Esempio n. 1
0
func forgeEthIPTCP(t *testing.T, seed int64) *gopacket.Packet {
	var options gopacket.SerializeOptions
	rnd := rand.New(rand.NewSource(seed))

	rawBytes := []byte{10, 20, 30}
	ethernetLayer := &layers.Ethernet{
		SrcMAC: net.HardwareAddr{0x00, 0x0F, 0xAA, 0xFA, 0xAA, byte(rnd.Intn(0x100))},
		DstMAC: net.HardwareAddr{0x00, 0x0D, 0xBD, 0xBD, byte(rnd.Intn(0x100)), 0xBD},
	}
	ipLayer := &layers.IPv4{
		SrcIP: net.IP{127, 0, 0, byte(rnd.Intn(0x100))},
		DstIP: net.IP{byte(rnd.Intn(0x100)), 8, 8, 8},
	}
	tcpLayer := &layers.TCP{
		SrcPort: layers.TCPPort(byte(rnd.Intn(0x10000))),
		DstPort: layers.TCPPort(byte(rnd.Intn(0x10000))),
	}
	// And create the packet with the layers
	buffer := gopacket.NewSerializeBuffer()
	err := gopacket.SerializeLayers(buffer, options,
		ethernetLayer,
		ipLayer,
		tcpLayer,
		gopacket.Payload(rawBytes),
	)
	if err != nil {
		t.Fail()
	}

	gpacket := gopacket.NewPacket(buffer.Bytes(), layers.LayerTypeEthernet, gopacket.Default)
	return &gpacket

}
Esempio n. 2
0
/* protos must contain a UDP or TCP layer on top of IPv4 */
func forgeTestPacket(t *testing.T, seed int64, protos ...ProtocolType) *gopacket.Packet {
	rnd := rand.New(rand.NewSource(seed))

	rawBytes := []byte{10, 20, 30}
	var protoStack []gopacket.SerializableLayer

	for i, proto := range protos {
		switch proto {
		case ETH:
			ethernetLayer := &layers.Ethernet{
				SrcMAC:       net.HardwareAddr{0x00, 0x0F, 0xAA, 0xFA, 0xAA, byte(rnd.Intn(0x100))},
				DstMAC:       net.HardwareAddr{0x00, 0x0D, 0xBD, 0xBD, byte(rnd.Intn(0x100)), 0xBD},
				EthernetType: layers.EthernetTypeIPv4,
			}
			protoStack = append(protoStack, ethernetLayer)
		case IPv4:
			ipv4Layer := &layers.IPv4{
				SrcIP: net.IP{127, 0, 0, byte(rnd.Intn(0x100))},
				DstIP: net.IP{byte(rnd.Intn(0x100)), 8, 8, 8},
			}
			switch protos[i+1] {
			case TCP:
				ipv4Layer.Protocol = layers.IPProtocolTCP
			case UDP:
				ipv4Layer.Protocol = layers.IPProtocolUDP
			}
			protoStack = append(protoStack, ipv4Layer)
		case TCP:
			tcpLayer := &layers.TCP{
				SrcPort: layers.TCPPort(byte(rnd.Intn(0x10000))),
				DstPort: layers.TCPPort(byte(rnd.Intn(0x10000))),
			}
			protoStack = append(protoStack, tcpLayer)
		case UDP:
			udpLayer := &layers.UDP{
				SrcPort: layers.UDPPort(byte(rnd.Intn(0x10000))),
				DstPort: layers.UDPPort(byte(rnd.Intn(0x10000))),
			}
			protoStack = append(protoStack, udpLayer)
		default:
			t.Log("forgeTestPacket : Unsupported protocol ", proto)
		}
	}
	protoStack = append(protoStack, gopacket.Payload(rawBytes))

	buffer := gopacket.NewSerializeBuffer()
	options := gopacket.SerializeOptions{FixLengths: true}
	err := gopacket.SerializeLayers(buffer, options, protoStack...)

	if err != nil {
		t.Fail()
	}

	gpacket := gopacket.NewPacket(buffer.Bytes(), layers.LayerTypeEthernet, gopacket.Default)
	return &gpacket
}
Esempio n. 3
0
func (fl *FlowLayer) Hash() []byte {
	if fl == nil {
		return []byte{}
	}
	if fl.Protocol == FlowProtocol_ETHERNET {
		amac, err := net.ParseMAC(fl.A)
		if err != nil {
			panic(err)
		}
		bmac, err := net.ParseMAC(fl.B)
		if err != nil {
			panic(err)
		}
		return HashFromValues(amac, bmac)
	}
	if fl.Protocol == FlowProtocol_IPV4 || fl.Protocol == FlowProtocol_IPV6 {
		aip := net.ParseIP(fl.A)
		bip := net.ParseIP(fl.B)
		return HashFromValues(aip, bip)
	}
	if fl.Protocol == FlowProtocol_TCPPORT {
		aTCPPort, err := strconv.ParseUint(fl.A, 10, 16)
		if err != nil {
			panic(err)
		}
		bTCPPort, err := strconv.ParseUint(fl.B, 10, 16)
		if err != nil {
			panic(err)
		}
		return HashFromValues(layers.TCPPort(aTCPPort), layers.TCPPort(bTCPPort))
	}
	if fl.Protocol == FlowProtocol_UDPPORT {
		aUDPPort, err := strconv.ParseUint(fl.A, 10, 16)
		if err != nil {
			panic(err)
		}
		bUDPPort, err := strconv.ParseUint(fl.B, 10, 16)
		if err != nil {
			panic(err)
		}
		return HashFromValues(layers.UDPPort(aUDPPort), layers.UDPPort(bUDPPort))
	}
	if fl.Protocol == FlowProtocol_SCTPPORT {
		aSCTPPort, err := strconv.ParseUint(fl.A, 10, 16)
		if err != nil {
			panic(err)
		}
		bSCTPPort, err := strconv.ParseUint(fl.B, 10, 16)
		if err != nil {
			panic(err)
		}
		return HashFromValues(layers.SCTPPort(aSCTPPort), layers.SCTPPort(bSCTPPort))
	}
	return nil
}
Esempio n. 4
0
func main() {
	// Open device
	handle, err = pcap.OpenLive(device, snapshot_len, promiscuous, timeout)
	if err != nil {
		log.Fatal(err)
	}
	defer handle.Close()

	// Send raw bytes over wire
	rawBytes := []byte{10, 20, 30}
	err = handle.WritePacketData(rawBytes)
	if err != nil {
		log.Fatal(err)
	}

	// Create a properly formed packet, just with
	// empty details. Should fill out MAC addresses,
	// IP addresses, etc.
	buffer = gopacket.NewSerializeBuffer()
	gopacket.SerializeLayers(buffer, options,
		&layers.Ethernet{},
		&layers.IPv4{},
		&layers.TCP{},
		gopacket.Payload(rawBytes),
	)
	outgoingPacket := buffer.Bytes()
	// Send our packet
	err = handle.WritePacketData(outgoingPacket)
	if err != nil {
		log.Fatal(err)
	}

	// This time lets fill out some information
	ipLayer := &layers.IPv4{
		SrcIP: net.IP{127, 0, 0, 1},
		DstIP: net.IP{8, 8, 8, 8},
	}
	ethernetLayer := &layers.Ethernet{
		SrcMAC: net.HardwareAddr{0xFF, 0xAA, 0xFA, 0xAA, 0xFF, 0xAA, 0xFA, 0xAA},
		DstMAC: net.HardwareAddr{0xBD, 0xBD, 0xBD, 0xBD, 0xBD, 0xBD, 0xBD, 0xBD},
	}
	tcpLayer := &layers.TCP{
		SrcPort: layers.TCPPort(4321),
		DstPort: layers.TCPPort(80),
	}
	// And create the packet with the layers
	buffer = gopacket.NewSerializeBuffer()
	gopacket.SerializeLayers(buffer, options,
		ethernetLayer,
		ipLayer,
		tcpLayer,
		gopacket.Payload(rawBytes),
	)
	outgoingPacket = buffer.Bytes()
}
Esempio n. 5
0
File: main.go Progetto: nhooyr/dos
func packet(raddr net.IP) []byte {
	ip := &layers.IPv4{
		Version:           0x4,
		TOS:               0x0,
		TTL:               0x40,
		Protocol:          layers.IPProtocolTCP,
		SrcIP:             net.ParseIP(os.Args[2]),
		DstIP:             raddr,
		WithRawINETSocket: true,
	}
	rand.Seed(time.Now().UnixNano())
	tcp := &layers.TCP{
		SrcPort:    layers.TCPPort(rand.Uint32()),
		DstPort:    0x50,
		Seq:        rand.Uint32(),
		DataOffset: 0x5,
		SYN:        true,
		Window:     0xaaaa,
	}
	tcp.SetNetworkLayerForChecksum(ip)
	buf := gopacket.NewSerializeBuffer()
	opts := gopacket.SerializeOptions{true, true}
	check(gopacket.SerializeLayers(buf, opts, ip, tcp))
	return buf.Bytes()
}
func TestPcapLogger(t *testing.T) {
	ipFlow, _ := gopacket.FlowFromEndpoints(layers.NewIPEndpoint(net.IPv4(1, 2, 3, 4)), layers.NewIPEndpoint(net.IPv4(2, 3, 4, 5)))
	tcpFlow, _ := gopacket.FlowFromEndpoints(layers.NewTCPPortEndpoint(layers.TCPPort(1)), layers.NewTCPPortEndpoint(layers.TCPPort(2)))
	flow := types.NewTcpIpFlowFromFlows(ipFlow, tcpFlow)

	pcapLogger := NewPcapLogger("fake-dir", flow)
	testWriter := NewTestPcapWriter()
	pcapLogger.fileWriter = testWriter

	pcapLogger.Start()

	// test pcap header
	want := []byte("\xd4\xc3\xb2\xa1\x02\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x01\x00\x00\x00")
	if !bytes.Equal(testWriter.lastWrite, want) {
		t.Errorf("pcap header is wrong")
		t.Fail()
	}

	// test pcap packet
	rawPacket := makeTestPacket()
	testWriter.lastWrite = make([]byte, 0)
	pcapLogger.WritePacket(rawPacket, time.Now())

	if !bytes.Equal(testWriter.lastWrite, rawPacket) {
		t.Errorf("pcap packet is wrong")
		t.Fail()
	}

	pcapLogger.Stop()
}
Esempio n. 7
0
// PrepareLayerCake prepares a delicious and fluffy protocol layer cake suitable for hackers.
func (s *SloppyTrace) PrepareLayerCake() (*layers.IPv4, *layers.TCP) {
	ipLayer := layers.IPv4{
		SrcIP:    s.SrcIP,
		DstIP:    s.DstIP,
		Protocol: layers.IPProtocolTCP,
	}

	tcpLayer := layers.TCP{
		SrcPort: layers.TCPPort(s.SrcPort),
		DstPort: layers.TCPPort(s.DstPort),

