/* Inverse of a real or complex matrix. Getri(A, ipiv, n=A.Rows, ldA = max(1,A.Rows), offsetA=0) PURPOSE Computes the inverse of real or complex matrix of order n. On entry, A and ipiv contain the LU factorization, as returned by gesv() or getrf(). On exit A is replaced by the inverse. ARGUMENTS A float or complex matrix ipiv int vector OPTIONS n nonnegative integer. If negative, the default value is used. ldA positive integer. ldA >= max(1,n). If zero, the default value is used. offsetA nonnegative integer; */ func Getri(A matrix.Matrix, ipiv []int32, opts ...linalg.Option) error { ind := linalg.GetIndexOpts(opts...) if ind.N < 0 { ind.N = A.Cols() } if ind.N == 0 { return nil } if ind.LDa == 0 { ind.LDa = max(1, A.Rows()) } if ind.OffsetA < 0 { return errors.New("lda") } sizeA := A.NumElements() if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.N { return errors.New("sizeA") } if ipiv != nil && len(ipiv) < ind.N { return errors.New("size ipiv") } info := -1 switch A.(type) { case *matrix.FloatMatrix: Aa := A.FloatArray() info = dgetri(ind.N, Aa[ind.OffsetA:], ind.LDa, ipiv) case *matrix.ComplexMatrix: } if info != 0 { return errors.New("Getri call error") } return nil }
func checkSyevd(ind *linalg.IndexOpts, A, W matrix.Matrix) error { if ind.N < 0 { ind.N = A.Rows() if ind.N != A.Cols() { return errors.New("Syevd: A not square") } } if ind.N == 0 { return nil } if ind.LDa == 0 { ind.LDa = max(1, A.Rows()) } if ind.LDa < max(1, ind.N) { return errors.New("Syevd: lda") } if ind.OffsetA < 0 { return errors.New("Syevd: offsetA") } sizeA := A.NumElements() if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.N { return errors.New("Syevd: sizeA") } if ind.OffsetW < 0 { return errors.New("Syevd: offsetW") } sizeW := W.NumElements() if sizeW < ind.OffsetW+ind.N { return errors.New("Syevd: sizeW") } return nil }
func checkSytrf(ind *linalg.IndexOpts, A matrix.Matrix, ipiv []int32) error { if ind.N < 0 { ind.N = A.Rows() if ind.N != A.Cols() { return errors.New("A not square") } } if ind.N == 0 { return nil } if ind.LDa == 0 { ind.LDa = max(1, A.Rows()) } if ind.LDa < max(1, ind.N) { return errors.New("Sytrf: lda") } if ind.OffsetA < 0 { return errors.New("Sytrf: offsetA") } sizeA := A.NumElements() if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.N { return errors.New("Sytrf: sizeA") } if ipiv != nil && len(ipiv) < ind.N { return errors.New("Sytrf: size ipiv") } return nil }
/* QR factorization. Geqrf(A, tau, m=A.Rows, n=A.Cols, ldA=max(1,A.Rows), offsetA=0) PURPOSE QR factorization of an m by n real or complex matrix A: A = Q*R = [Q1 Q2] * [R1; 0] if m >= n A = Q*R = Q * [R1 R2] if m <= n, where Q is m by m and orthogonal/unitary and R is m by n with R1 upper triangular. On exit, R is stored in the upper triangular part of A. Q is stored as a product of k=min(m,n) elementary reflectors. The parameters of the reflectors are stored in the first k entries of tau and in the lower triangular part of the first k columns of A. ARGUMENTS A float or complex matrix tau float or complex matrix of length at least min(m,n). Must have the same type as A. m integer. If negative, the default value is used. n integer. If negative, the default value is used. ldA nonnegative integer. ldA >= max(1,m). If zero, the default value is used. offsetA nonnegative integer */ func Geqrf(A, tau matrix.Matrix, opts ...linalg.Option) error { ind := linalg.GetIndexOpts(opts...) if ind.N < 0 { ind.N = A.Rows() } if ind.M < 0 { ind.M = A.Cols() } if ind.N == 0 || ind.M == 0 { return nil } if ind.LDa == 0 { ind.LDa = max(1, A.Rows()) } if ind.LDa < max(1, ind.M) { return errors.New("lda") } if ind.OffsetA < 0 { return errors.New("offsetA") } if A.NumElements() < ind.OffsetA+ind.K*ind.LDa { return errors.New("sizeA") } if tau.NumElements() < min(ind.M, ind.N) { return errors.New("sizeTau") } if !matrix.EqualTypes(A, tau) { return errors.New("not same type") } info := -1 switch A.(type) { case *matrix.FloatMatrix: Aa := A.FloatArray() taua := tau.FloatArray() info = dgeqrf(ind.M, ind.N, Aa[ind.OffsetA:], ind.LDa, taua) case *matrix.ComplexMatrix: return errors.New("ComplexMatrx: not implemented yet") } if info != 0 { return errors.New("Geqrf failed") } return nil }
