func main() { // task 1: show qr decomp of wp example a := mat64.NewDense(3, 3, []float64{ 12, -51, 4, 6, 167, -68, -4, 24, -41, }) var qr mat64.QR qr.Factorize(a) var q, r mat64.Dense q.QFromQR(&qr) r.RFromQR(&qr) fmt.Printf("q: %.3f\n\n", mat64.Formatted(&q, mat64.Prefix(" "))) fmt.Printf("r: %.3f\n\n", mat64.Formatted(&r, mat64.Prefix(" "))) // task 2: use qr decomp for polynomial regression example x := []float64{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} y := []float64{1, 6, 17, 34, 57, 86, 121, 162, 209, 262, 321} a = Vandermonde(x, 2) b := mat64.NewDense(11, 1, y) qr.Factorize(a) var f mat64.Dense f.SolveQR(&qr, false, b) fmt.Printf("polyfit: %.3f\n", mat64.Formatted(&f, mat64.Prefix(" "))) }
func (lr *LinearRegression) Fit(inst base.FixedDataGrid) error { // Retrieve row size _, rows := inst.Size() // Validate class Attribute count classAttrs := inst.AllClassAttributes() if len(classAttrs) != 1 { return fmt.Errorf("Only 1 class variable is permitted") } classAttrSpecs := base.ResolveAttributes(inst, classAttrs) // Retrieve relevant Attributes allAttrs := base.NonClassAttributes(inst) attrs := make([]base.Attribute, 0) for _, a := range allAttrs { if _, ok := a.(*base.FloatAttribute); ok { attrs = append(attrs, a) } } cols := len(attrs) + 1 if rows < cols { return NotEnoughDataError } // Retrieve relevant Attribute specifications attrSpecs := base.ResolveAttributes(inst, attrs) // Split into two matrices, observed results (dependent variable y) // and the explanatory variables (X) - see http://en.wikipedia.org/wiki/Linear_regression observed := mat64.NewDense(rows, 1, nil) explVariables := mat64.NewDense(rows, cols, nil) // Build the observed matrix inst.MapOverRows(classAttrSpecs, func(row [][]byte, i int) (bool, error) { val := base.UnpackBytesToFloat(row[0]) observed.Set(i, 0, val) return true, nil }) // Build the explainatory variables inst.MapOverRows(attrSpecs, func(row [][]byte, i int) (bool, error) { // Set intercepts to 1.0 explVariables.Set(i, 0, 1.0) for j, r := range row { explVariables.Set(i, j+1, base.UnpackBytesToFloat(r)) } return true, nil }) n := cols qr := new(mat64.QR) qr.Factorize(explVariables) var q, reg mat64.Dense q.QFromQR(qr) reg.RFromQR(qr) var transposed, qty mat64.Dense transposed.Clone(q.T()) qty.Mul(&transposed, observed) regressionCoefficients := make([]float64, n) for i := n - 1; i >= 0; i-- { regressionCoefficients[i] = qty.At(i, 0) for j := i + 1; j < n; j++ { regressionCoefficients[i] -= regressionCoefficients[j] * reg.At(i, j) } regressionCoefficients[i] /= reg.At(i, i) } lr.disturbance = regressionCoefficients[0] lr.regressionCoefficients = regressionCoefficients[1:] lr.fitted = true lr.attrs = attrs lr.cls = classAttrs[0] return nil }