		// XXX todo: make configurable
		ACK: true,
		PSH: true,
	}
	return &ipLayer, &tcpLayer
}
Esempio n. 8
0
func TestFlowString(t *testing.T) {
	ipFlow, _ := gopacket.FlowFromEndpoints(layers.NewIPEndpoint(net.IPv4(1, 2, 3, 4)), layers.NewIPEndpoint(net.IPv4(2, 3, 4, 5)))
	tcpFlow, _ := gopacket.FlowFromEndpoints(layers.NewTCPPortEndpoint(layers.TCPPort(1)), layers.NewTCPPortEndpoint(layers.TCPPort(2)))
	tcpIpFlow := NewTcpIpFlowFromFlows(ipFlow, tcpFlow)
	if !strings.EqualFold("1.2.3.4:1-2.3.4.5:2", tcpIpFlow.String()) {
		t.Error("TcpIpFlow.String() fail")
		t.Fail()
	}
}
Esempio n. 9
0
func main() {
	// Open device
	handle, err = pcap.OpenLive(device, snapshot_len, promiscuous, timeout)
	if err != nil {
		log.Fatal(err)
	}
	defer handle.Close()

	// Create the layers
	ethernetLayer := &layers.Ethernet{
		SrcMAC:       net.HardwareAddr{0xFF, 0xAA, 0xFA, 0xAA, 0xFF, 0xAA},
		DstMAC:       net.HardwareAddr{0xBD, 0xBD, 0xBD, 0xBD, 0xBD, 0xBD},
		EthernetType: layers.EthernetTypeIPv4,
	}
	ipLayer := &layers.IPv4{
		SrcIP:   net.IP{192, 168, 1, 3},
		DstIP:   net.IP{8, 8, 8, 8},
		Version: 4,
		IHL:     5, // 20 bytes standard header size
		Length:  24,
	}
	tcpLayer := &layers.TCP{
		SrcPort: layers.TCPPort(4321),
		DstPort: layers.TCPPort(80),
	}
	payload := []byte{10, 20, 30, 40}

	// Serialize the layers
	buffer = gopacket.NewSerializeBuffer()
	gopacket.SerializeLayers(buffer, options,
		ethernetLayer,
		ipLayer,
		tcpLayer,
		gopacket.Payload(payload),
	)
	outgoingPacket := buffer.Bytes()

	// Send packet over the wire (or air)
	err = handle.WritePacketData(outgoingPacket)
	if err != nil {
		log.Fatal(err)
	}
}
Esempio n. 10
0
func TestFlows(t *testing.T) {
	ipFlow, _ := gopacket.FlowFromEndpoints(layers.NewIPEndpoint(net.IPv4(1, 2, 3, 4)), layers.NewIPEndpoint(net.IPv4(2, 3, 4, 5)))
	tcpFlow, _ := gopacket.FlowFromEndpoints(layers.NewTCPPortEndpoint(layers.TCPPort(1)), layers.NewTCPPortEndpoint(layers.TCPPort(2)))
	tcpIpFlow := NewTcpIpFlowFromFlows(ipFlow, tcpFlow)
	ipFlow2, tcpFlow2 := tcpIpFlow.Flows()
	if ipFlow2 != ipFlow || tcpFlow2 != tcpFlow {
		t.Error("Flows method fail")
		t.Fail()
	}
}
Esempio n. 11
0
func TestFlowEqual(t *testing.T) {
	ipFlow1, _ := gopacket.FlowFromEndpoints(layers.NewIPEndpoint(net.IPv4(1, 2, 3, 4)), layers.NewIPEndpoint(net.IPv4(2, 3, 4, 5)))
	tcpFlow1, _ := gopacket.FlowFromEndpoints(layers.NewTCPPortEndpoint(layers.TCPPort(1)), layers.NewTCPPortEndpoint(layers.TCPPort(2)))
	flow1 := NewTcpIpFlowFromFlows(ipFlow1, tcpFlow1)

	ipFlow2, _ := gopacket.FlowFromEndpoints(layers.NewIPEndpoint(net.IPv4(1, 2, 3, 4)), layers.NewIPEndpoint(net.IPv4(2, 3, 4, 5)))
	tcpFlow2, _ := gopacket.FlowFromEndpoints(layers.NewTCPPortEndpoint(layers.TCPPort(1)), layers.NewTCPPortEndpoint(layers.TCPPort(2)))
	flow2 := NewTcpIpFlowFromFlows(ipFlow2, tcpFlow2)

	if !flow1.Equal(flow2) {
		t.Error("TcpIpFlow.Equal fail")
		t.Fail()
	}

	ipFlow3, _ := gopacket.FlowFromEndpoints(layers.NewIPEndpoint(net.IPv4(8, 2, 3, 4)), layers.NewIPEndpoint(net.IPv4(2, 3, 4, 5)))
	tcpFlow3, _ := gopacket.FlowFromEndpoints(layers.NewTCPPortEndpoint(layers.TCPPort(1)), layers.NewTCPPortEndpoint(layers.TCPPort(2)))
	flow3 := NewTcpIpFlowFromFlows(ipFlow3, tcpFlow3)

	if flow1.Equal(flow3) {
		t.Error("TcpIpFlow.Equal fail")
		t.Fail()
	}
}
Esempio n. 12
0
func BenchmarkMultiStreamGrow(b *testing.B) {
	t := layers.TCP{
		SrcPort:   1,
		DstPort:   2,
		Seq:       0,
		BaseLayer: layers.BaseLayer{Payload: []byte{1, 2, 3, 4, 5, 6, 7, 8, 9, 0}},
	}
	a := NewAssembler(NewStreamPool(&testFactory{}))
	for i := 0; i < b.N; i++ {
		t.SrcPort = layers.TCPPort(i)
		a.Assemble(netFlow, &t)
		t.Seq += 10
	}
}
Esempio n. 13
0
func TestGetOverlapRingsWithZeroRings(t *testing.T) {
	ip := layers.IPv4{
		SrcIP:    net.IP{1, 2, 3, 4},
		DstIP:    net.IP{2, 3, 4, 5},
		Version:  4,
		TTL:      64,
		Protocol: layers.IPProtocolTCP,
	}
	tcp := layers.TCP{
		SYN:     true,
		SrcPort: 1,
		DstPort: 2,
	}
	tcp.SetNetworkLayerForChecksum(&ip)
	payload := gopacket.Payload([]byte{1, 2, 3, 4})
	p := types.PacketManifest{
		IP:      ip,
		TCP:     tcp,
		Payload: payload,
	}
	options := ConnectionOptions{
		MaxBufferedPagesTotal:         0,
		MaxBufferedPagesPerConnection: 0,
		MaxRingPackets:                40,
		PageCache:                     nil,
		LogDir:                        "fake-log-dir",
	}

	f := &DefaultConnFactory{}
	conn := f.Build(options).(*Connection)

	ipFlow, _ := gopacket.FlowFromEndpoints(layers.NewIPEndpoint(net.IPv4(1, 2, 3, 4)), layers.NewIPEndpoint(net.IPv4(2, 3, 4, 5)))
	tcpFlow, _ := gopacket.FlowFromEndpoints(layers.NewTCPPortEndpoint(layers.TCPPort(1)), layers.NewTCPPortEndpoint(layers.TCPPort(2)))
	serverFlow := types.NewTcpIpFlowFromFlows(ipFlow, tcpFlow)
	clientFlow := serverFlow.Reverse()
	conn.serverFlow = serverFlow
	conn.clientFlow = clientFlow

	head, tail := getOverlapRings(&p, serverFlow, conn.ClientStreamRing)
	if head == nil || tail == nil {
		return
	} else {
		t.Fail()
	}
	return
}
Esempio n. 14
0
func ianaPort(layerType gopacket.LayerType, port uint16) string {
	if layerType == layers.LayerTypeTCP {
		proto, in := layers.TCPPortNames[layers.TCPPort(port)]
		if in {
			return fmt.Sprintf("%s (TCP)", proto)
		} else {
			return "N/A (TCP)"
		}
	} else {
		proto, in := layers.UDPPortNames[layers.UDPPort(port)]
		if in {
			return fmt.Sprintf("%s (UDP)", proto)
		} else {
			return "N/A (UDP)"
		}
	}
}
func TestOrderedCoalesceUsedPages(t *testing.T) {
	maxBufferedPagesTotal := 1024
	maxBufferedPagesPerFlow := 1024
	streamRing := types.NewRing(40)
	PageCache := newPageCache()

	ipFlow, _ := gopacket.FlowFromEndpoints(layers.NewIPEndpoint(net.IPv4(1, 2, 3, 4)), layers.NewIPEndpoint(net.IPv4(2, 3, 4, 5)))
	tcpFlow, _ := gopacket.FlowFromEndpoints(layers.NewTCPPortEndpoint(layers.TCPPort(1)), layers.NewTCPPortEndpoint(layers.TCPPort(2)))
	flow := types.NewTcpIpFlowFromFlows(ipFlow, tcpFlow)

	var nextSeq types.Sequence = types.Sequence(1)

	coalesce := NewOrderedCoalesce(nil, flow, PageCache, streamRing, maxBufferedPagesTotal, maxBufferedPagesPerFlow, false)

	ip := layers.IPv4{
		SrcIP:    net.IP{1, 2, 3, 4},
		DstIP:    net.IP{2, 3, 4, 5},
		Version:  4,
		TTL:      64,
		Protocol: layers.IPProtocolTCP,
	}
	tcp := layers.TCP{
		Seq:     3,
		SYN:     false,
		SrcPort: 1,
		DstPort: 2,
	}
	p := types.PacketManifest{
		Timestamp: time.Now(),
		Flow:      flow,
		IP:        ip,
		TCP:       tcp,
		Payload:   []byte{1, 2, 3, 4, 5, 6, 7},
	}

	coalesce.insert(&p, nextSeq)

	if coalesce.PageCache.used != 1 {
		t.Errorf("coalesce.pager.Used() not equal to 1\n")
		t.Fail()
	}

	coalesce.Close()
}
Esempio n. 16
0
func BenchmarkMultiStreamConn(b *testing.B) {
	t := layers.TCP{
		SrcPort:   1,
		DstPort:   2,
		Seq:       0,
		SYN:       true,
		BaseLayer: layers.BaseLayer{Payload: []byte{1, 2, 3, 4, 5, 6, 7, 8, 9, 0}},
	}
	a := NewAssembler(NewStreamPool(&testFactory{}))
	for i := 0; i < b.N; i++ {
		t.SrcPort = layers.TCPPort(i)
		a.Assemble(netFlow, &t)
		if i%65536 == 65535 {
			if t.SYN {
				t.SYN = false
				t.Seq += 1
			}
			t.Seq += 10
		}
	}
}
Esempio n. 17
0
func TestNewTcpIpFlowFromPacket(t *testing.T) {
	buf := gopacket.NewSerializeBuffer()
	opts := gopacket.SerializeOptions{
		FixLengths:       true,
		ComputeChecksums: true,
	}
	ip := layers.IPv4{
		SrcIP:    net.IP{1, 2, 3, 4},
		DstIP:    net.IP{2, 3, 4, 5},
		Version:  4,
		TTL:      64,
		Protocol: layers.IPProtocolTCP,
	}
	tcp := layers.TCP{
		SYN:       true,
		SrcPort:   1,
		DstPort:   2,
		Seq:       123,
		BaseLayer: layers.BaseLayer{Payload: []byte{1, 2, 3}},
	}
	tcp.SetNetworkLayerForChecksum(&ip)
	gopacket.SerializeLayers(buf, opts, &ip, &tcp)
	packetData := buf.Bytes()
	flow1, err := NewTcpIpFlowFromPacket(packetData)