func checkPotri(ind *linalg.IndexOpts, A matrix.Matrix) error { if ind.N < 0 { ind.N = A.Rows() } if ind.N == 0 { return nil } if ind.LDa == 0 { ind.LDa = max(1, A.Rows()) } if ind.LDa < max(1, ind.N) { return errors.New("Potri: lda") } if ind.OffsetA < 0 { return errors.New("Potri: offsetA") } if A.NumElements() < ind.OffsetA+(ind.N-1)*ind.LDa+ind.N { return errors.New("Potri: sizeA") } return nil }
/* Solves a real symmetric or complex Hermitian positive definite set of linear equations, given the Cholesky factorization computed by potrf() or posv(). Potrs(A, B, uplo=PLower, n=A.Rows, nrhs=B.Cols, ldA=max(1,A.Rows), ldB=max(1,B.Rows), offsetA=0, offsetB=0) PURPOSE Solves A*X = B where A is n by n, real symmetric or complex Hermitian and positive definite, and B is n by nrhs. On entry, A contains the Cholesky factor, as returned by Posv() or Potrf(). On exit B is replaced by the solution X. ARGUMENTS A float or complex matrix B float or complex matrix. Must have the same type as A. OPTIONS uplo PLower or PUpper n nonnegative integer. If negative, the default value is used. nrhs nonnegative integer. If negative, the default value is used. ldA positive integer. ldA >= max(1,n). If zero, the default value is used. ldB positive integer. ldB >= max(1,n). If zero, the default value is used. offsetA nonnegative integer offsetB nonnegative integer; */ func Potrs(A, B matrix.Matrix, opts ...linalg.Option) error { pars, err := linalg.GetParameters(opts...) if err != nil { return err } ind := linalg.GetIndexOpts(opts...) if ind.N < 0 { ind.N = A.Rows() } if ind.Nrhs < 0 { ind.Nrhs = B.Cols() } if ind.N == 0 || ind.Nrhs == 0 { return nil } if ind.LDa == 0 { ind.LDa = max(1, A.Rows()) } if ind.LDa < max(1, ind.N) { return errors.New("lda") } if ind.LDb == 0 { ind.LDb = max(1, B.Rows()) } if ind.LDb < max(1, ind.N) { return errors.New("ldb") } if ind.OffsetA < 0 { return errors.New("offsetA") } if A.NumElements() < ind.OffsetA+(ind.N-1)*ind.LDa+ind.N { return errors.New("sizeA") } if ind.OffsetB < 0 { return errors.New("offsetB") } if B.NumElements() < ind.OffsetB+(ind.Nrhs-1)*ind.LDb+ind.N { return errors.New("sizeB") } if !matrix.EqualTypes(A, B) { return errors.New("types") } info := -1 switch A.(type) { case *matrix.FloatMatrix: Aa := A.FloatArray() Ba := B.FloatArray() uplo := linalg.ParamString(pars.Uplo) info = dpotrs(uplo, ind.N, ind.Nrhs, Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb) case *matrix.ComplexMatrix: return errors.New("ComplexMatrx: not implemented yet") } if info != 0 { return errors.New("Potrs failed") } return nil }
func checkGbtrs(ind *linalg.IndexOpts, A, B matrix.Matrix, ipiv []int32) error { if ind.Kl < 0 { return errors.New("Gbtrs: invalid kl") } if ind.N < 0 { ind.N = A.Rows() } if ind.Nrhs < 0 { ind.Nrhs = A.Cols() } if ind.N == 0 || ind.Nrhs == 0 { return nil } if ind.Ku < 0 { ind.Ku = A.Rows() - 2*ind.Kl - 1 } if ind.Ku < 0 { return errors.New("Gbtrs: invalid ku") } if ind.LDa == 0 { ind.LDa = max(1, A.Rows()) } if ind.LDa < 2*ind.Kl+ind.Ku+1 { return errors.New("Gbtrs: lda") } if ind.OffsetA < 0 { return errors.New("Gbtrs: offsetA") } sizeA := A.NumElements() if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+2*ind.Kl+ind.Ku+1 { return errors.New("Gbtrs: sizeA") } if ind.LDb == 0 { ind.LDb = max(1, B.Rows()) } if ind.OffsetB < 0 { return errors.New("Gbtrs: offsetB") } sizeB := B.NumElements() if sizeB < ind.OffsetB+(ind.Nrhs-1)*ind.LDb+ind.N { return errors.New("Gbtrs: sizeB") } if ipiv != nil && len(ipiv) < ind.N { return errors.New("Gbtrs: size ipiv") } return nil }
