %v", f, targetType)
		}
		return nil
	}

	// Handle arrays (which aren't encoded bytes)
	if targetType != byteArrayType && targetType.Kind() == reflect.Slice {
		var slc []json.RawMessage
		if err := json.Unmarshal(inputValue, &slc); err != nil {
			return err
		}
		len := len(slc)
		target.Set(reflect.MakeSlice(targetType, len, len))
		for i := 0; i < len; i++ {
			if err := unmarshalValue(target.Index(i), slc[i]); err != nil {
				return err
			}
		}
		return nil
	}

	// Handle maps (whose keys are always strings)
	if targetType.Kind() == reflect.Map {
		var mp map[string]json.RawMessage
		if err := json.Unmarshal(inputValue, &mp); err != nil {
			return err
		}
		target.Set(reflect.MakeMap(targetType))
		for ks, raw := range mp {
			// Unmarshal map key. The core json library already decoded the key into a
			// string, so we handle that specially. Other types were quoted post-serialization.
			var k reflect.Value
			if targetType.Key().Kind() == reflect.String {
				k = reflect.ValueOf(ks)
			} else {
				k = reflect.New(targetType.Key()).Elem()
				if err := unmarshalValue(k, json.RawMessage(ks)); err != nil {
					return err
				}
			}

			// Unmarshal map value.
			v := reflect.New(targetType.Elem()).Elem()
			if err := unmarshalValue(v, raw); err != nil {
				return err
			}
			target.SetMapIndex(k, v)
		}
		return nil
	}

	// 64-bit integers can be encoded as strings. In this case we drop
	// the quotes and proceed as normal.
	isNum := targetType.Kind() == reflect.Int64 || targetType.Kind() == reflect.Uint64
	if isNum && strings.HasPrefix(string(inputValue), `"`) {
		inputValue = inputValue[1 : len(inputValue)-1]
	}

	// Use the encoding/json for parsing other value types.
	return json.Unmarshal(inputValue, target.Addr().Interface())
}
Esempio n. 3
0
// unmarshalValue converts/copies a value into the target.
func unmarshalValue(target reflect.Value, inputValue json.RawMessage) error {
	targetType := target.Type()

	// Allocate memory for pointer fields.
	if targetType.Kind() == reflect.Ptr {
		target.Set(reflect.New(targetType.Elem()))
		return unmarshalValue(target.Elem(), inputValue)
	}

	// Handle well-known types.
	type wkt interface {
		XXX_WellKnownType() string
	}
	if wkt, ok := target.Addr().Interface().(wkt); ok {
		switch wkt.XXX_WellKnownType() {
		case "DoubleValue", "FloatValue", "Int64Value", "UInt64Value",
			"Int32Value", "UInt32Value", "BoolValue", "StringValue", "BytesValue":
			// "Wrappers use the same representation in JSON
			//  as the wrapped primitive type, except that null is allowed."
			// encoding/json will turn JSON `null` into Go `nil`,
			// so we don't have to do any extra work.
			return unmarshalValue(target.Field(0), inputValue)
		case "Duration":
			unq, err := strconv.Unquote(string(inputValue))
			if err != nil {
				return err
			}
			d, err := time.ParseDuration(unq)
			if err != nil {
				return fmt.Errorf("bad Duration: %v", err)
			}
			ns := d.Nanoseconds()
			s := ns / 1e9
			ns %= 1e9
			target.Field(0).SetInt(s)
			target.Field(1).SetInt(ns)
			return nil
		case "Timestamp":
			unq, err := strconv.Unquote(string(inputValue))
			if err != nil {
				return err
			}
			t, err := time.Parse(time.RFC3339Nano, unq)
			if err != nil {
				return fmt.Errorf("bad Timestamp: %v", err)
			}
			ns := t.UnixNano()
			s := ns / 1e9
			ns %= 1e9
			target.Field(0).SetInt(s)
			target.Field(1).SetInt(ns)
			return nil
		}
	}

