func (algo *EPLogisticRegression) Predict(sample *core.Sample) float64 { s := util.Gaussian{Mean: 0.0, Vari: 0.0} for _, feature := range sample.Features { if feature.Value == 0.0 { continue } wi, ok := algo.Model[feature.Id] if !ok { wi = &(util.Gaussian{Mean: 0.0, Vari: algo.params.init_var}) } s.Mean += feature.Value * wi.Mean s.Vari += feature.Value * feature.Value * wi.Vari } t := s t.Vari += algo.params.beta return t.Integral(t.Mean / math.Sqrt(t.Vari)) }
func (algo *EPLogisticRegression) Train(dataset *core.DataSet) { for _, sample := range dataset.Samples { s := util.Gaussian{Mean: 0.0, Vari: 0.0} for _, feature := range sample.Features { if feature.Value == 0.0 { continue } wi, ok := algo.Model[feature.Id] if !ok { wi = &(util.Gaussian{Mean: 0.0, Vari: algo.params.init_var}) algo.Model[feature.Id] = wi } s.Mean += feature.Value * wi.Mean s.Vari += feature.Value * feature.Value * wi.Vari } t := s t.Vari += algo.params.beta t2 := util.Gaussian{Mean: 0.0, Vari: 0.0} if sample.Label > 0.0 { t2.UpperTruncateGaussian(t.Mean, t.Vari, 0.0) } else { t2.LowerTruncateGaussian(t.Mean, t.Vari, 0.0) } t.MultGaussian(&t2) s2 := t s2.Vari += algo.params.beta s0 := s s.MultGaussian(&s2) for _, feature := range sample.Features { if feature.Value == 0.0 { continue } wi0 := util.Gaussian{Mean: 0.0, Vari: algo.params.init_var} w2 := util.Gaussian{Mean: 0.0, Vari: 0.0} wi, _ := algo.Model[feature.Id] w2.Mean = (s.Mean - (s0.Mean - wi.Mean*feature.Value)) / feature.Value w2.Vari = (s.Vari + (s0.Vari - wi.Vari*feature.Value*feature.Value)) / (feature.Value * feature.Value) wi.MultGaussian(&w2) wi_vari := wi.Vari wi_new_vari := wi_vari * wi0.Vari / (0.99*wi0.Vari + 0.01*wi.Vari) wi.Vari = wi_new_vari wi.Mean = wi.Vari * (0.99*wi.Mean/wi_vari + 0.01*wi0.Mean/wi.Vari) if wi.Vari < algo.params.init_var*0.01 { wi.Vari = algo.params.init_var * 0.01 } algo.Model[feature.Id] = wi } } }