	ipFlow2, _ := gopacket.FlowFromEndpoints(layers.NewIPEndpoint(net.IPv4(1, 2, 3, 4)), layers.NewIPEndpoint(net.IPv4(2, 3, 4, 5)))
	tcpFlow2, _ := gopacket.FlowFromEndpoints(layers.NewTCPPortEndpoint(layers.TCPPort(1)), layers.NewTCPPortEndpoint(layers.TCPPort(2)))
	flow2 := NewTcpIpFlowFromFlows(ipFlow2, tcpFlow2)

	if err != nil && !flow2.Equal(flow1) {
		t.Error("NewTcpIpFlowFromPacket fail")
		t.Fail()
	}

	flow1, err = NewTcpIpFlowFromPacket([]byte{1, 2, 3, 4, 5, 6, 7})
	if err == nil || !flow1.Equal(&TcpIpFlow{}) {
		t.Error("NewTcpIpFlowFromPacket fail")
		t.Fail()
	}
}
Esempio n. 18
0
func TestGetOverlapBytes(t *testing.T) {
	overlapBytesTests := []struct {
		in   reassemblyInput
		want TestOverlapBytesWant
	}{
		{ //0
			reassemblyInput{3, []byte{2, 3, 4}}, TestOverlapBytesWant{
				bytes:       []byte{6},
				startOffset: 2,
				endOffset:   3,
			},
		},
		{ //1
			reassemblyInput{4, []byte{2, 3, 4}}, TestOverlapBytesWant{
				bytes:       []byte{6, 7},
				startOffset: 1,
				endOffset:   3,
			},
		},
		{ //2
			reassemblyInput{5, []byte{2, 3, 4}}, TestOverlapBytesWant{
				bytes:       []byte{6, 7, 8},
				startOffset: 0,
				endOffset:   3,
			},
		},
		{ //3
			reassemblyInput{6, []byte{1, 2, 3}}, TestOverlapBytesWant{
				bytes:       []byte{7, 8, 9},
				startOffset: 0,
				endOffset:   3,
			},
		},
		{ //4
			reassemblyInput{4, []byte{91, 92, 93, 94, 95, 96, 97}}, TestOverlapBytesWant{
				bytes:       []byte{6, 7, 8, 9, 10, 11},
				startOffset: 1,
				endOffset:   7,
			},
		},
		{
			reassemblyInput{4, []byte{91, 92, 93, 94, 95, 96, 97, 98}}, TestOverlapBytesWant{
				bytes:       []byte{6, 7, 8, 9, 10, 11, 12},
				startOffset: 1,
				endOffset:   8,
			},
		},
		{
			reassemblyInput{4, []byte{91, 92, 93, 94, 95, 96, 97, 98, 99}}, TestOverlapBytesWant{
				bytes:       []byte{6, 7, 8, 9, 10, 11, 12, 13},
				startOffset: 1,
				endOffset:   9,
			},
		},
		{
			reassemblyInput{3, []byte{1, 2, 3, 4, 5, 6, 7}}, TestOverlapBytesWant{
				bytes:       []byte{6, 7, 8, 9, 10},
				startOffset: 2,
				endOffset:   7,
			},
		},
		{
			reassemblyInput{34, []byte{1, 2, 3, 4, 5, 6, 7}}, TestOverlapBytesWant{
				bytes:       []byte{35, 36, 37, 38, 39, 40},
				startOffset: 0,
				endOffset:   6,
			},
		},
		{
			reassemblyInput{34, []byte{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}}, TestOverlapBytesWant{
				bytes:       []byte{35, 36, 37, 38, 39, 40},
				startOffset: 0,
				endOffset:   6,
			},
		},
		{
			reassemblyInput{5, []byte{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}}, TestOverlapBytesWant{
				bytes:       []byte{6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40},
				startOffset: 0,
				endOffset:   35,
			},
		},

		{
			reassemblyInput{5, []byte{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}}, TestOverlapBytesWant{
				bytes:       []byte{6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40},
				startOffset: 0,
				endOffset:   35,
			},
		},

		{
			reassemblyInput{5, []byte{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}}, TestOverlapBytesWant{
				bytes:       []byte{6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40},
				startOffset: 0,
				endOffset:   35,
			},
		},

		{
			reassemblyInput{4, []byte{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}}, TestOverlapBytesWant{
				bytes:       []byte{6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40},
				startOffset: 1,
				endOffset:   36,
			},
		},

		{
			reassemblyInput{3, []byte{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}}, TestOverlapBytesWant{
				bytes:       []byte{6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40},
				startOffset: 2,
				endOffset:   37,
			},
		},

		{
			reassemblyInput{4, []byte{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}}, TestOverlapBytesWant{
				bytes:       []byte{6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40},
				startOffset: 1,
				endOffset:   36,
			},
		},
	}

	options := ConnectionOptions{
		MaxBufferedPagesTotal:         0,
		MaxBufferedPagesPerConnection: 0,
		MaxRingPackets:                40,
		PageCache:                     nil,
		LogDir:                        "fake-log-dir",
	}

	f := &DefaultConnFactory{}
	conn := f.Build(options).(*Connection)

	for j := 5; j < 40; j += 5 {
		reassembly := types.Reassembly{
			Seq:   types.Sequence(j),
			Bytes: []byte{byte(j + 1), byte(j + 2), byte(j + 3), byte(j + 4), byte(j + 5)},
		}
		conn.ClientStreamRing.Reassembly = &reassembly
		conn.ClientStreamRing = conn.ClientStreamRing.Next()
	}
	for i := 0; i < len(overlapBytesTests); i++ {
		var startSeq uint32 = overlapBytesTests[i].in.Seq
		start := types.Sequence(startSeq)
		end := start.Add(len(overlapBytesTests[i].in.Payload) - 1)
		p := types.PacketManifest{
			IP: layers.IPv4{
				SrcIP:    net.IP{1, 2, 3, 4},
				DstIP:    net.IP{2, 3, 4, 5},
				Version:  4,
				TTL:      64,
				Protocol: layers.IPProtocolTCP,
			},
			TCP: layers.TCP{
				Seq:     startSeq,
				SrcPort: 1,
				DstPort: 2,
			},
			Payload: overlapBytesTests[i].in.Payload,
		}

		ipFlow, _ := gopacket.FlowFromEndpoints(layers.NewIPEndpoint(net.IPv4(1, 2, 3, 4)), layers.NewIPEndpoint(net.IPv4(2, 3, 4, 5)))
		tcpFlow, _ := gopacket.FlowFromEndpoints(layers.NewTCPPortEndpoint(layers.TCPPort(1)), layers.NewTCPPortEndpoint(layers.TCPPort(2)))
		serverFlow := types.NewTcpIpFlowFromFlows(ipFlow, tcpFlow)
		clientFlow := serverFlow.Reverse()
		conn.serverFlow = serverFlow
		conn.clientFlow = clientFlow

		head, tail := getOverlapRings(&p, serverFlow, conn.ClientStreamRing)
		if head == nil || tail == nil {
			t.Errorf("%d getOverlapRings returned a nil\n", i)
			t.Fail()
			continue
		}

		log.Printf("test #%d", i)
		overlapBytes, startOffset, endOffset := getOverlapBytes(head, tail, start, end)

		if startOffset != overlapBytesTests[i].want.startOffset {
			t.Errorf("test %d startOffset %d does not match want.startOffset %d\n", i, startOffset, overlapBytesTests[i].want.startOffset)
			t.Fail()
		}
		if endOffset != overlapBytesTests[i].want.endOffset {
			t.Errorf("test %d endOffset %d does not match want.endOffset %d\n", i, endOffset, overlapBytesTests[i].want.endOffset)
			t.Fail()
		}
		if len(overlapBytes) != len(overlapBytesTests[i].want.bytes) {
			t.Errorf("test %d overlapBytes len %d not equal to want.bytes len %d\n", i, len(overlapBytes), len(overlapBytesTests[i].want.bytes))
			t.Fail()
		}
		if !bytes.Equal(overlapBytes, overlapBytesTests[i].want.bytes) {
			t.Errorf("test %d overlapBytes %x not equal to want.bytes %x\n", i, overlapBytes, overlapBytesTests[i].want.bytes)
			t.Fail()
		}
	}
}
Esempio n. 19
0
func TestGetOverlapRings(t *testing.T) {
	overlapTests := []struct {
		in   reassemblyInput
		want []*types.Reassembly
	}{
		{
			reassemblyInput{7, []byte{1, 2}}, []*types.Reassembly{
				{
					Seq: 5,
				},
				{
					Seq: 5,
				},
			},
		},
		{
			reassemblyInput{7, []byte{6, 7}}, []*types.Reassembly{
				{
					Seq: 5,
				},
				{
					Seq: 5,
				},
			},
		},
		{
			reassemblyInput{5, []byte{1, 2, 3, 4, 5}}, []*types.Reassembly{
				{
					Seq: 5,
				},
				{
					Seq: 5,
				},
			},
		},
		{
			reassemblyInput{5, []byte{1, 2, 3, 4, 5, 6}}, []*types.Reassembly{
				{
					Seq: 5,
				},
				{
					Seq: 10,
				},
			},
		},
		{
			reassemblyInput{6, []byte{1, 2, 3, 4, 5}}, []*types.Reassembly{
				{
					Seq: 5,
				},
				{
					Seq: 10,
				},
			},
		},
		{
			reassemblyInput{7, []byte{1, 2, 3, 4, 5}}, []*types.Reassembly{
				{
					Seq: 5,
				},
				{
					Seq: 10,
				},
			},
		},
		{
			reassemblyInput{32, []byte{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}}, []*types.Reassembly{
				{
					Seq: 30,
				},
				{
					Seq: 35,
				},
			},
		},
		{
			reassemblyInput{0, []byte{1, 2, 3}}, []*types.Reassembly{
				nil,
				nil,
			},
		},
		{
			reassemblyInput{0, []byte{1, 2, 3, 4, 5, 6, 7, 8}}, []*types.Reassembly{
				{
					Seq: 5,
				},
				{
					Seq: 5,
				},
			},
		},
		{
			reassemblyInput{0, []byte{1, 2, 3, 4, 5, 6}}, []*types.Reassembly{
				{
					Seq: 5,
				},
				{
					Seq: 5,
				},
			},
		},
		{
			reassemblyInput{0, []byte{1, 2, 3}}, []*types.Reassembly{
				nil,
				nil,
			},
		},
		{
			reassemblyInput{0, []byte{1, 2, 3, 4, 5}}, []*types.Reassembly{
				nil,
				nil,
			},
		},
		{
			reassemblyInput{0, []byte{1, 2, 3, 4, 5, 6}}, []*types.Reassembly{
				{
					Seq: 5,
				},
				{
					Seq: 5,
				},
			},
		},
		{
			reassemblyInput{40, []byte{1}}, []*types.Reassembly{
				nil,
				nil,
			},
		},
		{
			reassemblyInput{42, []byte{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}}, []*types.Reassembly{
				nil,
				nil,
			},
		},
		{
			reassemblyInput{38, []byte{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}}, []*types.Reassembly{
				{
					Seq: 35,
				},
				{
					Seq: 35,
				},
			},
		},
	}