	// Handle nested messages.
	if targetType.Kind() == reflect.Struct {
		var jsonFields map[string]json.RawMessage
		if err := json.Unmarshal(inputValue, &jsonFields); err != nil {
			return err
		}

		sprops := proto.GetProperties(targetType)
		for i := 0; i < target.NumField(); i++ {
			ft := target.Type().Field(i)
			if strings.HasPrefix(ft.Name, "XXX_") {
				continue
			}
			// Be liberal in what names we accept; both orig_name and camelName are okay.
			fieldNames := acceptedJSONFieldNames(ft)

			vOrig, okOrig := jsonFields[fieldNames.orig]
			vCamel, okCamel := jsonFields[fieldNames.camel]
			if !okOrig && !okCamel {
				continue
			}
			// If, for some reason, both are present in the data, favour the camelName.
			var valueForField json.RawMessage
			if okOrig {
				valueForField = vOrig
				delete(jsonFields, fieldNames.orig)
			}
			if okCamel {
				valueForField = vCamel
				delete(jsonFields, fieldNames.camel)
			}

			// Handle enums, which have an underlying type of int32,
			// and may appear as strings. We do this while handling
			// the struct so we have access to the enum info.
			// The case of an enum appearing as a number is handled
			// by the recursive call to unmarshalValue.
			if enum := sprops.Prop[i].Enum; valueForField[0] == '"' && enum != "" {
				vmap := proto.EnumValueMap(enum)
				// Don't need to do unquoting; valid enum names
				// are from a limited character set.
				s := valueForField[1 : len(valueForField)-1]
				n, ok := vmap[string(s)]
				if !ok {
					return fmt.Errorf("unknown value %q for enum %s", s, enum)
				}
				f := target.Field(i)
				if f.Kind() == reflect.Ptr { // proto2
					f.Set(reflect.New(f.Type().Elem()))
					f = f.Elem()
				}
				f.SetInt(int64(n))
				continue
			}

			if err := unmarshalValue(target.Field(i), valueForField); err != nil {
				return err
			}
		}
		// Check for any oneof fields.
		for fname, raw := range jsonFields {
			if oop, ok := sprops.OneofTypes[fname]; ok {
				nv := reflect.New(oop.Type.Elem())
				target.Field(oop.Field).Set(nv)
				if err := unmarshalValue(nv.Elem().Field(0), raw); err != nil {
					return err
				}
				delete(jsonFields, fname)
			}
		}
		if len(jsonFields) > 0 {
			// Pick any field to be the scapegoat.
			var f string
			for fname := range jsonFields {
				f = fname
				break
			}
			return fmt.Errorf("unknown field %q in %v", f, targetType)
		}
		return nil
	}

	// Handle arrays (which aren't encoded bytes)
	if targetType != byteArrayType && targetType.Kind() == reflect.Slice {
		var slc []json.RawMessage
		if err := json.Unmarshal(inputValue, &slc); err != nil {
			return err
		}
		len := len(slc)
		target.Set(reflect.MakeSlice(targetType, len, len))
		for i := 0; i < len; i++ {
			if err := unmarshalValue(target.Index(i), slc[i]); err != nil {
				return err
			}
		}
		return nil
	}

	// Handle maps (whose keys are always strings)
	if targetType.Kind() == reflect.Map {
		var mp map[string]json.RawMessage
		if err := json.Unmarshal(inputValue, &mp); err != nil {
			return err
		}
		target.Set(reflect.MakeMap(targetType))
		for ks, raw := range mp {
			// Unmarshal map key. The core json library already decoded the key into a
			// string, so we handle that specially. Other types were quoted post-serialization.
			var k reflect.Value
			if targetType.Key().Kind() == reflect.String {
				k = reflect.ValueOf(ks)
			} else {
				k = reflect.New(targetType.Key()).Elem()
				if err := unmarshalValue(k, json.RawMessage(ks)); err != nil {
					return err
				}
			}

			// Unmarshal map value.
			v := reflect.New(targetType.Elem()).Elem()
			if err := unmarshalValue(v, raw); err != nil {
				return err
			}
			target.SetMapIndex(k, v)
		}
		return nil
	}

	// 64-bit integers can be encoded as strings. In this case we drop
	// the quotes and proceed as normal.
	isNum := targetType.Kind() == reflect.Int64 || targetType.Kind() == reflect.Uint64
	if isNum && strings.HasPrefix(string(inputValue), `"`) {
		inputValue = inputValue[1 : len(inputValue)-1]
	}

