Esempio n. 1
0
File: ntm.go Progetto: philipz/ntm
func (r *RMSProp) update(a, b, c, d float64) {
	grad := blas64.Vector{Inc: 1, Data: r.C.WeightsGrad()}
	grad2 := blas64.Vector{Inc: 1, Data: make([]float64, len(grad.Data))}
	for i, w := range grad.Data {
		grad2.Data[i] = w * w
	}

	n := blas64.Vector{Inc: 1, Data: r.N}
	blas64.Scal(len(n.Data), a, n)
	blas64.Axpy(len(n.Data), 1-a, grad2, n)

	g := blas64.Vector{Inc: 1, Data: r.G}
	blas64.Scal(len(g.Data), a, g)
	blas64.Axpy(len(g.Data), 1-a, grad, g)

	rms := blas64.Vector{Inc: 1, Data: make([]float64, len(r.D))}
	for i, g := range r.G {
		rms.Data[i] = grad.Data[i] / math.Sqrt(r.N[i]-g*g+d)
	}
	rD := blas64.Vector{Inc: 1, Data: r.D}
	blas64.Scal(len(rD.Data), b, rD)
	blas64.Axpy(len(rD.Data), -c, rms, rD)

	val := blas64.Vector{Inc: 1, Data: r.C.WeightsVal()}
	blas64.Axpy(len(rD.Data), 1, rD, val)
}
Esempio n. 2
0
// AddScaledVec adds the vectors a and alpha*b, placing the result in the receiver.
func (v *Vector) AddScaledVec(a *Vector, alpha float64, b *Vector) {
	if alpha == 1 {
		v.AddVec(a, b)
		return
	}
	if alpha == -1 {
		v.SubVec(a, b)
		return
	}

	ar := a.Len()
	br := b.Len()

	if ar != br {
		panic(matrix.ErrShape)
	}

	v.reuseAs(ar)

	if alpha == 0 {
		v.CopyVec(a)
		return
	}

	switch {
	case v == a && v == b: // v <- v + alpha * v = (alpha + 1) * v
		blas64.Scal(ar, alpha+1, v.mat)
	case v == a && v != b: // v <- v + alpha * b
		blas64.Axpy(ar, alpha, b.mat, v.mat)
	case v != a && v == b: // v <- a + alpha * v
		if v.mat.Inc == 1 && a.mat.Inc == 1 {
			// Fast path for a common case.
			v := v.mat.Data
			for i, a := range a.mat.Data {
				v[i] *= alpha
				v[i] += a
			}
			return
		}
		blas64.Scal(ar, alpha, v.mat)
		blas64.Axpy(ar, 1, a.mat, v.mat)
	default: // v <- a + alpha * b
		if v.mat.Inc == 1 && a.mat.Inc == 1 && b.mat.Inc == 1 {
			// Fast path for a common case.
			asm.DaxpyUnitary(alpha, b.mat.Data, a.mat.Data, v.mat.Data)
			return
		}
		blas64.Copy(ar, a.mat, v.mat)
		blas64.Axpy(ar, alpha, b.mat, v.mat)
	}
}
Esempio n. 3
0
// ScaleVec scales the vector a by alpha, placing the result in the receiver.
func (v *Vector) ScaleVec(alpha float64, a *Vector) {
	n := a.Len()
	if v != a {
		v.reuseAs(n)
		blas64.Copy(n, a.mat, v.mat)
	}
	blas64.Scal(n, alpha, v.mat)
}
Esempio n. 4
0
// LQ computes an LQ Decomposition for an m-by-n matrix a with m <= n by Householder
// reflections. The LQ decomposition is an m-by-n orthogonal matrix q and an m-by-m
// lower triangular matrix l so that a = l.q. LQ will panic with ErrShape if m > n.
//
// The LQ decomposition always exists, even if the matrix does not have full rank,
// so LQ will never fail unless m > n. The primary use of the LQ decomposition is
// in the least squares solution of non-square systems of simultaneous linear equations.
// This will fail if LQIsFullRank() returns false. The matrix a is overwritten by the
// decomposition.
func LQ(a *Dense) LQFactor {
	// Initialize.
	m, n := a.Dims()
	if m > n {
		panic(ErrShape)
	}

	lq := *a

	lDiag := make([]float64, m)
	projs := NewVector(m, nil)