	ip := layers.IPv4{
		SrcIP:    net.IP{1, 2, 3, 4},
		DstIP:    net.IP{2, 3, 4, 5},
		Version:  4,
		TTL:      64,
		Protocol: layers.IPProtocolTCP,
	}

	options := ConnectionOptions{
		MaxBufferedPagesTotal:         0,
		MaxBufferedPagesPerConnection: 0,
		MaxRingPackets:                40,
		PageCache:                     nil,
		LogDir:                        "fake-log-dir",
	}

	f := &DefaultConnFactory{}
	conn := f.Build(options).(*Connection)

	for j := 5; j < 40; j += 5 {
		reassembly := types.Reassembly{
			Skip:  0,
			Seq:   types.Sequence(j),
			Bytes: []byte{1, 2, 3, 4, 5},
		}
		conn.ClientStreamRing.Reassembly = &reassembly
		conn.ClientStreamRing = conn.ClientStreamRing.Next()
	}

	for i := 0; i < len(overlapTests); i++ {
		log.Printf("test # %d", i)
		tcp := layers.TCP{
			Seq:     overlapTests[i].in.Seq,
			SYN:     false,
			SrcPort: 1,
			DstPort: 2,
		}
		p := types.PacketManifest{
			IP:      ip,
			TCP:     tcp,
			Payload: overlapTests[i].in.Payload,
		}

		ipFlow, _ := gopacket.FlowFromEndpoints(layers.NewIPEndpoint(net.IPv4(1, 2, 3, 4)), layers.NewIPEndpoint(net.IPv4(2, 3, 4, 5)))
		tcpFlow, _ := gopacket.FlowFromEndpoints(layers.NewTCPPortEndpoint(layers.TCPPort(1)), layers.NewTCPPortEndpoint(layers.TCPPort(2)))
		serverFlow := types.NewTcpIpFlowFromFlows(ipFlow, tcpFlow)
		clientFlow := serverFlow.Reverse()
		conn.serverFlow = serverFlow
		conn.clientFlow = clientFlow

		head, tail := getOverlapRings(&p, serverFlow, conn.ClientStreamRing)

		log.Printf("head %v tail %v", head, tail)

		log.Printf("want %v", overlapTests[i].want[0])

		if overlapTests[i].want[0] == nil {
			log.Print("want nil results")

			if head != nil {
				t.Error("getOverlapRings did not return a nil ring segment head\n")
				t.Fail()
			}
			if tail != nil {
				t.Error("getOverlapRings did not return a nil ring segment tail\n")
				t.Fail()
			}
		} else {
			if overlapTests[i].want[0] != nil {
				if head == nil || tail == nil {
					t.Error("head or tail is nil\n")
					t.Fail()
				}
			}
			if overlapTests[i].want[0] != nil {
				if head.Reassembly.Seq.Difference(overlapTests[i].want[0].Seq) != 0 {
					t.Errorf("test %d: reassembly.Seq %d != want.Seq %d\n", i, head.Reassembly.Seq, overlapTests[i].want[0].Seq)
					t.Fail()
				}
			}
			if overlapTests[i].want[1] != nil {
				if tail.Reassembly.Seq.Difference(overlapTests[i].want[1].Seq) != 0 {
					t.Errorf("test num %d in.Seq %d != want.Seq %d\n", i, head.Reassembly.Seq, overlapTests[i].want[1].Seq)
					t.Fail()
				}
			}
		}
	}
	return
}
Esempio n. 20
0
func (vnet *VNET) handleTCP(pkt *Packet, now time.Time) {
	// fmt.Printf("TCP: %08x %s\n", pkt.Flags, pkt.String())

	defer pkt.Release()

	var err error

	if bytes.Equal(pkt.Eth.DstMAC, layers.EthernetBroadcast[:]) {
		// ignore
		return
	}

	if pkt.DstHost == nil {
		// ignore
		return
	}
	if !pkt.DstHost.Up {
		log.Printf("destination is down: %s", pkt.DstHost.Name)
		// ignore
		return
	}

	var (
		srcIP   net.IP
		dstIP   net.IP
		srcPort = uint16(pkt.TCP.SrcPort)
		dstPort = uint16(pkt.TCP.DstPort)
	)

	if pkt.IPv4 != nil {
		srcIP = CloneIP(pkt.IPv4.SrcIP.To16())
		dstIP = CloneIP(pkt.IPv4.DstIP.To16())
	} else if pkt.IPv6 != nil {
		srcIP = CloneIP(pkt.IPv6.SrcIP.To16())
		dstIP = CloneIP(pkt.IPv6.DstIP.To16())
	} else {
		log.Printf("invalid protocol")
		// ignore
		return
	}

	route := vnet.routes.GetTable().Lookup(
		protocols.TCP,
		srcIP, dstIP, srcPort, dstPort)

	if route == nil {
		rule, found := vnet.rules.GetTable().Lookup(protocols.TCP, pkt.DstHost.ID, dstPort)
		if !found {
			log.Printf("no rule")
			// ignore
			return
		}

		var (
			ruleDstIP   = rule.DstIP
			ruleDstPort = rule.DstPort
			hostIP      net.IP
			hostPort    uint16
		)

		if ruleDstIP != nil {
			hostIP = dstIP
			hostPort, err = vnet.ports.Allocate(pkt.DstHost.ID, protocols.TCP, 0)
			if err != nil {
				// ignore
				log.Printf("TCP/error: %s", err)
				return
			}

			var r routes.Route
			r.Protocol = protocols.TCP
			r.HostID = pkt.DstHost.ID
			r.SetInboundSource(hostIP, hostPort)
			r.SetInboundDestination(vnet.system.GatewayIPv4(), vnet.proxy.TCPPort)
			r.SetOutboundDestination(ruleDstIP, rule.DstPort)
			route, err = vnet.routes.AddRoute(&r)
			if err != nil {
				// ignore
				log.Printf("TCP/error: %s", err)
				return
			}

			ruleDstIP = vnet.system.GatewayIPv4()
			ruleDstPort = vnet.proxy.TCPPort
		}

		if ruleDstIP == nil {
			gateway := vnet.hosts.GetTable().LookupByName("gateway")
			if gateway == nil || !gateway.Up {
				log.Printf("no gateway")
				// ignore
				return
			}

			if dstIP.To4() != nil {
				if len(gateway.IPv4Addrs) > 0 {
					ruleDstIP = gateway.IPv4Addrs[0]
				}
			} else {
				if len(gateway.IPv6Addrs) > 0 {
					ruleDstIP = gateway.IPv6Addrs[0]
				}
			}
		}
		if ruleDstIP == nil {
			log.Printf("no destination ip")
			// ignore
			return
		}

		var r routes.Route
		r.Protocol = protocols.TCP
		r.HostID = pkt.DstHost.ID
		r.SetInboundSource(srcIP, srcPort)
		r.SetInboundDestination(dstIP, dstPort)
		r.SetOutboundSource(hostIP, hostPort)
		r.SetOutboundDestination(ruleDstIP, ruleDstPort)
		route, err = vnet.routes.AddRoute(&r)
		if err != nil {
			// ignore
			log.Printf("TCP/error: %s", err)
			return
		}
	}

	if route == nil {
		log.Printf("no route")
		// ignore
		return
	}

	var (
		eth layers.Ethernet
		tcp layers.TCP
	)

	eth = *pkt.Eth
	eth.SrcMAC = vnet.system.ControllerMAC()
	eth.DstMAC = vnet.system.GatewayMAC()

	tcp = *pkt.TCP
	tcp.SrcPort = layers.TCPPort(route.Outbound.SrcPort)
	tcp.DstPort = layers.TCPPort(route.Outbound.DstPort)

	if route.Outbound.DstIP.To4() != nil {
		ip := layers.IPv4{
			SrcIP:    route.Outbound.SrcIP.To4(),
			DstIP:    route.Outbound.DstIP.To4(),
			Version:  4,
			Protocol: layers.IPProtocolTCP,
			TTL:      64,
		}

		tcp.SetNetworkLayerForChecksum(&ip)

		err = vnet.writePacket(
			&eth,
			&ip,
			&tcp,
			gopacket.Payload(pkt.TCP.Payload))
		if err != nil {
			log.Printf("TCP/error: %s", err)
			return
		}

	} else {
		ip := layers.IPv6{
			SrcIP:      route.Outbound.SrcIP.To16(),
			DstIP:      route.Outbound.DstIP.To16(),
			Version:    4,
			NextHeader: layers.IPProtocolTCP,
		}

		tcp.SetNetworkLayerForChecksum(&ip)

		err = vnet.writePacket(
			&eth,
			&ip,
			&tcp,
			gopacket.Payload(pkt.TCP.Payload))
		if err != nil {
			log.Printf("TCP/error: %s", err)
			return
		}
	}

	route.RoutedPacket(now, len(pkt.buf))
}
Esempio n. 21
0
/* protos must contain a UDP or TCP layer on top of IPv4 */
func forgeTestPacket(t *testing.T, seed int64, swap bool, protos ...ProtocolType) *gopacket.Packet {
	rnd := rand.New(rand.NewSource(seed))
	rawBytes := []byte{10, 20, 30}
	var protoStack []gopacket.SerializableLayer

	for i, proto := range protos {
		switch proto {
		case GRE:
			greLayer := &layers.GRE{}
			switch protos[i+1] {
			case IPv4:
				greLayer.Protocol = layers.EthernetTypeIPv4
			case IPv6:
				greLayer.Protocol = layers.EthernetTypeIPv6
			default:
				t.Error(fmt.Sprintf("Protocol %s can not be encapsulated in GRE", protos[i+1]))
			}
			protoStack = append(protoStack, greLayer)
		case ETH:
			ethernetLayer := &layers.Ethernet{
				SrcMAC:       net.HardwareAddr{0x00, 0x0F, 0xAA, 0xFA, 0xAA, byte(rnd.Intn(0x100))},
				DstMAC:       net.HardwareAddr{0x00, 0x0D, 0xBD, 0xBD, byte(rnd.Intn(0x100)), 0xBD},
				EthernetType: layers.EthernetTypeIPv4,
			}
			if swap {
				ethernetLayer.SrcMAC, ethernetLayer.DstMAC = ethernetLayer.DstMAC, ethernetLayer.SrcMAC
			}
			protoStack = append(protoStack, ethernetLayer)
		case IPv4:
			ipv4Layer := &layers.IPv4{
				SrcIP: net.IP{127, 0, 0, byte(rnd.Intn(0x100))},
				DstIP: net.IP{byte(rnd.Intn(0x100)), 8, 8, 8},
			}
			switch protos[i+1] {
			case TCP:
				ipv4Layer.Protocol = layers.IPProtocolTCP
			case UDP:
				ipv4Layer.Protocol = layers.IPProtocolUDP
			case GRE:
				ipv4Layer.Protocol = layers.IPProtocolGRE
			}
			if swap {
				ipv4Layer.SrcIP, ipv4Layer.DstIP = ipv4Layer.DstIP, ipv4Layer.SrcIP
			}
			protoStack = append(protoStack, ipv4Layer)
		case TCP:
			tcpLayer := &layers.TCP{
				SrcPort: layers.TCPPort(uint16(1024 + rnd.Intn(0x10000-1024))),
				DstPort: layers.TCPPort(uint16(1024 + rnd.Intn(0x10000-1024))),
			}
			if swap {
				tcpLayer.SrcPort, tcpLayer.DstPort = tcpLayer.DstPort, tcpLayer.SrcPort
			}
			protoStack = append(protoStack, tcpLayer)
		case UDP:
			udpLayer := &layers.UDP{
				SrcPort: layers.UDPPort(uint16(1024 + rnd.Intn(0x10000-1024))),
				DstPort: layers.UDPPort(uint16(1024 + rnd.Intn(0x10000-1024))),
			}
			if swap {
				udpLayer.SrcPort, udpLayer.DstPort = udpLayer.DstPort, udpLayer.SrcPort
			}
			protoStack = append(protoStack, udpLayer)
		default:
			t.Log("forgeTestPacket : Unsupported protocol ", proto)
		}
	}
	protoStack = append(protoStack, gopacket.Payload(rawBytes))

	buffer := gopacket.NewSerializeBuffer()
	options := gopacket.SerializeOptions{FixLengths: true}
	err := gopacket.SerializeLayers(buffer, options, protoStack...)