	// Use the encoding/json for parsing other value types.
	return json.Unmarshal(inputValue, target.Addr().Interface())
}
Esempio n. 4
0
// marshalObject writes a struct to the Writer.
func (m *Marshaler) marshalObject(out *errWriter, v proto.Message, indent string) error {
	s := reflect.ValueOf(v).Elem()

	// Handle well-known types.
	type wkt interface {
		XXX_WellKnownType() string
	}
	if wkt, ok := v.(wkt); ok {
		switch wkt.XXX_WellKnownType() {
		case "DoubleValue", "FloatValue", "Int64Value", "UInt64Value",
			"Int32Value", "UInt32Value", "BoolValue", "StringValue", "BytesValue":
			// "Wrappers use the same representation in JSON
			//  as the wrapped primitive type, ..."
			sprop := proto.GetProperties(s.Type())
			return m.marshalValue(out, sprop.Prop[0], s.Field(0), indent)
		case "Duration":
			// "Generated output always contains 3, 6, or 9 fractional digits,
			//  depending on required precision."
			s, ns := s.Field(0).Int(), s.Field(1).Int()
			d := time.Duration(s)*time.Second + time.Duration(ns)*time.Nanosecond
			x := fmt.Sprintf("%.9f", d.Seconds())
			x = strings.TrimSuffix(x, "000")
			x = strings.TrimSuffix(x, "000")
			out.write(`"`)
			out.write(x)
			out.write(`s"`)
			return out.err
		case "Timestamp":
			// "RFC 3339, where generated output will always be Z-normalized
			//  and uses 3, 6 or 9 fractional digits."
			s, ns := s.Field(0).Int(), s.Field(1).Int()
			t := time.Unix(s, ns).UTC()
			// time.RFC3339Nano isn't exactly right (we need to get 3/6/9 fractional digits).
			x := t.Format("2006-01-02T15:04:05.000000000")
			x = strings.TrimSuffix(x, "000")
			x = strings.TrimSuffix(x, "000")
			out.write(`"`)
			out.write(x)
			out.write(`Z"`)
			return out.err
		}
	}

	out.write("{")
	if m.Indent != "" {
		out.write("\n")
	}

	firstField := true
	for i := 0; i < s.NumField(); i++ {
		value := s.Field(i)
		valueField := s.Type().Field(i)
		if strings.HasPrefix(valueField.Name, "XXX_") {
			continue
		}

		// IsNil will panic on most value kinds.
		switch value.Kind() {
		case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice:
			if value.IsNil() {
				continue
			}
		}

		if !m.EmitDefaults {
			switch value.Kind() {
			case reflect.Bool:
				if !value.Bool() {
					continue
				}
			case reflect.Int32, reflect.Int64:
				if value.Int() == 0 {
					continue
				}
			case reflect.Uint32, reflect.Uint64:
				if value.Uint() == 0 {
					continue
				}
			case reflect.Float32, reflect.Float64:
				if value.Float() == 0 {
					continue
				}
			case reflect.String:
				if value.Len() == 0 {
					continue
				}
			}
		}

		// Oneof fields need special handling.
		if valueField.Tag.Get("protobuf_oneof") != "" {
			// value is an interface containing &T{real_value}.
			sv := value.Elem().Elem() // interface -> *T -> T
			value = sv.Field(0)
			valueField = sv.Type().Field(0)
		}
		prop := jsonProperties(valueField, m.OrigName)
		if !firstField {
			m.writeSep(out)
		}
		if err := m.marshalField(out, prop, value, indent); err != nil {
			return err
		}
		firstField = false
	}