	// Main loop.
	for k := 0; k < m; k++ {
		hh := lq.RawRowView(k)[k:]
		norm := blas64.Nrm2(len(hh), blas64.Vector{Inc: 1, Data: hh})
		lDiag[k] = norm

		if norm != 0 {
			hhNorm := (norm * math.Sqrt(1-hh[0]/norm))
			if hhNorm == 0 {
				hh[0] = 0
			} else {
				// Form k-th Householder vector.
				s := 1 / hhNorm
				hh[0] -= norm
				blas64.Scal(len(hh), s, blas64.Vector{Inc: 1, Data: hh})

				// Apply transformation to remaining columns.
				if k < m-1 {
					a = lq.View(k+1, k, m-k-1, n-k).(*Dense)
					projs = projs.ViewVec(0, m-k-1)
					projs.MulVec(a, false, NewVector(len(hh), hh))

					for j := 0; j < m-k-1; j++ {
						dst := a.RawRowView(j)
						blas64.Axpy(len(dst), -projs.at(j),
							blas64.Vector{Inc: 1, Data: hh},
							blas64.Vector{Inc: 1, Data: dst},
						)
					}
				}
			}
		}
	}
	*a = lq

	return LQFactor{a, lDiag}
}
Esempio n. 5
0
// AddScaledVec adds the vectors a and alpha*b, placing the result in the receiver.
func (v *Vector) AddScaledVec(a *Vector, alpha float64, b *Vector) {
	if alpha == 1 {
		v.AddVec(a, b)
		return
	}
	if alpha == -1 {
		v.SubVec(a, b)
		return
	}

	ar := a.Len()
	br := b.Len()

	if ar != br {
		panic(matrix.ErrShape)
	}

	v.reuseAs(ar)

	switch {
	case alpha == 0: // v <- a
		v.CopyVec(a)
	case v == a && v == b: // v <- v + alpha * v = (alpha + 1) * v
		blas64.Scal(ar, alpha+1, v.mat)
	case v == a && v != b: // v <- v + alpha * b
		if v.mat.Inc == 1 && b.mat.Inc == 1 {
			// Fast path for a common case.
			asm.DaxpyUnitaryTo(v.mat.Data, alpha, b.mat.Data, a.mat.Data)
		} else {
			asm.DaxpyInc(alpha, b.mat.Data, v.mat.Data,
				uintptr(ar), uintptr(b.mat.Inc), uintptr(v.mat.Inc), 0, 0)
		}
	default: // v <- a + alpha * b or v <- a + alpha * v
		if v.mat.Inc == 1 && a.mat.Inc == 1 && b.mat.Inc == 1 {
			// Fast path for a common case.
			asm.DaxpyUnitaryTo(v.mat.Data, alpha, b.mat.Data, a.mat.Data)
		} else {
			asm.DaxpyIncTo(v.mat.Data, uintptr(v.mat.Inc), 0,
				alpha, b.mat.Data, a.mat.Data,
				uintptr(ar), uintptr(b.mat.Inc), uintptr(a.mat.Inc), 0, 0)
		}
	}
}
Esempio n. 6
0
// SymRankOne performs a rank-1 update of the original matrix A and refactorizes
// its Cholesky factorization, storing the result into the reciever. That is, if
// in the original Cholesky factorization
//  U^T * U = A,
// in the updated factorization
//  U'^T * U' = A + alpha * x * x^T = A'.
//
// Note that when alpha is negative, the updating problem may be ill-conditioned
// and the results may be inaccurate, or the updated matrix A' may not be
// positive definite and not have a Cholesky factorization. SymRankOne returns
// whether the updated matrix A' is positive definite.
//
// SymRankOne updates a Cholesky factorization in O(n²) time. The Cholesky
// factorization computation from scratch is O(n³).
func (c *Cholesky) SymRankOne(orig *Cholesky, alpha float64, x *Vector) (ok bool) {
	if !orig.valid() {
		panic(badCholesky)
	}
	n := orig.Size()
	if x.Len() != n {
		panic(matrix.ErrShape)
	}
	if orig != c {
		if c.isZero() {
			c.chol = NewTriDense(n, matrix.Upper, nil)
		} else if c.chol.mat.N != n {
			panic(matrix.ErrShape)
		}
		c.chol.Copy(orig.chol)
	}