	if err != nil {
		t.Fail()
	}

	firstLayerType := layers.LayerTypeEthernet
	switch protos[0] {
	case IPv4:
		firstLayerType = layers.LayerTypeIPv4
	case IPv6:
		firstLayerType = layers.LayerTypeIPv6
	}
	gpacket := gopacket.NewPacket(buffer.Bytes(), firstLayerType, gopacket.Default)
	return &gpacket
}
Esempio n. 22
0
func main() {
	defer util.Run()()

	var eth layers.Ethernet
	var dot1q layers.Dot1Q
	var ip4 layers.IPv4
	var ip6 layers.IPv6
	var ip6extensions layers.IPv6ExtensionSkipper
	var tcp layers.TCP
	var payload gopacket.Payload
	decoded := make([]gopacket.LayerType, 0, 4)

	// target/track all TCP flows from this TCP/IP service endpoint
	trackedFlows := make(map[types.TcpIpFlow]int)
	serviceIP := net.ParseIP(*serviceIPstr)
	if serviceIP == nil {
		panic(fmt.Sprintf("non-ip target: %q\n", serviceIPstr))
	}
	serviceIP = serviceIP.To4()
	if serviceIP == nil {
		panic(fmt.Sprintf("non-ipv4 target: %q\n", serviceIPstr))
	}

	streamInjector := attack.TCPStreamInjector{}
	err := streamInjector.Init("0.0.0.0")
	if err != nil {
		panic(err)
	}
	streamInjector.Payload = []byte("meowmeowmeow")

	handle, err := pcap.OpenLive(*iface, int32(*snaplen), true, pcap.BlockForever)
	if err != nil {
		log.Fatal("error opening pcap handle: ", err)
	}
	if err := handle.SetBPFFilter(*filter); err != nil {
		log.Fatal("error setting BPF filter: ", err)
	}
	parser := gopacket.NewDecodingLayerParser(layers.LayerTypeEthernet,
		&eth, &dot1q, &ip4, &ip6, &ip6extensions, &tcp, &payload)
	flow := &types.TcpIpFlow{}

	log.Print("collecting packets...\n")

	for {
		data, ci, err := handle.ZeroCopyReadPacketData()
		if err != nil {
			log.Printf("error getting packet: %v %s", err, ci)
			continue
		}
		err = parser.DecodeLayers(data, &decoded)
		if err != nil {
			log.Printf("error decoding packet: %v", err)
			continue
		}

		// if we see a flow coming from the tcp/ip service we are watching
		// then track how many packets we receive from each flow
		if tcp.SrcPort == layers.TCPPort(*servicePort) && ip4.SrcIP.Equal(serviceIP) {
			flow = types.NewTcpIpFlowFromLayers(ip4, tcp)
			_, isTracked := trackedFlows[*flow]
			if isTracked {
				trackedFlows[*flow] += 1
			} else {
				trackedFlows[*flow] = 1
			}
		} else {
			continue
		}

		// after 3 packets from a given flow then inject packets into the stream
		if trackedFlows[*flow]%10 == 0 {
			err = streamInjector.SetIPLayer(ip4)
			if err != nil {
				panic(err)
			}
			streamInjector.SetTCPLayer(tcp)
			err = streamInjector.SpraySequenceRangePackets(tcp.Seq, 20)
			if err != nil {
				panic(err)
			}
			log.Print("packet spray sent!\n")
		}
	}
}
Esempio n. 23
0
func (self oxmBasic) SetField(data *Frame, key OxmKey, payload OxmPayload) error {
	m := payload.(OxmValueMask)
	switch uint32(key.(OxmKeyBasic)) {
	default:
		return fmt.Errorf("unknown oxm field")
	case oxm.OXM_OF_IN_PORT:
		data.inPort = binary.BigEndian.Uint32(m.Value)
		return nil
	case oxm.OXM_OF_IN_PHY_PORT:
		data.inPhyPort = binary.BigEndian.Uint32(m.Value)
		return nil
	case oxm.OXM_OF_METADATA:
		data.metadata = binary.BigEndian.Uint64(m.Value)
		return nil
	case oxm.OXM_OF_ETH_DST:
		for _, layer := range data.Layers() {
			if t, ok := layer.(*layers.Ethernet); ok {
				t.DstMAC = net.HardwareAddr(m.Value)
				return nil
			}
		}
	case oxm.OXM_OF_ETH_SRC:
		for _, layer := range data.Layers() {
			if t, ok := layer.(*layers.Ethernet); ok {
				t.SrcMAC = net.HardwareAddr(m.Value)
				return nil
			}
		}
	case oxm.OXM_OF_ETH_TYPE:
		var lastLayer gopacket.Layer
		for _, layer := range data.Layers() {
			switch t := layer.(type) {
			case *layers.Ethernet:
				lastLayer = t
			case *layers.Dot1Q:
				lastLayer = t
			}
		}
		if t, ok := lastLayer.(*layers.Ethernet); ok {
			t.EthernetType = layers.EthernetType(binary.BigEndian.Uint16(m.Value))
			return nil
		}
		if t, ok := lastLayer.(*layers.Dot1Q); ok {
			t.Type = layers.EthernetType(binary.BigEndian.Uint16(m.Value))
			return nil
		}
	case oxm.OXM_OF_VLAN_VID:
		for _, layer := range data.Layers() {
			if t, ok := layer.(*layers.Dot1Q); ok {
				t.VLANIdentifier = binary.BigEndian.Uint16(m.Value) & 0x0fff
				return nil
			}
		}
	case oxm.OXM_OF_VLAN_PCP:
		for _, layer := range data.Layers() {
			if t, ok := layer.(*layers.Dot1Q); ok {
				t.Priority = m.Value[0]
				return nil
			}
		}
	case oxm.OXM_OF_IP_DSCP:
		for _, layer := range data.Layers() {
			if t, ok := layer.(*layers.IPv4); ok {
				t.TOS = t.TOS&0x03 | m.Value[0]<<2
				return nil
			}
			if t, ok := layer.(*layers.IPv6); ok {
				t.TrafficClass = t.TrafficClass&0x03 | m.Value[0]<<2
				return nil
			}
		}
	case oxm.OXM_OF_IP_ECN:
		for _, layer := range data.Layers() {
			if t, ok := layer.(*layers.IPv4); ok {
				t.TOS = t.TOS&0xFC | m.Value[0]&0x03
				return nil
			}
			if t, ok := layer.(*layers.IPv6); ok {
				t.TrafficClass = t.TrafficClass&0xFC | m.Value[0]&0x03
				return nil
			}
		}
	case oxm.OXM_OF_IP_PROTO:
		for _, layer := range data.Layers() {
			if t, ok := layer.(*layers.IPv4); ok {
				t.Protocol = layers.IPProtocol(m.Value[0])
				return nil
			}
			if t, ok := layer.(*layers.IPv6); ok {
				t.NextHeader = layers.IPProtocol(m.Value[0])
				return nil
			}
		}
	case oxm.OXM_OF_IPV4_SRC:
		for _, layer := range data.Layers() {
			if t, ok := layer.(*layers.IPv4); ok {
				t.SrcIP = net.IP(m.Value)
				return nil
			}
		}
	case oxm.OXM_OF_IPV4_DST:
		for _, layer := range data.Layers() {
			if t, ok := layer.(*layers.IPv4); ok {
				t.DstIP = net.IP(m.Value)
				return nil
			}
		}
	case oxm.OXM_OF_TCP_SRC:
		for _, layer := range data.Layers() {
			if t, ok := layer.(*layers.TCP); ok {
				t.SrcPort = layers.TCPPort(binary.BigEndian.Uint16(m.Value))
				return nil
			}
		}
	case oxm.OXM_OF_TCP_DST:
		for _, layer := range data.Layers() {
			if t, ok := layer.(*layers.TCP); ok {
				t.DstPort = layers.TCPPort(binary.BigEndian.Uint16(m.Value))
				return nil
			}
		}
	case oxm.OXM_OF_UDP_SRC:
		for _, layer := range data.Layers() {
			if t, ok := layer.(*layers.UDP); ok {
				t.SrcPort = layers.UDPPort(binary.BigEndian.Uint16(m.Value))
				return nil
			}
		}
	case oxm.OXM_OF_UDP_DST:
		for _, layer := range data.Layers() {
			if t, ok := layer.(*layers.UDP); ok {
				t.DstPort = layers.UDPPort(binary.BigEndian.Uint16(m.Value))
				return nil
			}
		}
	case oxm.OXM_OF_SCTP_SRC:
		for _, layer := range data.Layers() {
			if t, ok := layer.(*layers.SCTP); ok {
				t.SrcPort = layers.SCTPPort(binary.BigEndian.Uint16(m.Value))
				return nil
			}
		}
	case oxm.OXM_OF_SCTP_DST:
		for _, layer := range data.Layers() {
			if t, ok := layer.(*layers.SCTP); ok {
				t.DstPort = layers.SCTPPort(binary.BigEndian.Uint16(m.Value))
				return nil
			}
		}
	case oxm.OXM_OF_ICMPV4_TYPE:
		for _, layer := range data.Layers() {
			if t, ok := layer.(*layers.ICMPv4); ok {
				t.TypeCode = layers.ICMPv4TypeCode(uint16(t.TypeCode)&0x00FF | uint16(m.Value[0])<<8)
				return nil
			}
		}
	case oxm.OXM_OF_ICMPV4_CODE:
		for _, layer := range data.Layers() {
			if t, ok := layer.(*layers.ICMPv4); ok {
				t.TypeCode = layers.ICMPv4TypeCode(uint16(t.TypeCode)&0xFF00 | uint16(m.Value[0]))
				return nil
			}
		}
	case oxm.OXM_OF_ARP_OP:
		for _, layer := range data.Layers() {
			if t, ok := layer.(*layers.ARP); ok {
				t.Operation = binary.BigEndian.Uint16(m.Value)
				return nil
			}
		}
	case oxm.OXM_OF_ARP_SPA:
		for _, layer := range data.Layers() {
			if t, ok := layer.(*layers.ARP); ok {
				t.SourceProtAddress = m.Value
				return nil
			}
		}
	case oxm.OXM_OF_ARP_TPA:
		for _, layer := range data.Layers() {
			if t, ok := layer.(*layers.ARP); ok {
				t.DstProtAddress = m.Value
				return nil
			}
		}
	case oxm.OXM_OF_ARP_SHA:
		for _, layer := range data.Layers() {
			if t, ok := layer.(*layers.ARP); ok {
				t.SourceHwAddress = m.Value
				return nil
			}
		}
	case oxm.OXM_OF_ARP_THA:
		for _, layer := range data.Layers() {
			if t, ok := layer.(*layers.ARP); ok {
				t.DstHwAddress = m.Value
				return nil
			}
		}
	case oxm.OXM_OF_IPV6_SRC:
		for _, layer := range data.Layers() {
			if t, ok := layer.(*layers.IPv6); ok {
				t.SrcIP = net.IP(m.Value)
				return nil
			}
		}
	case oxm.OXM_OF_IPV6_DST:
		for _, layer := range data.Layers() {
			if t, ok := layer.(*layers.IPv6); ok {
				t.DstIP = net.IP(m.Value)
				return nil
			}
		}
	case oxm.OXM_OF_IPV6_FLABEL:
		for _, layer := range data.Layers() {
			if t, ok := layer.(*layers.IPv6); ok {
				t.FlowLabel = binary.BigEndian.Uint32(m.Value)
				return nil
			}
		}
	case oxm.OXM_OF_ICMPV6_TYPE:
		for _, layer := range data.Layers() {
			if t, ok := layer.(*layers.ICMPv6); ok {
				t.TypeCode = layers.ICMPv6TypeCode(uint16(t.TypeCode)&0x00FF | uint16(m.Value[0])<<8)
				return nil
			}
		}
	case oxm.OXM_OF_ICMPV6_CODE:
		for _, layer := range data.Layers() {
			if t, ok := layer.(*layers.ICMPv6); ok {
				t.TypeCode = layers.ICMPv6TypeCode(uint16(t.TypeCode)&0xFF00 | uint16(m.Value[0]))
				return nil
			}
		}
	case oxm.OXM_OF_IPV6_ND_TARGET:
		for _, layer := range data.Layers() {
			if t, ok := layer.(*layers.ICMPv6); ok {
				typ := uint8(t.TypeCode >> 8)
				if typ == layers.ICMPv6TypeNeighborSolicitation || typ == layers.ICMPv6TypeNeighborAdvertisement {
					copy(t.Payload[:16], m.Value)
					return nil
				}
			}
		}
	case oxm.OXM_OF_IPV6_ND_SLL:
		for _, layer := range data.Layers() {
			if t, ok := layer.(*layers.ICMPv6); ok {
				typ := uint8(t.TypeCode >> 8)
				if typ == layers.ICMPv6TypeNeighborSolicitation {
					for cur := 16; cur < len(t.Payload); {
						length := int(t.Payload[cur+1]) * 8
						if t.Payload[cur] == 1 { // source link-layer address (RFC 2461 4.6)
							copy(t.Payload[cur+2:], m.Value)
							return nil
						}
						cur += length
					}
					buf := make([]byte, 8)
					buf[0] = 2
					buf[1] = 1
					copy(buf[2:], m.Value)
					t.Payload = append(t.Payload, buf...)
					return nil
				}
			}
		}
	case oxm.OXM_OF_IPV6_ND_TLL:
		for _, layer := range data.Layers() {
			if t, ok := layer.(*layers.ICMPv6); ok {
				typ := uint8(t.TypeCode >> 8)
				if typ == layers.ICMPv6TypeNeighborAdvertisement {
					for cur := 16; cur < len(t.Payload); {
						length := int(t.Payload[cur+1]) * 8
						if t.Payload[cur] == 2 { // target link-layer address (RFC 2461 4.6)
							copy(t.Payload[cur+2:], m.Value)
							return nil
						}
						cur += length
					}
					buf := make([]byte, 8)
					buf[0] = 2
					buf[1] = 1
					copy(buf[2:], m.Value)
					t.Payload = append(t.Payload, buf...)
					return nil
				}
			}
		}
	case oxm.OXM_OF_MPLS_LABEL:
		for _, layer := range data.Layers() {
			if t, ok := layer.(*layers.MPLS); ok {
				t.Label = binary.BigEndian.Uint32(m.Value)
				return nil
			}
		}
	case oxm.OXM_OF_MPLS_TC:
		for _, layer := range data.Layers() {
			if t, ok := layer.(*layers.MPLS); ok {
				t.TrafficClass = m.Value[0]
				return nil
			}
		}
	case oxm.OXM_OF_MPLS_BOS:
		for _, layer := range data.Layers() {
			if t, ok := layer.(*layers.MPLS); ok {
				if m.Value[0] == 0 {
					t.StackBottom = false
				} else {
					t.StackBottom = true
				}
				return nil
			}
		}
	case oxm.OXM_OF_PBB_ISID:
		for _, layer := range data.Layers() {
			if t, ok := layer.(*layers2.PBB); ok {
				t.ServiceIdentifier = binary.BigEndian.Uint32(append(make([]byte, 1), m.Value...))
				return nil
			}
		}
	case oxm.OXM_OF_TUNNEL_ID:
		data.tunnelId = binary.BigEndian.Uint64(m.Value)
		return nil
	case oxm.OXM_OF_IPV6_EXTHDR:
		return fmt.Errorf("OXM_OF_IPV6_EXTHDR setter is unsupported")
	}
	return fmt.Errorf("layer not found: %v", m)
}
Esempio n. 24
0
func HelperTestThreeWayClose(isClient bool, t *testing.T) {
	PageCache := newPageCache()

