func LogisticRegression(c *gopark.Context) { type dataPoint struct { x gopark.Vector y float64 } points := c.TextFile("points.txt").Map(func(line interface{}) interface{} { vs := strings.Fields(line.(string)) vector := make(gopark.Vector, len(vs)-1) for i := 0; i < len(vs)-1; i++ { vector[i], _ = strconv.ParseFloat(vs[i], 64) } y, _ := strconv.ParseFloat(vs[len(vs)-1], 64) return &dataPoint{vector, y} }).Cache() hx := func(w, x gopark.Vector, y float64) float64 { return 1/(1+math.Exp(-1*w.Dot(x))) - y } var w gopark.Vector = []float64{1, -10}[:] for i := 0; i < 10; i++ { gradient := points.Map(func(x interface{}) interface{} { p := x.(*dataPoint) return p.x.Multiply(-1 * hx(w, p.x, p.y)) }).Reduce(func(x, y interface{}) interface{} { return x.(gopark.Vector).Plus(y.(gopark.Vector)) }).(gopark.Vector) w = w.Minus(gradient) } fmt.Println("Final Weights:", w) }
func WordCount(c *gopark.Context) { txt := c.TextFile("../") counts := txt.FlatMap(func(line interface{}) []interface{} { vs := strings.Fields(line.(string)) words := make([]interface{}, len(vs)) for i := range vs { words[i] = vs[i] } return words }).Map(func(x interface{}) interface{} { return &gopark.KeyValue{x, 1} }).ReduceByKey(func(x, y interface{}) interface{} { return x.(int) + y.(int) }).Cache() fmt.Println( counts.Filter(func(x interface{}) bool { return x.(*gopark.KeyValue).Value.(int) > 50 }).CollectAsMap()) fmt.Println( counts.Filter(func(x interface{}) bool { return x.(*gopark.KeyValue).Value.(int) > 50 }).Map(func(x interface{}) interface{} { keyValue := x.(*gopark.KeyValue) keyValue.Key, keyValue.Value = keyValue.Value, keyValue.Key return keyValue }).GroupByKey().Collect()) }
func ComputePi(c *gopark.Context) { N := 100000 iters := c.Data(make([]interface{}, N)) count := iters.Map(func(_ interface{}) interface{} { x := rand.Float32() y := rand.Float32() if x*x+y*y < 1 { return 1 } else { return 0 } }).Reduce(func(x, y interface{}) interface{} { return x.(int) + y.(int) }).(int) fmt.Println("Pi =", (4.0 * float64(count) / float64(N))) }