func checkGbtrf(ind *linalg.IndexOpts, A matrix.Matrix, ipiv []int32) error { if ind.M < 0 { return errors.New("Gbtrf: illegal m") } if ind.Kl < 0 { return errors.New("GBtrf: illegal kl") } if ind.N < 0 { ind.N = A.Rows() } if ind.M == 0 || ind.N == 0 { return nil } if ind.Ku < 0 { ind.Ku = A.Rows() - 2*ind.Kl - 1 } if ind.Ku < 0 { return errors.New("Gbtrf: invalid ku") } if ind.LDa == 0 { ind.LDa = max(1, A.Rows()) } if ind.LDa < 2*ind.Kl+ind.Ku+1 { return errors.New("Gbtrf: lda") } if ind.OffsetA < 0 { return errors.New("Gbtrf: offsetA") } sizeA := A.NumElements() if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+2*ind.Kl+ind.Ku+1 { return errors.New("Gbtrf: sizeA") } if ipiv != nil && len(ipiv) < min(ind.N, ind.M) { return errors.New("Gbtrf: size ipiv") } return nil }
func SyevrFloat(A, W, Z matrix.Matrix, abstol float64, vlimit []float64, ilimit []int, opts ...linalg.Option) error { var vl, vu float64 var il, iu int pars, err := linalg.GetParameters(opts...) if err != nil { return err } ind := linalg.GetIndexOpts(opts...) if ind.N < 0 { ind.N = A.Rows() if ind.N != A.Cols() { return errors.New("Syevr: A not square") } } // Check indexes if ind.N == 0 { return nil } if ind.LDa == 0 { ind.LDa = max(1, A.Rows()) } if ind.LDa < max(1, A.Rows()) { return errors.New("Syevr: lda") } if pars.Range == linalg.PRangeValue { if vlimit == nil { return errors.New("Syevr: vlimit is nil") } vl = vlimit[0] vu = vlimit[1] if vl >= vu { return errors.New("Syevr: must be: vl < vu") } } else if pars.Range == linalg.PRangeInt { if ilimit == nil { return errors.New("Syevr: ilimit is nil") } il = ilimit[0] iu = ilimit[1] if il < 1 || il > iu || iu > ind.N { return errors.New("Syevr: must be:1 <= il <= iu <= N") } } if pars.Jobz == linalg.PJobValue { if Z == nil { return errors.New("Syevr: Z is nil") } if ind.LDz == 0 { ind.LDz = max(1, Z.Rows()) } if ind.LDz < max(1, ind.N) { return errors.New("Syevr: ldz") } } else { if ind.LDz == 0 { ind.LDz = 1 } if ind.LDz < 1 { return errors.New("Syevr: ldz") } } if ind.OffsetA < 0 { return errors.New("Syevr: OffsetA") } sizeA := A.NumElements() if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.N { return errors.New("Syevr: sizeA") } if ind.OffsetW < 0 { return errors.New("Syevr: OffsetW") } sizeW := W.NumElements() if sizeW < ind.OffsetW+ind.N { return errors.New("Syevr: sizeW") } if pars.Jobz == linalg.PJobValue { if ind.OffsetZ < 0 { return errors.New("Syevr: OffsetW") } minZ := ind.OffsetZ + (ind.N-1)*ind.LDz + ind.N if pars.Range == linalg.PRangeInt { minZ = ind.OffsetZ + (iu-il)*ind.LDz + ind.N } if Z.NumElements() < minZ { return errors.New("Syevr: sizeZ") } } Aa := A.FloatArray() Wa := W.FloatArray() var Za []float64 if pars.Jobz == linalg.PJobValue { Za = Z.FloatArray() } else { Za = nil } jobz := linalg.ParamString(pars.Jobz) rnge := linalg.ParamString(pars.Range) uplo := linalg.ParamString(pars.Uplo) info := dsyevr(jobz, rnge, uplo, ind.N, Aa[ind.OffsetA:], ind.LDa, vl, vu, il, iu, ind.M, Wa[ind.OffsetW:], Za, ind.LDz) if info != 0 { return errors.New(fmt.Sprintf("Syevr: call failed %d", info)) } return nil }
/* Solves a real or complex set of linear equations with a banded coefficient matrix, given the LU factorization computed by gbtrf() or gbsv(). Gbtrs(A, B, ipiv, kl, trans=PNoTrans, n=A.Cols, ku=A.Rows-2*kl-1, nrhs=B.Cols, ldA=max(1,A.Rows), ldB=max(1,B.Rows), offsetA=0, offsetB=0) PURPOSE Solves linear equations A*X = B, if trans is PNoTrans A^T*X = B, if trans is PTrans A^H*X = B, if trans is PConjTrans On entry, A and ipiv contain the LU factorization of an n by n band matrix A as computed by Getrf() or Gbsv(). On exit B is replaced by the solution X. ARGUMENTS A float or complex matrix B float or complex matrix. Must have the same type as A. ipiv int vector kl nonnegative integer OPTIONS trans PNoTrans, PTrans or PConjTrans n nonnegative integer. If negative, the default value is used. ku nonnegative integer. If negative, the default value is used. nrhs nonnegative integer. If negative, the default value is used. ldA positive integer, ldA >= 2*kl+ku+1. If zero, the default value is used. ldB positive integer, ldB >= max(1,n). If zero, the default value is used. offsetA nonnegative integer offsetB nonnegative integer; */ func Gbtrs(A, B matrix.Matrix, ipiv []int32, KL int, opts ...linalg.Option) error { pars, err := linalg.GetParameters(opts...) if err != nil { return err } ind := linalg.GetIndexOpts(opts...) //err = lapack_check(ind, fgbtrs, A, B, ipiv, pars) ind.Kl = KL if ind.Kl < 0 { return errors.New("invalid kl") } if ind.N < 0 { ind.N = A.Rows() } if ind.Nrhs < 0 { ind.Nrhs = A.Cols() } if ind.N == 0 || ind.Nrhs == 0 { return nil } if ind.Ku < 0 { ind.Ku = A.Rows() - 2*ind.Kl - 1 } if ind.Ku < 0 { return errors.New("invalid ku") } if ind.LDa == 0 { ind.LDa = max(1, A.Rows()) } if ind.LDa < 2*ind.Kl+ind.Ku+1 { return errors.New("lda") } if ind.OffsetA < 0 { return errors.New("offsetA") } sizeA := A.NumElements() if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+2*ind.Kl+ind.Ku+1 { return errors.New("sizeA") } if ind.LDb == 0 { ind.LDb = max(1, B.Rows()) } if ind.OffsetB < 0 { return errors.New("offsetB") } sizeB := B.NumElements() if sizeB < ind.OffsetB+(ind.Nrhs-1)*ind.LDb+ind.N { return errors.New("sizeB") } if ipiv != nil && len(ipiv) < ind.N { return errors.New("size ipiv") } info := -1 switch A.(type) { case *matrix.FloatMatrix: Aa := A.FloatArray() Ba := B.FloatArray() trans := linalg.ParamString(pars.Trans) info = dgbtrs(trans, ind.N, ind.Kl, ind.Ku, ind.Nrhs, Aa[ind.OffsetA:], ind.LDa, ipiv, Ba[ind.OffsetB:], ind.LDb) case *matrix.ComplexMatrix: return errors.New("Gbtrs for complex not yet implemented") } if info != 0 { return errors.New("gbtrs call error") } return nil }
func Gtrrs(DL, D, DU, DU2, B matrix.Matrix, ipiv []int32, opts ...linalg.Option) error { pars, err := linalg.GetParameters(opts...) if err != nil { return err } ind := linalg.GetIndexOpts(opts...) if ind.OffsetD < 0 { return errors.New("offset D") } if ind.N < 0 { ind.N = D.NumElements() - ind.OffsetD } if ind.N < 0 { return errors.New("size D") } if ind.N == 0 { return nil } if ind.OffsetDL < 0 { return errors.New("offset DL") } sizeDL := DL.NumElements() if sizeDL < ind.OffsetDL+ind.N-1 { return errors.New("sizeDL") } if ind.OffsetDU < 0 { return errors.New("offset DU") } sizeDU := DU.NumElements() if sizeDU < ind.OffsetDU+ind.N-1 { return errors.New("sizeDU") } sizeDU2 := DU2.NumElements() if sizeDU2 < ind.N-2 { return errors.New("sizeDU2") } if ind.Nrhs < 0 { ind.Nrhs = B.Cols() } if ind.Nrhs == 0 { return nil } if ind.LDb == 0 { ind.LDb = max(1, B.Rows()) } if ind.LDb < max(1, ind.N) { return errors.New("ldB") } if ind.OffsetB < 0 { return errors.New("offset B") } sizeB := B.NumElements() if sizeB < ind.OffsetB+(ind.Nrhs-1)*ind.LDb+ind.N { return errors.New("sizeB") } if len(ipiv) < ind.N { return errors.New("size ipiv") } DLa := DL.FloatArray() Da := D.FloatArray() DUa := DU.FloatArray() DU2a := DU2.FloatArray() Ba := B.FloatArray() trans := linalg.ParamString(pars.Trans) info := dgttrs(trans, ind.N, ind.Nrhs, DLa[ind.OffsetDL:], Da[ind.OffsetD:], DUa[ind.OffsetDU:], DU2a, ipiv, Ba[ind.OffsetB:], ind.LDb) if info != 0 { return errors.New("dgttrs call error") } return nil }
/* Solution of a triangular set of equations with multiple righthand sides. Trtrs(A, B, uplo=PLower, trans=PNoTrans, diag=PNonUnit, n=A.Rows, nrhs=B.Cols, ldA=max(1,A.Rows), ldB=max(1,B.Rows), offsetA=0, offsetB=0) PURPOSE Solves set of equations A*X = B, if trans is PNoTrans A^T*X = B, if trans is PTrans A^H*X = B, if trans is PConjTrans B is n by nrhs and A is triangular of order n. ARGUMENTS A float or complex matrix B float or complex matrix. Must have the same type as A. OPTIONS uplo PLower or PUpper trans PNoTrans, PTrans, PConjTrans diag PNonUnit, PUnit n nonnegative integer. If negative, the default value is used. nrhs nonnegative integer. If negative, the default value is used. ldA positive integer. ldA >= max(1,n). If zero, the default value is used. ldB positive integer. ldB >= max(1,n). If zero, the default value is used. offsetA nonnegative integer offsetB nonnegative integer; */ func Trtrs(A, B matrix.Matrix, ipiv []int32, opts ...linalg.Option) error { pars, err := linalg.GetParameters(opts...) if err != nil { return err } ind := linalg.GetIndexOpts(opts...) if