	// Handle proto2 extensions.
	if ep, ok := v.(extendableProto); ok {
		extensions := proto.RegisteredExtensions(v)
		extensionMap := ep.ExtensionMap()
		// Sort extensions for stable output.
		ids := make([]int32, 0, len(extensionMap))
		for id := range extensionMap {
			ids = append(ids, id)
		}
		sort.Sort(int32Slice(ids))
		for _, id := range ids {
			desc := extensions[id]
			if desc == nil {
				// unknown extension
				continue
			}
			ext, extErr := proto.GetExtension(ep, desc)
			if extErr != nil {
				return extErr
			}
			value := reflect.ValueOf(ext)
			var prop proto.Properties
			prop.Parse(desc.Tag)
			prop.JSONName = fmt.Sprintf("[%s]", desc.Name)
			if !firstField {
				m.writeSep(out)
			}
			if err := m.marshalField(out, &prop, value, indent); err != nil {
				return err
			}
			firstField = false
		}

	}

	if m.Indent != "" {
		out.write("\n")
		out.write(indent)
	}
	out.write("}")
	return out.err
}
Esempio n. 5
0
// unmarshalValue converts/copies a value into the target.
// prop may be nil.
func (u *Unmarshaler) unmarshalValue(target reflect.Value, inputValue json.RawMessage, prop *proto.Properties) error {
	targetType := target.Type()

	// Allocate memory for pointer fields.
	if targetType.Kind() == reflect.Ptr {
		target.Set(reflect.New(targetType.Elem()))
		return u.unmarshalValue(target.Elem(), inputValue, prop)
	}

	// Handle well-known types.
	type wkt interface {
		XXX_WellKnownType() string
	}
	if wkt, ok := target.Addr().Interface().(wkt); ok {
		switch wkt.XXX_WellKnownType() {
		case "DoubleValue", "FloatValue", "Int64Value", "UInt64Value",
			"Int32Value", "UInt32Value", "BoolValue", "StringValue", "BytesValue":
			// "Wrappers use the same representation in JSON
			//  as the wrapped primitive type, except that null is allowed."
			// encoding/json will turn JSON `null` into Go `nil`,
			// so we don't have to do any extra work.
			return u.unmarshalValue(target.Field(0), inputValue, prop)
		case "Any":
			return fmt.Errorf("unmarshaling Any not supported yet")
		case "Duration":
			unq, err := strconv.Unquote(string(inputValue))
			if err != nil {
				return err
			}
			d, err := time.ParseDuration(unq)
			if err != nil {
				return fmt.Errorf("bad Duration: %v", err)
			}
			ns := d.Nanoseconds()
			s := ns / 1e9
			ns %= 1e9
			target.Field(0).SetInt(s)
			target.Field(1).SetInt(ns)
			return nil
		case "Timestamp":
			unq, err := strconv.Unquote(string(inputValue))
			if err != nil {
				return err
			}
			t, err := time.Parse(time.RFC3339Nano, unq)
			if err != nil {
				return fmt.Errorf("bad Timestamp: %v", err)
			}
			ns := t.UnixNano()
			s := ns / 1e9
			ns %= 1e9
			target.Field(0).SetInt(s)
			target.Field(1).SetInt(ns)
			return nil
		}
	}

	// Handle enums, which have an underlying type of int32,
	// and may appear as strings.
	// The case of an enum appearing as a number is handled
	// at the bottom of this function.
	if inputValue[0] == '"' && prop != nil && prop.Enum != "" {
		vmap := proto.EnumValueMap(prop.Enum)
		// Don't need to do unquoting; valid enum names
		// are from a limited character set.
		s := inputValue[1 : len(inputValue)-1]
		n, ok := vmap[string(s)]
		if !ok {
			return fmt.Errorf("unknown value %q for enum %s", s, prop.Enum)
		}
		if target.Kind() == reflect.Ptr { // proto2
			target.Set(reflect.New(targetType.Elem()))
			target = target.Elem()
		}
		target.SetInt(int64(n))
		return nil
	}