	var closerState, remoteState *uint8
	attackLogger := NewDummyAttackLogger()
	options := ConnectionOptions{
		MaxBufferedPagesTotal:         0,
		MaxBufferedPagesPerConnection: 0,
		MaxRingPackets:                40,
		PageCache:                     PageCache,
		LogDir:                        "fake-log-dir",
	}

	f := &DefaultConnFactory{}
	conn := f.Build(options).(*Connection)
	conn.AttackLogger = attackLogger

	conn.state = TCP_DATA_TRANSFER
	conn.serverNextSeq = 4666
	conn.clientNextSeq = 9666

	if isClient {
		closerState = &conn.clientState
		remoteState = &conn.serverState
	} else {
		closerState = &conn.serverState
		remoteState = &conn.clientState
	}

	ipFlow, _ := gopacket.FlowFromEndpoints(layers.NewIPEndpoint(net.IPv4(1, 2, 3, 4)), layers.NewIPEndpoint(net.IPv4(2, 3, 4, 5)))
	tcpFlow, _ := gopacket.FlowFromEndpoints(layers.NewTCPPortEndpoint(layers.TCPPort(1)), layers.NewTCPPortEndpoint(layers.TCPPort(2)))

	ip := layers.IPv4{
		SrcIP:    net.IP{1, 2, 3, 4},
		DstIP:    net.IP{2, 3, 4, 5},
		Version:  4,
		TTL:      64,
		Protocol: layers.IPProtocolTCP,
	}

	tcp := layers.TCP{
		Seq:     9666,
		Ack:     4111,
		FIN:     true,
		SYN:     false,
		ACK:     true,
		SrcPort: 1,
		DstPort: 2,
	}

	flow := types.NewTcpIpFlowFromFlows(ipFlow, tcpFlow)
	p := types.PacketManifest{
		Timestamp: time.Now(),
		Flow:      flow,
		IP:        ip,
		TCP:       tcp,
		Payload:   []byte{},
	}

	conn.clientFlow = flow
	conn.serverFlow = flow.Reverse()

	conn.ReceivePacket(&p)
	log.Print("meow1")

	if conn.state != TCP_CONNECTION_CLOSING {
		t.Error("connection state must transition to TCP_CONNECTION_CLOSING\n")
		t.Fail()
	}
	if *closerState != TCP_FIN_WAIT1 {
		t.Error("closer state must be in TCP_FINE_WAIT1\n")
		t.Fail()
	}
	if *remoteState != TCP_CLOSE_WAIT {
		t.Error("remote state must be in TCP_CLOSE_WAIT\n")
		t.Fail()
	}

	// next state transition
	ip = layers.IPv4{
		SrcIP:    net.IP{2, 3, 4, 5},
		DstIP:    net.IP{1, 2, 3, 4},
		Version:  4,
		TTL:      64,
		Protocol: layers.IPProtocolTCP,
	}
	tcp = layers.TCP{
		Seq:     4111,
		SYN:     false,
		FIN:     true,
		ACK:     true,
		Ack:     9667,
		SrcPort: 2,
		DstPort: 1,
	}

	flow2 := flow.Reverse()

	p = types.PacketManifest{
		Timestamp: time.Now(),
		Flow:      flow2,
		IP:        ip,
		TCP:       tcp,
		Payload:   []byte{},
	}

	conn.ReceivePacket(&p)
	log.Print("meow2")

	if conn.state != TCP_CONNECTION_CLOSING {
		t.Error("connection state must transition to TCP_CONNECTION_CLOSING\n")
		t.Fail()
	}

	// next state transition
	ip = layers.IPv4{
		SrcIP:    net.IP{1, 2, 3, 4},
		DstIP:    net.IP{2, 3, 4, 5},
		Version:  4,
		TTL:      64,
		Protocol: layers.IPProtocolTCP,
	}
	tcp = layers.TCP{
		Seq:     9667,
		SYN:     false,
		FIN:     false,
		ACK:     true,
		Ack:     4112,
		SrcPort: 1,
		DstPort: 2,
	}
	p = types.PacketManifest{
		Timestamp: time.Now(),
		Flow:      flow,
		IP:        ip,
		TCP:       tcp,
		Payload:   []byte{},
	}

	conn.ReceivePacket(&p)
	log.Print("freeing page cache")
}
Esempio n. 25
0
//Detectinitcwnd attempts to detect the initial congession window of an http endpoint.
//First does a 3 way tcp handshake, sends GET request and then does not ack any response while measuring the packets received. This allows us to see how much data the server can send without acknowledgement.
func Detectinitcwnd(host, url string, dstip net.IP) (pkt_count, payload_size int, fullpayload []byte, err error) {
	pldata := []byte(fmt.Sprintf("GET %s HTTP/1.1\r\nHost: %s\r\n\r\n", url, host))
	var dstport layers.TCPPort

	dstport = layers.TCPPort(80)

	srcip, sport := localIPPort(dstip)
	srcport := layers.TCPPort(sport)
	log.Printf("using srcip: %v", srcip.String())
	log.Printf("using dstip: %v", dstip.String())

	// Our IP header... not used, but necessary for TCP checksumming.
	ip := &layers.IPv4{
		SrcIP:    srcip,
		DstIP:    dstip,
		Protocol: layers.IPProtocolTCP,
	}
	//layers.TCPOption{3, 3, []byte{7}} maybe for window scaling... dunno
	tcpopts := []layers.TCPOption{layers.TCPOption{2, 4, []byte{5, 172}}} //Set MSS 1452
	// Our TCP header
	tcp := &layers.TCP{
		SrcPort: srcport,
		DstPort: dstport,
		Seq:     1105024978,
		SYN:     true,
		Window:  65535,
		Options: tcpopts,
	}
	tcp.SetNetworkLayerForChecksum(ip)