ind.N < 0 { ind.N = A.Rows() if ind.N != A.Cols() { return errors.New("A not square") } } if ind.Nrhs < 0 { ind.Nrhs = B.Cols() } if ind.N == 0 || ind.Nrhs == 0 { return nil } if ind.LDa == 0 { ind.LDa = max(1, A.Rows()) } if ind.LDa < max(1, ind.N) { return errors.New("lda") } if ind.LDb == 0 { ind.LDb = max(1, B.Rows()) } if ind.LDb < max(1, ind.N) { return errors.New("ldb") } if ind.OffsetA < 0 { return errors.New("offsetA") } sizeA := A.NumElements() if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.N { return errors.New("sizeA") } if ind.OffsetB < 0 { return errors.New("offsetB") } sizeB := B.NumElements() if sizeB < ind.OffsetB+(ind.Nrhs-1)*ind.LDb+ind.N { return errors.New("sizeB") } info := -1 uplo := linalg.ParamString(pars.Uplo) trans := linalg.ParamString(pars.Trans) diag := linalg.ParamString(pars.Diag) switch A.(type) { case *matrix.FloatMatrix: Aa := A.FloatArray() Ba := B.FloatArray() info = dtrtrs(uplo, trans, diag, ind.N, ind.Nrhs, Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb) case *matrix.ComplexMatrix: } if info != 0 { return errors.New("sytrf failed") } return nil }
func check_level3_func(ind *linalg.IndexOpts, fn funcNum, A, B, C matrix.Matrix, pars *linalg.Parameters) (err error) { switch fn { case fgemm: if ind.M < 0 { if pars.TransA == linalg.PNoTrans { ind.M = A.Rows() } else { ind.M = A.Cols() } } if ind.N < 0 { if pars.TransB == linalg.PNoTrans { ind.N = A.Cols() } else { ind.N = A.Rows() } } if ind.K < 0 { if pars.TransA == linalg.PNoTrans { ind.K = A.Cols() } else { ind.K = A.Rows() } if pars.TransB == linalg.PNoTrans && ind.K != B.Rows() || pars.TransB != linalg.PNoTrans && ind.K != B.Cols() { return errors.New("dimensions of A and B do not match") } } if ind.OffsetB < 0 { return errors.New("offsetB illegal, <0") } if ind.LDa == 0 { ind.LDa = max(1, A.Rows()) } if ind.K > 0 { if (pars.TransA == linalg.PNoTrans && ind.LDa < max(1, ind.M)) || (pars.TransA != linalg.PNoTrans && ind.LDa < max(1, ind.K)) { return errors.New("inconsistent ldA") } sizeA := A.NumElements() if (pars.TransA == linalg.PNoTrans && sizeA < ind.OffsetA+(ind.K-1)*ind.LDa+ind.M) || (pars.TransA != linalg.PNoTrans && sizeA < ind.OffsetA+(ind.M-1)*ind.LDa+ind.K) { return errors.New("sizeA") } } // B matrix if B != nil { if ind.OffsetB < 0 { return errors.New("offsetB illegal, <0") } if ind.LDb == 0 { ind.LDb = max(1, B.Rows()) } if ind.K > 0 { if (pars.TransB == linalg.PNoTrans && ind.LDb < max(1, ind.K)) || (pars.TransB != linalg.PNoTrans && ind.LDb < max(1, ind.N)) { return errors.New("inconsistent ldB") } sizeB := B.NumElements() if (pars.TransB == linalg.PNoTrans && sizeB < ind.OffsetB+(ind.N-1)*ind.LDb+ind.K) || (pars.TransB != linalg.PNoTrans && sizeB < ind.OffsetB+(ind.K-1)*ind.LDb+ind.N) { return errors.New("sizeB") } } } // C matrix if C != nil { if ind.OffsetC < 0 { return errors.New("offsetC illegal, <0") } if ind.LDc == 0 { ind.LDb = max(1, C.Rows()) } if ind.LDc < max(1, ind.M) { return errors.New("inconsistent ldC") } sizeC := C.NumElements() if sizeC < ind.OffsetC+(ind.N-1)*ind.LDc+ind.M { return errors.New("sizeC") } } case fsymm, ftrmm, ftrsm: if ind.M < 0 { ind.M = B.Rows() if pars.Side == linalg.PLeft && (ind.M != A.Rows() || ind.M != A.Cols()) { return errors.New("dimensions of A and B do not match") } } if ind.N < 0 { ind.N = B.Cols() if pars.Side == linalg.PRight && (ind.N != A.Rows() || ind.N != A.Cols()) { return errors.New("dimensions of A and B do not match") } } if ind.M == 0 || ind.N == 0 { return } // check A if ind.OffsetB < 0 { return errors.New("offsetB illegal, <0") } if ind.LDa == 0 { ind.LDa = max(1, A.Rows()) } if pars.Side == linalg.PLeft && ind.LDa < max(1, ind.M) || ind.LDa < max(1, ind.N) { return errors.New("ldA") } sizeA := A.NumElements() if (pars.Side == linalg.PLeft && sizeA < ind.OffsetA+(ind.M-1)*ind.LDa+ind.M) || (pars.Side == linalg.PRight && sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.N) { return errors.New("sizeA") } if B != nil { if ind.OffsetB < 0 { return errors.New("offsetB