	// Handle nested messages.
	if targetType.Kind() == reflect.Struct {
		var jsonFields map[string]json.RawMessage
		if err := json.Unmarshal(inputValue, &jsonFields); err != nil {
			return err
		}

		consumeField := func(prop *proto.Properties) (json.RawMessage, bool) {
			// Be liberal in what names we accept; both orig_name and camelName are okay.
			fieldNames := acceptedJSONFieldNames(prop)

			vOrig, okOrig := jsonFields[fieldNames.orig]
			vCamel, okCamel := jsonFields[fieldNames.camel]
			if !okOrig && !okCamel {
				return nil, false
			}
			// If, for some reason, both are present in the data, favour the camelName.
			var raw json.RawMessage
			if okOrig {
				raw = vOrig
				delete(jsonFields, fieldNames.orig)
			}
			if okCamel {
				raw = vCamel
				delete(jsonFields, fieldNames.camel)
			}
			return raw, true
		}

		sprops := proto.GetProperties(targetType)
		for i := 0; i < target.NumField(); i++ {
			ft := target.Type().Field(i)
			if strings.HasPrefix(ft.Name, "XXX_") {
				continue
			}

			valueForField, ok := consumeField(sprops.Prop[i])
			if !ok {
				continue
			}

			if err := u.unmarshalValue(target.Field(i), valueForField, sprops.Prop[i]); err != nil {
				return err
			}
		}
		// Check for any oneof fields.
		if len(jsonFields) > 0 {
			for _, oop := range sprops.OneofTypes {
				raw, ok := consumeField(oop.Prop)
				if !ok {
					continue
				}
				nv := reflect.New(oop.Type.Elem())
				target.Field(oop.Field).Set(nv)
				if err := u.unmarshalValue(nv.Elem().Field(0), raw, oop.Prop); err != nil {
					return err
				}
			}
		}
		if !u.AllowUnknownFields && len(jsonFields) > 0 {
			// Pick any field to be the scapegoat.
			var f string
			for fname := range jsonFields {
				f = fname
				break
			}
			return fmt.Errorf("unknown field %q in %v", f, targetType)
		}
		return nil
	}

	// Handle arrays (which aren't encoded bytes)
	if targetType.Kind() == reflect.Slice && targetType.Elem().Kind() != reflect.Uint8 {
		var slc []json.RawMessage
		if err := json.Unmarshal(inputValue, &slc); err != nil {
			return err
		}
		len := len(slc)
		target.Set(reflect.MakeSlice(targetType, len, len))
		for i := 0; i < len; i++ {
			if err := u.unmarshalValue(target.Index(i), slc[i], prop); err != nil {
				return err
			}
		}
		return nil
	}

	// Handle maps (whose keys are always strings)
	if targetType.Kind() == reflect.Map {
		var mp map[string]json.RawMessage
		if err := json.Unmarshal(inputValue, &mp); err != nil {
			return err
		}
		target.Set(reflect.MakeMap(targetType))
		var keyprop, valprop *proto.Properties
		if prop != nil {
			// These could still be nil if the protobuf metadata is broken somehow.
			// TODO: This won't work because the fields are unexported.
			// We should probably just reparse them.
			//keyprop, valprop = prop.mkeyprop, prop.mvalprop
		}
		for ks, raw := range mp {
			// Unmarshal map key. The core json library already decoded the key into a
			// string, so we handle that specially. Other types were quoted post-serialization.
			var k reflect.Value
			if targetType.Key().Kind() == reflect.String {
				k = reflect.ValueOf(ks)
			} else {
				k = reflect.New(targetType.Key()).Elem()
				if err := u.unmarshalValue(k, json.RawMessage(ks), keyprop); err != nil {
					return err
				}
			}

			// Unmarshal map value.
			v := reflect.New(targetType.Elem()).Elem()
			if err := u.unmarshalValue(v, raw, valprop); err != nil {
				return err
			}
			target.SetMapIndex(k, v)
		}
		return nil
	}

	// 64-bit integers can be encoded as strings. In this case we drop
	// the quotes and proceed as normal.
	isNum := targetType.Kind() == reflect.Int64 || targetType.Kind() == reflect.Uint64
	if isNum && strings.HasPrefix(string(inputValue), `"`) {
		inputValue = inputValue[1 : len(inputValue)-1]
	}

	// Use the encoding/json for parsing other value types.
	return json.Unmarshal(inputValue, target.Addr().Interface())
}
Esempio n. 6
0
// unmarshalValue converts/copies a value into the target.
func unmarshalValue(target reflect.Value, inputValue json.RawMessage) error {
	targetType := target.Type()