	// Serialize.  Note:  we only serialize the TCP layer, because the
	// socket we get with net.ListenPacket wraps our data in IPv4 packets
	// already.  We do still need the IP layer to compute checksums
	// correctly, though.
	buf := gopacket.NewSerializeBuffer()
	opts := gopacket.SerializeOptions{
		ComputeChecksums: true,
		FixLengths:       true,
	}
	err = gopacket.SerializeLayers(buf, opts, tcp)
	if err != nil {
		return
	}
	var out1 bytes.Buffer
	iptset := exec.Command("iptables", "-A", "OUTPUT", "-p", "tcp", "--tcp-flags", "RST", "RST", "-s", srcip.String(), "--sport", porttoint(srcport), "--dport", porttoint(dstport), "-j", "DROP")
	iptset.Stderr = &out1
	log.Println(iptset)
	err = iptset.Run()
	if err != nil {
		return
	}
	log.Println(out1.String())
	iptrem := exec.Command("iptables", "-D", "OUTPUT", "-p", "tcp", "--tcp-flags", "RST", "RST", "-s", srcip.String(), "--sport", porttoint(srcport), "--dport", porttoint(dstport), "-j", "DROP")
	conn, err := net.ListenPacket("ip4:tcp", "0.0.0.0")
	if err != nil {
		return
	}
	defer func() {
		fmt.Println(iptrem)
		var out bytes.Buffer
		iptrem.Stderr = &out
		err = iptrem.Run()
		if err != nil {
			log.Println(err)
		}
		fmt.Printf(out.String())
		log.Println("Removed iptable rule")
		//Now RST should be allowed... send it
		rst_pkt := &layers.TCP{
			SrcPort: srcport,
			DstPort: dstport,
			Seq:     1105024980,
			Window:  65535,
			RST:     true,
		}
		rst_pkt.SetNetworkLayerForChecksum(ip)
		if err := gopacket.SerializeLayers(buf, opts, rst_pkt); err != nil {
			//Shadowing err since we dont care
			log.Println(err)
		}
		if _, err := conn.WriteTo(buf.Bytes(), &net.IPAddr{IP: dstip}); err != nil {
			//Shadowing err since we dont care
			log.Println(err)
		}

	}()
	log.Println("writing request")
	_, err = conn.WriteTo(buf.Bytes(), &net.IPAddr{IP: dstip})
	if err != nil {
		return
	}

	// Set deadline so we don't wait forever.
	err = conn.SetDeadline(time.Now().Add(15 * time.Second))
	if err != nil {
		return
	}
	//Capture synack from our syn, return the ack value
	ack, err := getack(conn, srcport, dstip.String())
	if err != nil {
		log.Println(err)
		return
	} else {
		//Prepare http request, ack the synack
		payload := &layers.TCP{
			SrcPort: srcport,
			DstPort: dstport,
			Seq:     1105024979,
			ACK:     true,
			Window:  65535,
			Ack:     ack + 1,
		}
		payload.SetNetworkLayerForChecksum(ip)
		if err := gopacket.SerializeLayers(buf, opts, payload, gopacket.Payload(pldata)); err != nil {
			log.Fatal(err)
		}
		if _, err := conn.WriteTo(buf.Bytes(), &net.IPAddr{IP: dstip}); err != nil {
			log.Fatal(err)
		}
		pkt_count, payload_size, fullpayload = listenandcount(conn, dstip.String(), srcport)
		log.Println("Initcwnd: ", pkt_count)
		log.Println("Data: ", payload_size)

		return
	}
	return
}
Esempio n. 26
0
func TestTCPHijack(t *testing.T) {
	attackLogger := NewDummyAttackLogger()
	options := ConnectionOptions{
		MaxBufferedPagesTotal:         0,
		MaxBufferedPagesPerConnection: 0,
		MaxRingPackets:                40,
		PageCache:                     nil,
		LogDir:                        "fake-log-dir",
		DetectHijack:                  true,
	}

	f := &DefaultConnFactory{}
	conn := f.Build(options).(*Connection)
	conn.AttackLogger = attackLogger

	ip := layers.IPv4{
		SrcIP:    net.IP{1, 2, 3, 4},
		DstIP:    net.IP{2, 3, 4, 5},
		Version:  4,
		TTL:      64,
		Protocol: layers.IPProtocolTCP,
	}
	tcp := layers.TCP{
		Seq:     3,
		SYN:     true,
		ACK:     false,
		SrcPort: 1,
		DstPort: 2,
	}

	ipFlow, _ := gopacket.FlowFromEndpoints(layers.NewIPEndpoint(net.IPv4(1, 2, 3, 4)), layers.NewIPEndpoint(net.IPv4(2, 3, 4, 5)))
	tcpFlow, _ := gopacket.FlowFromEndpoints(layers.NewTCPPortEndpoint(layers.TCPPort(1)), layers.NewTCPPortEndpoint(layers.TCPPort(2)))
	flow := types.NewTcpIpFlowFromFlows(ipFlow, tcpFlow)

	p := types.PacketManifest{
		Timestamp: time.Now(),
		Flow:      flow,
		IP:        ip,
		TCP:       tcp,
		Payload:   []byte{},
	}
	tcp.SetNetworkLayerForChecksum(&ip)
	flowReversed := flow.Reverse()

	conn.clientFlow = flow
	conn.serverFlow = flowReversed

	conn.ReceivePacket(&p)

	if conn.state != TCP_CONNECTION_REQUEST {
		t.Error("invalid state transition\n")
		t.Fail()
	}

	// next state transition test
	ip = layers.IPv4{
		SrcIP:    net.IP{2, 3, 4, 5},
		DstIP:    net.IP{1, 2, 3, 4},
		Version:  4,
		TTL:      64,
		Protocol: layers.IPProtocolTCP,
	}
	tcp = layers.TCP{
		Seq:     9,
		SYN:     true,
		ACK:     true,
		Ack:     4,
		SrcPort: 2,
		DstPort: 1,
	}
	p = types.PacketManifest{
		Timestamp: time.Now(),
		Flow:      flowReversed,
		IP:        ip,
		TCP:       tcp,
		Payload:   []byte{},
	}
	conn.ReceivePacket(&p)

	if conn.state != TCP_CONNECTION_ESTABLISHED {
		t.Errorf("invalid state transition: current state %d\n", conn.state)
		t.Fail()
	}

	// test hijack in TCP_CONNECTION_ESTABLISHED state
	ip = layers.IPv4{
		SrcIP:    net.IP{2, 3, 4, 5},
		DstIP:    net.IP{1, 2, 3, 4},
		Version:  4,
		TTL:      64,
		Protocol: layers.IPProtocolTCP,
	}
	tcp = layers.TCP{
		Seq:     6699,
		SYN:     true,
		ACK:     true,
		Ack:     4,
		SrcPort: 2,
		DstPort: 1,
	}
	p = types.PacketManifest{
		Timestamp: time.Now(),
		Flow:      flowReversed,
		IP:        ip,
		TCP:       tcp,
		Payload:   []byte{},
	}
	conn.ReceivePacket(&p)

	if attackLogger.Count != 1 {
		t.Error("hijack detection fail")
		t.Fail()
	}

	// next state transition test
	ip = layers.IPv4{
		SrcIP:    net.IP{1, 2, 3, 4},
		DstIP:    net.IP{2, 3, 4, 5},
		Version:  4,
		TTL:      64,
		Protocol: layers.IPProtocolTCP,
	}
	tcp = layers.TCP{
		Seq:     4,
		SYN:     false,
		ACK:     true,
		Ack:     10,
		SrcPort: 1,
		DstPort: 2,
	}
	p = types.PacketManifest{
		Timestamp: time.Now(),
		Flow:      flow,
		IP:        ip,
		TCP:       tcp,
		Payload:   []byte{},
	}
	conn.ReceivePacket(&p)

	if conn.state != TCP_DATA_TRANSFER {
		t.Errorf("invalid state transition; state is %d\n", conn.state)
		t.Fail()
	}

	// test hijack in TCP_DATA_TRANSFER state
	ip = layers.IPv4{
		SrcIP:    net.IP{2, 3, 4, 5},
		DstIP:    net.IP{1, 2, 3, 4},
		Version:  4,
		TTL:      64,
		Protocol: layers.IPProtocolTCP,
	}
	tcp = layers.TCP{
		Seq:     7711,
		SYN:     true,
		ACK:     true,
		Ack:     4,
		SrcPort: 2,
		DstPort: 1,
	}
	p = types.PacketManifest{
		Timestamp: time.Now(),
		Flow:      flowReversed,
		IP:        ip,
		TCP:       tcp,
		Payload:   []byte{},
	}
	conn.ReceivePacket(&p)

	if attackLogger.Count != 2 {
		t.Error("hijack detection fail")
		t.Fail()
	}

}
Esempio n. 27
0
func main() {
	if len(os.Args) != 3 {
		log.Printf("Usage: %s <host/ip> <port>\n", os.Args[0])
		os.Exit(-1)
	}
	log.Println("starting")

	dstaddrs, err := net.LookupIP(os.Args[1])
	if err != nil {
		log.Fatal(err)
	}

	// parse the destination host and port from the command line os.Args
	dstip := dstaddrs[0].To4()
	var dstport layers.TCPPort
	if d, err := strconv.ParseInt(os.Args[2], 10, 16); err != nil {
		log.Fatal(err)
	} else {
		dstport = layers.TCPPort(d)
	}

	srcip, sport := localIPPort(dstip)
	srcport := layers.TCPPort(sport)
	log.Printf("using srcip: %v", srcip.String())

	// Our IP header... not used, but necessary for TCP checksumming.
	ip := &layers.IPv4{
		SrcIP:    srcip,
		DstIP:    dstip,
		Protocol: layers.IPProtocolTCP,
	}
	// Our TCP header
	tcp := &layers.TCP{
		SrcPort: srcport,
		DstPort: dstport,
		Seq:     1105024978,
		SYN:     true,
		Window:  14600,
	}
	tcp.SetNetworkLayerForChecksum(ip)

	// Serialize.  Note:  we only serialize the TCP layer, because the
	// socket we get with net.ListenPacket wraps our data in IPv4 packets
	// already.  We do still need the IP layer to compute checksums
	// correctly, though.
	buf := gopacket.NewSerializeBuffer()
	opts := gopacket.SerializeOptions{
		ComputeChecksums: true,
		FixLengths:       true,
	}
	if err := gopacket.SerializeLayers(buf, opts, tcp); err != nil {
		log.Fatal(err)
	}

	conn, err := net.ListenPacket("ip4:tcp", "0.0.0.0")
	if err != nil {
		log.Fatal(err)
	}
	log.Println("writing request")
	if _, err := conn.WriteTo(buf.Bytes(), &net.IPAddr{IP: dstip}); err != nil {
		log.Fatal(err)
	}