illegal, <0") } if ind.LDb == 0 { ind.LDb = max(1, B.Rows()) } if ind.LDb < max(1, ind.M) { return errors.New("ldB") } sizeB := B.NumElements() if sizeB < ind.OffsetB+(ind.N-1)*ind.LDb+ind.M { return errors.New("sizeB") } } if C != nil { if ind.OffsetC < 0 { return errors.New("offsetC illegal, <0") } if ind.LDc == 0 { ind.LDc = max(1, C.Rows()) } if ind.LDc < max(1, ind.M) { return errors.New("ldC") } sizeC := C.NumElements() if sizeC < ind.OffsetC+(ind.N-1)*ind.LDc+ind.M { return errors.New("sizeC") } } case fsyrk, fsyr2k: if ind.N < 0 { if pars.Trans == linalg.PNoTrans { ind.N = B.Rows() } else { ind.N = B.Cols() } } if ind.K < 0 { if pars.Trans == linalg.PNoTrans { ind.K = A.Cols() } else { ind.K = A.Rows() } } if ind.N == 0 { return } if ind.LDa == 0 { ind.LDa = max(1, A.Rows()) } if ind.K > 0 { if (pars.Trans == linalg.PNoTrans && ind.LDa < max(1, ind.N)) || (pars.Trans != linalg.PNoTrans && ind.LDa < max(1, ind.K)) { return errors.New("inconsistent ldA") } sizeA := A.NumElements() if (pars.Trans == linalg.PNoTrans && sizeA < ind.OffsetA+(ind.K-1)*ind.LDa+ind.N) || (pars.TransA != linalg.PNoTrans && sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.K) { return errors.New("sizeA") } } if B != nil { if ind.OffsetB < 0 { return errors.New("offsetB illegal, <0") } if ind.LDb == 0 { ind.LDb = max(1, B.Rows()) } if ind.K > 0 { if (pars.Trans == linalg.PNoTrans && ind.LDb < max(1, ind.N)) || (pars.Trans != linalg.PNoTrans && ind.LDb < max(1, ind.K)) { return errors.New("ldB") } sizeB := B.NumElements() if (pars.Trans == linalg.PNoTrans && sizeB < ind.OffsetB+(ind.K-1)*ind.LDb+ind.N) || (pars.Trans != linalg.PNoTrans && sizeB < ind.OffsetB+(ind.N-1)*ind.LDb+ind.K) { return errors.New("sizeB") } } } if C != nil { if ind.OffsetC < 0 { return errors.New("offsetC illegal, <0") } if ind.LDc == 0 { ind.LDc = max(1, C.Rows()) } if ind.LDc < max(1, ind.N) { return errors.New("ldC") } sizeC := C.NumElements() if sizeC < ind.OffsetC+(ind.N-1)*ind.LDc+ind.N { return errors.New("sizeC") } } } err = nil return }
func check_level2_func(ind *linalg.IndexOpts, fn funcNum, X, Y, A matrix.Matrix, pars *linalg.Parameters) error { if ind.IncX <= 0 { return errors.New("incX") } if ind.IncY <= 0 { return errors.New("incY") } sizeA := A.NumElements() switch fn { case fgemv: // general matrix if ind.M < 0 { ind.M = A.Rows() } if ind.N < 0 { ind.N = A.Cols() } if ind.LDa == 0 { ind.LDa = max(1, A.Rows()) } if ind.OffsetA < 0 { return errors.New("offsetA") } if ind.N > 0 && ind.M > 0 && sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.M { return errors.New("sizeA") } if ind.OffsetX < 0 { return errors.New("offsetX") } if ind.OffsetY < 0 { return errors.New("offsetY") } sizeX := X.NumElements() sizeY := Y.NumElements() if pars.Trans == linalg.PNoTrans { if ind.N > 0 && sizeX < ind.OffsetX+(ind.N-1)*abs(ind.IncX)+1 { return errors.New("sizeX") } if ind.M > 0 && sizeY < ind.OffsetY+(ind.M-1)*abs(ind.IncY)+1 { return errors.New("sizeY") } } else { if ind.M > 0 && sizeX < ind.OffsetX+(ind.M-1)*abs(ind.IncX)+1 { return errors.New("sizeX") } if ind.N > 0 && sizeY < ind.OffsetY+(ind.N-1)*abs(ind.IncY)+1 { return errors.New("sizeY") } } case fger: if ind.M < 0 { ind.M = A.Rows() } if ind.N < 0 { ind.N = A.Cols() } if ind.M == 0 || ind.N == 0 { return nil } if ind.M > 0 && ind.N > 0 { if ind.LDa == 0 { ind.LDa = max(1, A.Rows()) } if ind.LDa < max(1, ind.M) { return errors.New("ldA") } if ind.OffsetA < 0 { return errors.New("offsetA") } if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.M { return errors.New("sizeA") } if ind.OffsetX < 0 { return errors.New("offsetX") } if ind.OffsetY < 0 { return errors.New("offsetY") } sizeX := X.NumElements() if sizeX < ind.OffsetX+(ind.M-1)*abs(ind.IncX)+1 { return errors.New("sizeX") } sizeY := Y.NumElements() if sizeY < ind.OffsetY+(ind.N-1)*abs(ind.IncY)+1 { return errors.New("sizeY") } } case fgbmv: // general banded if ind.M < 0 { ind.M = A.Rows() } if ind.N < 0 { ind.N = A.Cols() } if ind.Kl < 0 { return errors.New("kl") } if ind.Ku < 0 { ind.Ku = A.Rows() - 1 - ind.Kl } if ind.Ku < 0 { return errors.New("ku") } if ind.LDa == 0 { ind.LDa = max(1, A.Rows()) } if ind.LDa < ind.Kl+ind.Ku+1 { return errors.New("ldA") } if ind.OffsetA < 0 { return errors.New("offsetA") } sizeA := A.NumElements() if ind.N > 0 && ind.M > 0 && sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.Kl+ind.Ku+1 { return errors.New("sizeA") } if ind.OffsetX < 0 { return errors.New("offsetX") } if ind.OffsetY < 0 { return errors.New("offsetY") } sizeX := X.NumElements() sizeY := Y.NumElements() if pars.Trans == linalg.PNoTrans { if ind.N > 0 && sizeX < ind.OffsetX+(ind.N-1)*abs(ind.IncX)+1 { return errors.New("sizeX") } if ind.N > 0 && sizeY < ind.OffsetY+(ind.M-1)*abs(ind.IncY)+1 { return errors.New("sizeY") } } else { if ind.N > 0 && sizeX < ind.OffsetX+(ind.M-1)*abs(ind.IncX)+1 { return errors.New("sizeX") } if ind.N > 0 && sizeY < ind.OffsetY+(ind.N-1)*abs(ind.IncY)+1 { return errors.New("sizeY") } } case ftrmv, ftrsv: // ftrmv = triangular // ftrsv = triangular solve if ind.N < 0 { if A.Rows() != A.Cols() { return errors.New("A not square") } ind.N = A.Rows() } if ind.N > 0 { if ind.LDa == 0 { ind.LDa = max(1, A.Rows()) } if ind.LDa < max(1, ind.N) { return errors.New("ldA") } if ind.OffsetA < 0 { return errors.New("offsetA") } sizeA := A.NumElements() if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.N { return errors.New("sizeA") } sizeX := X.NumElements() if sizeX < ind.OffsetX+(ind.N-1)*abs(ind.IncX)+1 { return errors.New("sizeX") } } case ftbmv, ftbsv, fsbmv: // ftbmv = triangular banded // ftbsv = triangular banded solve // fsbmv = symmetric banded product if ind.N < 0 { ind.N = A.Rows() } if ind.N > 0 { if ind.K < 0 { ind.K = max(0, A.Rows()-1) } if ind.LDa == 0 { ind.LDa = max(1, A.Rows()) } if ind.LDa < ind.K+1 { return errors.New("ldA") } if ind.OffsetA < 0 { return errors.New("offsetA") } sizeA := A.NumElements() if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.K+1 { return errors.New("sizeA") } sizeX := X.NumElements() if sizeX < ind.OffsetX+(ind.N-1)*abs(ind.IncX)+1 { return errors.New("sizeX") } if Y != nil { sizeY := Y.NumElements() if sizeY < ind.OffsetY+(ind.N-1)*abs(ind.IncY)+1 { return errors.New("sizeY") } } } case fsymv, fsyr, fsyr2: // fsymv = symmetric product // fsyr = symmetric rank update // fsyr2 = symmetric rank-2 update if ind.N < 0 { if A.Rows() != A.Cols() { return errors.New("A not square") } ind.N = A.Rows() } if ind.N > 0 { if ind.LDa == 0 { ind.LDa = max(1, A.Rows()) } if ind.LDa < max(1, ind.N) { return errors.New("ldA") } if ind.OffsetA < 0 { return errors.New("offsetA") } sizeA := A.NumElements() if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.N { return errors.New("sizeA") } if ind.OffsetX < 0 { return errors.New("offsetX") } sizeX := X.NumElements() if sizeX < ind.OffsetX+(ind.N-1)*abs(ind.IncX)+1 { return errors.New("sizeX") } if Y != nil { if ind.OffsetY < 0 { return errors.New("offsetY") } sizeY := Y.NumElements() if sizeY < ind.OffsetY+(ind.N-1)*abs(ind.IncY)+1 { return errors.New("sizeY") } } } case fspr, fdspr2, ftpsv, fspmv, ftpmv: // ftpsv = triangular packed solve // fspmv = symmetric packed product // ftpmv = triangular packed } return nil }
func checkGesvd(ind *linalg.IndexOpts, pars *linalg.Parameters, A, S, U, Vt matrix.Matrix) error { if ind.M < 0 { ind.M = A.Rows() } if ind.N < 0 { ind.N = A.Cols() } if ind.M == 0 || ind.N == 0 { return nil } if pars.Jobu == linalg.PJobO && pars.Jobvt == linalg.PJobO { return errors.New("Gesvd: jobu and jobvt cannot both have value PJobO") } if pars.Jobu == linalg.PJobAll || pars.Jobu == linalg.PJobS { if U == nil { return errors.New("Gesvd: missing matrix U") } if ind.LDu == 0 { ind.LDu = max(1, U.Rows()) } if ind.LDu < max(1, ind.M) { return errors.New("Gesvd: ldU") } } else { if ind.LDu == 0 { ind.LDu = 1 } if ind.LDu < 1 { return errors.New("Gesvd: ldU") } } if pars.Jobvt == linalg.PJobAll || pars.Jobvt == linalg.PJobS { if Vt == nil { return errors.New("Gesvd: missing matrix Vt") } if ind.LDvt == 0 { ind.LDvt = max(1, Vt.Rows()) } if pars.Jobvt == linalg.PJobAll && ind.LDvt < max(1, ind.N) { return errors.New("Gesvd: ldVt") } else if pars.Jobvt != linalg.PJobAll && ind.LDvt < max(1, min(ind.M, ind.N)) { return errors.New("Gesvd: ldVt") } } else { if ind.LDvt == 0 { ind.LDvt = 1 } if ind.LDvt < 1 { return errors.New("Gesvd: ldVt") } } if ind.OffsetA < 0 { return errors.New("Gesvd: offsetA") } sizeA := A.NumElements() if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.M { return errors.New("Gesvd: sizeA") } if ind.OffsetS < 0 { return errors.New("Gesvd: offsetS") } sizeS := S.NumElements() if sizeS < ind.OffsetS+min(ind.M, ind.N) { return errors.New("Gesvd: sizeA") } /* if U != nil { if ind.OffsetU < 0 { return errors.New("Gesvd: OffsetU") } sizeU := U.NumElements() if pars.Jobu == linalg.PJobAll && sizeU < ind.LDu*(ind.M-1) { return errors.New("Gesvd: sizeU") } else if pars.Jobu == linalg.PJobS && sizeU < ind.LDu*(min(ind.M,ind.N)-1) { return errors.New("Gesvd: sizeU") } } if Vt != nil { if ind.OffsetVt < 0 { return errors.New("Gesvd: OffsetVt") } sizeVt := Vt.NumElements() if pars.Jobvt == linalg.PJobAll && sizeVt < ind.N { return errors.New("Gesvd: sizeVt") } else if pars.Jobvt == linalg.PJobS && sizeVt < min(ind.M, ind.N) { return errors.New("Gesvd: sizeVt") } } */ return nil }
/* Product with a real orthogonal matrix. Ormqr(A, tau, C, side='L', trans='N', m=C.Rows, n=C.Cols, k=len(tau), ldA=max(1,A.Rows), ldC=max(1,C.Rows), offsetA=0, offsetC=0) PURPOSE Computes C := Q*C if side = PLeft and trans = PNoTrans C := Q^T*C if side = PLeft and trans = PTrans C := C*Q if side = PRight and trans = PNoTrans C := C*Q^T if side = PRight and trans = PTrans C is m by n and Q is a square orthogonal matrix computed by geqrf. Q is defined as a product of k elementary reflectors, stored as the first k columns of A and the first k entries of tau. ARGUMENTS A float matrix tau float matrix of length at least k C float matrix OPTIONS side PLeft or PRight trans PNoTrans or PTrans m integer. If negative, the default value is used. n integer. If negative, the default value is used. k integer. k <= m if side = PRight and k <= n if side = PLeft. If negative, the default value is used. ldA nonnegative integer. ldA >= max(1,m) if side = PLeft and ldA >= max(1,n) if side = PRight. If zero, the default value is used. ldC nonnegative integer. ldC >= max(1,m). If zero, the default value is used. offsetA nonnegative integer offsetB nonnegative integer */ func Ormqf(A, tau, C matrix.Matrix, opts ...linalg.Option) error { pars, err := linalg.GetParameters(opts...) if err != nil { return err } ind := linalg.GetIndexOpts(opts...) if ind.N < 0 { ind.N = C.Cols() } if ind.M < 0 { ind.M = C.Rows() } if ind.K < 0 { ind.K = tau.NumElements() } if ind.N == 0 || ind.M == 0 || ind.K == 0 { return nil } if ind.LDa == 0 { ind.LDa = max(1, A.Rows()) } if ind.LDc == 0 { ind.LDc = max(1, C.Rows()) } switch pars.Side { case linalg.PLeft: if ind.K > ind.M { errors.New("K") } if ind.LDa < max(1, ind.M) { return errors.New("lda") } case linalg.PRight: if ind.K > ind.N { errors.New("K") } if ind.LDa < max(1, ind.N) { return errors.New("lda") } } if ind.OffsetA < 0 { return errors.New("offsetA") } if A.NumElements() < ind.OffsetA+ind.K*ind.LDa { return errors.New("sizeA") } if ind.OffsetC < 0 { return errors.New("offsetC") } if C.NumElements() < ind.OffsetC+(ind.N-1)*ind.LDa+ind.M { return errors.New("sizeC") } if tau.NumElements() < ind.K { return errors.New("sizeTau") } if !matrix.EqualTypes(A, C, tau) { return errors.New("not same type") } info := -1 side := linalg.ParamString(pars.Side) trans := linalg.ParamString(pars.Trans) switch A.(type) { case *matrix.FloatMatrix: Aa := A.FloatArray() Ca := C.FloatArray() taua := tau.FloatArray() info = dormqr(side, trans, ind.M, ind.N, ind.K, Aa[ind.OffsetA:], ind.LDa, taua, Ca[ind.OffsetC:], ind.LDc) case *matrix.ComplexMatrix: return errors.New("ComplexMatrx: not implemented yet") } if info != 0 { return errors.New("Ormqr failed") } return nil }