	// Allocate memory for pointer fields.
	if targetType.Kind() == reflect.Ptr {
		target.Set(reflect.New(targetType.Elem()))
		return unmarshalValue(target.Elem(), inputValue)
	}

	// Handle nested messages.
	if targetType.Kind() == reflect.Struct {
		var jsonFields map[string]json.RawMessage
		if err := json.Unmarshal(inputValue, &jsonFields); err != nil {
			return err
		}

		for i := 0; i < target.NumField(); i++ {
			ft := target.Type().Field(i)
			if strings.HasPrefix(ft.Name, "XXX_") {
				continue
			}
			fieldName := jsonFieldName(ft)

			if valueForField, ok := jsonFields[fieldName]; ok {

				// Handle enums
				handledAsEnum := false
				protoInfo := target.Type().Field(i).Tag.Get("protobuf")
				tagParts := strings.Split(protoInfo, ",")
				for j := 0; j < len(tagParts); j++ {
					if strings.HasPrefix(tagParts[j], "enum=") {
						enumName := tagParts[j][5:]
						if enumValue, ok := proto.LookupEnumValue(enumName, string(valueForField)); ok {
							if target.Field(i).Kind() == reflect.Int32 {
								target.Field(i).SetInt(int64(enumValue))
								handledAsEnum = true
								break
							}
						}
					}
				}

				if !handledAsEnum {
					if err := unmarshalValue(target.Field(i), valueForField); err != nil {
						return err
					}
				}
				delete(jsonFields, fieldName)
			}
		}
		// Check for any oneof fields.
		sprops := proto.GetProperties(targetType)
		for fname, raw := range jsonFields {
			if oop, ok := sprops.OneofTypes[fname]; ok {
				nv := reflect.New(oop.Type.Elem())
				target.Field(oop.Field).Set(nv)
				if err := unmarshalValue(nv.Elem().Field(0), raw); err != nil {
					return err
				}
				delete(jsonFields, fname)
			}
		}
		if len(jsonFields) > 0 {
			// Pick any field to be the scapegoat.
			var f string
			for fname := range jsonFields {
				f = fname
				break
			}
			return fmt.Errorf("unknown field %q in %v", f, targetType)
		}
		return nil
	}

	// Handle arrays (which aren't encoded bytes)
	if targetType != byteArrayType && targetType.Kind() == reflect.Slice {
		var slc []json.RawMessage
		if err := json.Unmarshal(inputValue, &slc); err != nil {
			return err
		}
		len := len(slc)
		target.Set(reflect.MakeSlice(targetType, len, len))
		for i := 0; i < len; i++ {
			if err := unmarshalValue(target.Index(i), slc[i]); err != nil {
				return err
			}
		}
		return nil
	}

	// Handle maps (whose keys are always strings)
	if targetType.Kind() == reflect.Map {
		var mp map[string]json.RawMessage
		if err := json.Unmarshal(inputValue, &mp); err != nil {
			return err
		}
		target.Set(reflect.MakeMap(targetType))
		for ks, raw := range mp {
			// Unmarshal map key. The core json library already decoded the key into a
			// string, so we handle that specially. Other types were quoted post-serialization.
			var k reflect.Value
			if targetType.Key().Kind() == reflect.String {
				k = reflect.ValueOf(ks)
			} else {
				k = reflect.New(targetType.Key()).Elem()
				if err := unmarshalValue(k, json.RawMessage(ks)); err != nil {
					return err
				}
			}

			// Unmarshal map value.
			v := reflect.New(targetType.Elem()).Elem()
			if err := unmarshalValue(v, raw); err != nil {
				return err
			}
			target.SetMapIndex(k, v)
		}
		return nil
	}

	// 64-bit integers can be encoded as strings. In this case we drop
	// the quotes and proceed as normal.
	isNum := targetType.Kind() == reflect.Int64 || targetType.Kind() == reflect.Uint64
	if isNum && strings.HasPrefix(string(inputValue), `"`) {
		inputValue = inputValue[1 : len(inputValue)-1]
	}

	// Use the encoding/json for parsing other value types.
	return json.Unmarshal(inputValue, target.Addr().Interface())
}