	if alpha == 0 {
		return true
	}

	// Algorithms for updating and downdating the Cholesky factorization are
	// described, for example, in
	// - J. J. Dongarra, J. R. Bunch, C. B. Moler, G. W. Stewart: LINPACK
	//   Users' Guide. SIAM (1979), pages 10.10--10.14
	// or
	// - P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders: Methods for
	//   modifying matrix factorizations. Mathematics of Computation 28(126)
	//   (1974), Method C3 on page 521
	//
	// The implementation is based on LINPACK code
	// http://www.netlib.org/linpack/dchud.f
	// http://www.netlib.org/linpack/dchdd.f
	// and
	// https://icl.cs.utk.edu/lapack-forum/viewtopic.php?f=2&t=2646
	//
	// According to http://icl.cs.utk.edu/lapack-forum/archives/lapack/msg00301.html
	// LINPACK is released under BSD license.
	//
	// See also:
	// - M. A. Saunders: Large-scale Linear Programming Using the Cholesky
	//   Factorization. Technical Report Stanford University (1972)
	//   http://i.stanford.edu/pub/cstr/reports/cs/tr/72/252/CS-TR-72-252.pdf
	// - Matthias Seeger: Low rank updates for the Cholesky decomposition.
	//   EPFL Technical Report 161468 (2004)
	//   http://infoscience.epfl.ch/record/161468

	work := make([]float64, n)
	blas64.Copy(n, x.RawVector(), blas64.Vector{1, work})

	if alpha > 0 {
		// Compute rank-1 update.
		if alpha != 1 {
			blas64.Scal(n, math.Sqrt(alpha), blas64.Vector{1, work})
		}
		umat := c.chol.mat
		stride := umat.Stride
		for i := 0; i < n; i++ {
			// Compute parameters of the Givens matrix that zeroes
			// the i-th element of x.
			c, s, r, _ := blas64.Rotg(umat.Data[i*stride+i], work[i])
			if r < 0 {
				// Multiply by -1 to have positive diagonal
				// elemnts.
				r *= -1
				c *= -1
				s *= -1
			}
			umat.Data[i*stride+i] = r
			if i < n-1 {
				// Multiply the extended factorization matrix by
				// the Givens matrix from the left. Only
				// the i-th row and x are modified.
				blas64.Rot(n-i-1,
					blas64.Vector{1, umat.Data[i*stride+i+1 : i*stride+n]},
					blas64.Vector{1, work[i+1 : n]},
					c, s)
			}
		}
		c.updateCond(-1)
		return true
	}

	// Compute rank-1 downdate.
	alpha = math.Sqrt(-alpha)
	if alpha != 1 {
		blas64.Scal(n, alpha, blas64.Vector{1, work})
	}
	// Solve U^T * p = x storing the result into work.
	ok = lapack64.Trtrs(blas.Trans, c.chol.RawTriangular(), blas64.General{
		Rows:   n,
		Cols:   1,
		Stride: 1,
		Data:   work,
	})
	if !ok {
		// The original matrix is singular. Should not happen, because
		// the factorization is valid.
		panic(badCholesky)
	}
	norm := blas64.Nrm2(n, blas64.Vector{1, work})
	if norm >= 1 {
		// The updated matrix is not positive definite.
		return false
	}
	norm = math.Sqrt((1 + norm) * (1 - norm))
	cos := make([]float64, n)
	sin := make([]float64, n)
	for i := n - 1; i >= 0; i-- {
		// Compute parameters of Givens matrices that zero elements of p
		// backwards.
		cos[i], sin[i], norm, _ = blas64.Rotg(norm, work[i])
		if norm < 0 {
			norm *= -1
			cos[i] *= -1
			sin[i] *= -1
		}
	}
	umat := c.chol.mat
	stride := umat.Stride
	for i := n - 1; i >= 0; i-- {
		// Apply Givens matrices to U.
		// TODO(vladimir-ch): Use workspace to avoid modifying the
		// receiver in case an invalid factorization is created.
		blas64.Rot(n-i, blas64.Vector{1, work[i:n]}, blas64.Vector{1, umat.Data[i*stride+i : i*stride+n]}, cos[i], sin[i])
		if umat.Data[i*stride+i] == 0 {
			// The matrix is singular (may rarely happen due to
			// floating-point effects?).
			ok = false
		} else if umat.Data[i*stride+i] < 0 {
			// Diagonal elements should be positive. If it happens
			// that on the i-th row the diagonal is negative,
			// multiply U from the left by an identity matrix that
			// has -1 on the i-th row.
			blas64.Scal(n-i, -1, blas64.Vector{1, umat.Data[i*stride+i : i*stride+n]})
		}
	}
	if ok {
		c.updateCond(-1)
	} else {
		c.Reset()
	}
	return ok
}