	// Set deadline so we don't wait forever.
	if err := conn.SetDeadline(time.Now().Add(10 * time.Second)); err != nil {
		log.Fatal(err)
	}

	for {
		b := make([]byte, 4096)
		log.Println("reading from conn")
		n, addr, err := conn.ReadFrom(b)
		if err != nil {
			log.Println("error reading packet: ", err)
			return
		} else if addr.String() == dstip.String() {
			// Decode a packet
			packet := gopacket.NewPacket(b[:n], layers.LayerTypeTCP, gopacket.Default)
			// Get the TCP layer from this packet
			if tcpLayer := packet.Layer(layers.LayerTypeTCP); tcpLayer != nil {
				tcp, _ := tcpLayer.(*layers.TCP)

				if tcp.DstPort == srcport {
					if tcp.SYN && tcp.ACK {
						log.Printf("Port %d is OPEN\n", dstport)
					} else {
						log.Printf("Port %d is CLOSED\n", dstport)
					}
					return
				}
			}
		} else {
			log.Printf("Got packet not matching addr")
		}
	}
}
Esempio n. 28
0
func main() {
	flag.Parse()
	args := flag.Args()
	if len(args) != 2 {
		log.Printf("Usage: %s <ip> <port>\n", os.Args[0])
		os.Exit(-1)
	}

	// parse the destination host and port from the command line args
	dstip := net.ParseIP(args[0]).To4()
	dport_, err := strconv.ParseInt(args[1], 10, 16)
	if err != nil {
		log.Fatal(err)
	}
	dport := layers.TCPPort(dport_)
	sport := layers.TCPPort(5000)

	// get our local ip.
	srcip, err := localIP(dstip)
	if err != nil {
		log.Fatal(err)
	}

	devs, err := pcap.FindAllDevs()
	if err != nil {
		log.Fatal(err)
	}

	dev := ""
	for _, d := range devs {
		for _, a := range d.Addresses {
			if bytes.Equal(a.IP, srcip) {
				dev = d.Name
			}
		}
		// if d.Description == "Realtek PCIe GBE Family Controller" {
		//   fmt.Println(d.Name)
		//   dev = d.Name
		// }

		// fmt.Println(dev.Description)
	}

	if dev == "" {
		log.Fatal("Could not find the appropriate adapter device")
	}

	srcmac, err := localMac(dev)
	if err != nil {
		log.Fatal(err)
	}

	dstmac, err := remoteMac(dev, srcmac, srcip, dstip)
	if err != nil {
		log.Fatal(err)
	}

	eth := &layers.Ethernet{
		SrcMAC:       srcmac,
		DstMAC:       dstmac,
		EthernetType: layers.EthernetTypeIPv4,
	}

	// Our IPv4 header
	ip := &layers.IPv4{
		Version:    4,
		IHL:        5,
		TOS:        0,
		Length:     20, // FIX
		Id:         2,
		Flags:      layers.IPv4DontFragment,
		FragOffset: 0, //16384,
		TTL:        3, //64,
		Protocol:   layers.IPProtocolTCP,
		Checksum:   0,
		SrcIP:      srcip,
		DstIP:      dstip,
	}

	// Our TCP header
	tcp := &layers.TCP{
		SrcPort:  sport,
		DstPort:  dport,
		Seq:      0,
		Ack:      0,
		SYN:      true,
		Window:   64240,
		Checksum: 0,
		Urgent:   0,
	}
	tcp.DataOffset = 5 // uint8(unsafe.Sizeof(tcp))
	tcp.SetNetworkLayerForChecksum(ip)

	buf := gopacket.NewSerializeBuffer()
	err = gopacket.SerializeLayers(
		buf,
		gopacket.SerializeOptions{
			ComputeChecksums: true, // automatically compute checksums
			FixLengths:       true,
		},
		eth, ip, tcp,
	)
	if err != nil {
		log.Fatal(err)
	}

	handle, err := pcap.OpenLive(`rpcap://`+dev, 65535, true, time.Second*1)
	if err != nil {
		log.Fatal(err)
	}
	defer handle.Close()

	var wg sync.WaitGroup

	handle.SetBPFFilter(fmt.Sprintf("tcp and host %s and host %s and port %d and port %d", srcip.String(), dstip.String(), sport, dport))
	packetSource := gopacket.NewPacketSource(handle, handle.LinkType())

	wg.Add(1)
	go func() {
		stop := false

		go func() {
			<-time.After(time.Second * 2)
			stop = true
		}()

		for {
			if stop {
				break
			}

			packet, err := packetSource.NextPacket()
			if err == io.EOF {
				break
			} else if err != nil {
				//log.Println("Error:", err)
				continue
			}

			if tcpLayer := packet.Layer(layers.LayerTypeTCP); tcpLayer != nil {
				tcp, _ := tcpLayer.(*layers.TCP)
				if tcp.SrcPort == dport && tcp.DstPort == sport {
					if tcp.SYN && tcp.ACK {
						fmt.Printf("Port %d is OPEN\n", dport_)
					} else {
						fmt.Printf("Port %d is CLOSED\n", dport_)
					}
					break
				}
				//fmt.Printf("From src port %d to dst port %d\n", tcp.SrcPort, tcp.DstPort)
			}
		}

		wg.Done()
	}()

	err = handle.WritePacketData(buf.Bytes())
	if err != nil {
		log.Fatal(err)
	}

	wg.Wait()
}
Esempio n. 29
0
// Given an EvePacket, convert the payload to a PCAP faking out the
// headers as best we can.
//
// A buffer containing the 1 packet pcap file will be returned.
func EvePayloadToPcap(event *EveEvent) ([]byte, error) {
	buffer := gopacket.NewSerializeBuffer()
	options := gopacket.SerializeOptions{
		FixLengths:       true,
		ComputeChecksums: true,
	}

	payloadLayer := gopacket.Payload(event.Payload.Bytes())
	payloadLayer.SerializeTo(buffer, options)

	srcIp := net.ParseIP(event.SrcIP)
	if srcIp == nil {
		return nil, fmt.Errorf("Failed to parse IP address %s.", event.SrcIP)
	}
	dstIp := net.ParseIP(event.DstIP)
	if dstIp == nil {
		return nil, fmt.Errorf("Failed to parse IP address %s.", event.DstIP)
	}

	proto, err := ProtoNumber(event.Proto)
	if err != nil {
		return nil, err
	}

	switch proto {
	case layers.IPProtocolTCP:
		// Could probably fake up a better TCP layer here.
		tcpLayer := layers.TCP{
			SrcPort: layers.TCPPort(event.SrcPort),
			DstPort: layers.TCPPort(event.DstPort),
		}
		tcpLayer.SerializeTo(buffer, options)
		break
	case layers.IPProtocolUDP:
		udpLayer := layers.UDP{
			SrcPort: layers.UDPPort(event.SrcPort),
			DstPort: layers.UDPPort(event.DstPort),
		}
		udpLayer.SerializeTo(buffer, options)
		break
	case layers.IPProtocolICMPv4:
		icmpLayer := layers.ICMPv4{
			TypeCode: layers.CreateICMPv4TypeCode(
				event.IcmpType, event.IcmpCode),
			Id:  0,
			Seq: 0,
		}
		icmpLayer.SerializeTo(buffer, options)
		break
	case layers.IPProtocolICMPv6:
		icmp6Layer := layers.ICMPv6{
			TypeCode: layers.CreateICMPv6TypeCode(
				event.IcmpType, event.IcmpCode),
		}
		icmp6Layer.SerializeTo(buffer, options)
		break
	default:
		return nil, fmt.Errorf("Unsupported protocol %d.", proto)
	}

	isIp6 := dstIp.To4() == nil

	if !isIp6 {
		ipLayer := layers.IPv4{
			SrcIP:    srcIp,
			DstIP:    dstIp,
			Version:  4,
			Protocol: proto,
			TTL:      64,
		}
		ipLayer.SerializeTo(buffer, options)
	} else {
		ip6Layer := layers.IPv6{
			Version: 6,
			SrcIP:   srcIp,
			DstIP:   dstIp,
		}
		ip6Layer.SerializeTo(buffer, options)
	}

	return pcap.CreatePcap(event.Timestamp.Time,
		buffer.Bytes(), layers.LinkTypeRaw)
}
Esempio n. 30
0
func TestInjectionDetector(t *testing.T) {
	log.Print("TestInjectionDetector")
	attackLogger := NewDummyAttackLogger()
	options := ConnectionOptions{
		MaxBufferedPagesTotal:         0,
		MaxBufferedPagesPerConnection: 0,
		MaxRingPackets:                40,
		PageCache:                     nil,
		LogDir:                        "fake-log-dir",
		AttackLogger:                  attackLogger,
	}

	f := &DefaultConnFactory{}
	conn := f.Build(options).(*Connection)
	reassembly := types.Reassembly{
		Seq:   types.Sequence(5),
		Bytes: []byte{1, 2, 3, 4, 5},
	}
	conn.ClientStreamRing.Reassembly = &reassembly
	conn.ClientStreamRing = conn.ClientStreamRing.Next()

	p := types.PacketManifest{
		IP: layers.IPv4{
			SrcIP:    net.IP{1, 2, 3, 4},
			DstIP:    net.IP{2, 3, 4, 5},
			Version:  4,
			TTL:      64,
			Protocol: layers.IPProtocolTCP,
		},
		TCP: layers.TCP{
			Seq:     7,
			SrcPort: 1,
			DstPort: 2,
		},
		Payload: []byte{1, 2, 3, 4, 5, 6, 7},
	}

	ipFlow, _ := gopacket.FlowFromEndpoints(layers.NewIPEndpoint(net.IPv4(1, 2, 3, 4)), layers.NewIPEndpoint(net.IPv4(2, 3, 4, 5)))
	tcpFlow, _ := gopacket.FlowFromEndpoints(layers.NewTCPPortEndpoint(layers.TCPPort(1)), layers.NewTCPPortEndpoint(layers.TCPPort(2)))
	serverFlow := types.NewTcpIpFlowFromFlows(ipFlow, tcpFlow)
	conn.serverFlow = serverFlow
	clientFlow := serverFlow.Reverse()
	conn.clientFlow = clientFlow
	conn.detectInjection(&p, serverFlow)

	if attackLogger.Count != 1 {
		t.Errorf("detectInjection failed; count == %d\n", attackLogger.Count)
		t.Fail()
	}

	// next test case
	p.TCP = layers.TCP{
		Seq:     7,
		SrcPort: 1,
		DstPort: 2,
	}
	p.Payload = []byte{3, 4, 5}
	conn.detectInjection(&p, serverFlow)
	if attackLogger.Count == 0 {
		t.Error("failed to detect injection\n")
		t.Fail()
	}

	// next test case
	attackLogger.Count = 0
	p.TCP = layers.TCP{
		Seq:     1,
		SrcPort: 1,
		DstPort: 2,
	}
	p.Payload = []byte{1, 2, 3, 4, 5, 6}
	conn.detectInjection(&p, serverFlow)
	if attackLogger.Count == 0 {
		t.Error("failed to detect injection\n")
		t.Fail()
	}

	// next test case
	attackLogger.Count = 0
	p.TCP = layers.TCP{
		Seq:     1,
		SrcPort: 1,
		DstPort: 2,
	}
	p.Payload = []byte{1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17}
	conn.detectInjection(&p, serverFlow)
	if attackLogger.Count != 1 {
		t.Error("injection detection failure\n")
		t.Fail()
	}
}