func equalType(x, y types.Type) error { if reflect.TypeOf(x) != reflect.TypeOf(y) { return fmt.Errorf("unequal kinds: %T vs %T", x, y) } switch x := x.(type) { case *types.Interface: y := y.(*types.Interface) // TODO(gri): enable separate emission of Embedded interfaces // and ExplicitMethods then use this logic. // if x.NumEmbeddeds() != y.NumEmbeddeds() { // return fmt.Errorf("unequal number of embedded interfaces: %d vs %d", // x.NumEmbeddeds(), y.NumEmbeddeds()) // } // for i := 0; i < x.NumEmbeddeds(); i++ { // xi := x.Embedded(i) // yi := y.Embedded(i) // if xi.String() != yi.String() { // return fmt.Errorf("mismatched %th embedded interface: %s vs %s", // i, xi, yi) // } // } // if x.NumExplicitMethods() != y.NumExplicitMethods() { // return fmt.Errorf("unequal methods: %d vs %d", // x.NumExplicitMethods(), y.NumExplicitMethods()) // } // for i := 0; i < x.NumExplicitMethods(); i++ { // xm := x.ExplicitMethod(i) // ym := y.ExplicitMethod(i) // if xm.Name() != ym.Name() { // return fmt.Errorf("mismatched %th method: %s vs %s", i, xm, ym) // } // if err := equalType(xm.Type(), ym.Type()); err != nil { // return fmt.Errorf("mismatched %s method: %s", xm.Name(), err) // } // } if x.NumMethods() != y.NumMethods() { return fmt.Errorf("unequal methods: %d vs %d", x.NumMethods(), y.NumMethods()) } for i := 0; i < x.NumMethods(); i++ { xm := x.Method(i) ym := y.Method(i) if xm.Name() != ym.Name() { return fmt.Errorf("mismatched %dth method: %s vs %s", i, xm, ym) } if err := equalType(xm.Type(), ym.Type()); err != nil { return fmt.Errorf("mismatched %s method: %s", xm.Name(), err) } } case *types.Array: y := y.(*types.Array) if x.Len() != y.Len() { return fmt.Errorf("unequal array lengths: %d vs %d", x.Len(), y.Len()) } if err := equalType(x.Elem(), y.Elem()); err != nil { return fmt.Errorf("array elements: %s", err) } case *types.Basic: y := y.(*types.Basic) if x.Kind() != y.Kind() { return fmt.Errorf("unequal basic types: %s vs %s", x, y) } case *types.Chan: y := y.(*types.Chan) if x.Dir() != y.Dir() { return fmt.Errorf("unequal channel directions: %d vs %d", x.Dir(), y.Dir()) } if err := equalType(x.Elem(), y.Elem()); err != nil { return fmt.Errorf("channel elements: %s", err) } case *types.Map: y := y.(*types.Map) if err := equalType(x.Key(), y.Key()); err != nil { return fmt.Errorf("map keys: %s", err) } if err := equalType(x.Elem(), y.Elem()); err != nil { return fmt.Errorf("map values: %s", err) } case *types.Named: y := y.(*types.Named) if x.String() != y.String() { return fmt.Errorf("unequal named types: %s vs %s", x, y) } case *types.Pointer: y := y.(*types.Pointer) if err := equalType(x.Elem(), y.Elem()); err != nil { return fmt.Errorf("pointer elements: %s", err) } case *types.Signature: y := y.(*types.Signature) if err := equalType(x.Params(), y.Params()); err != nil { return fmt.Errorf("parameters: %s", err) } if err := equalType(x.Results(), y.Results()); err != nil { return fmt.Errorf("results: %s", err) } if x.Variadic() != y.Variadic() { return fmt.Errorf("unequal varidicity: %t vs %t", x.Variadic(), y.Variadic()) } if (x.Recv() != nil) != (y.Recv() != nil) { return fmt.Errorf("unequal receivers: %s vs %s", x.Recv(), y.Recv()) } if x.Recv() != nil { // TODO(adonovan): fix: this assertion fires for interface methods. // The type of the receiver of an interface method is a named type // if the Package was loaded from export data, or an unnamed (interface) // type if the Package was produced by type-checking ASTs. // if err := equalType(x.Recv().Type(), y.Recv().Type()); err != nil { // return fmt.Errorf("receiver: %s", err) // } } case *types.Slice: y := y.(*types.Slice) if err := equalType(x.Elem(), y.Elem()); err != nil { return fmt.Errorf("slice elements: %s", err) } case *types.Struct: y := y.(*types.Struct) if x.NumFields() != y.NumFields() { return fmt.Errorf("unequal struct fields: %d vs %d", x.NumFields(), y.NumFields()) } for i := 0; i < x.NumFields(); i++ { xf := x.Field(i) yf := y.Field(i) if xf.Name() != yf.Name() { return fmt.Errorf("mismatched fields: %s vs %s", xf, yf) } if err := equalType(xf.Type(), yf.Type()); err != nil { return fmt.Errorf("struct field %s: %s", xf.Name(), err) } if x.Tag(i) != y.Tag(i) { return fmt.Errorf("struct field %s has unequal tags: %q vs %q", xf.Name(), x.Tag(i), y.Tag(i)) } } case *types.Tuple: y := y.(*types.Tuple) if x.Len() != y.Len() { return fmt.Errorf("unequal tuple lengths: %d vs %d", x.Len(), y.Len()) } for i := 0; i < x.Len(); i++ { if err := equalType(x.At(i).Type(), y.At(i).Type()); err != nil { return fmt.Errorf("tuple element %d: %s", i, err) } } } return nil }
// matchArgTypeInternal is the internal version of matchArgType. It carries a map // remembering what types are in progress so we don't recur when faced with recursive // types or mutually recursive types. func (f *File) matchArgTypeInternal(t printfArgType, typ types.Type, arg ast.Expr, inProgress map[types.Type]bool) bool { // %v, %T accept any argument type. if t == anyType { return true } if typ == nil { // external call typ = f.pkg.types[arg].Type if typ == nil { return true // probably a type check problem } } // If the type implements fmt.Formatter, we have nothing to check. // formatterTyp may be nil - be conservative and check for Format method in that case. if formatterType != nil && types.Implements(typ, formatterType) || f.hasMethod(typ, "Format") { return true } // If we can use a string, might arg (dynamically) implement the Stringer or Error interface? if t&argString != 0 { if types.AssertableTo(errorType, typ) || stringerType != nil && types.AssertableTo(stringerType, typ) { return true } } typ = typ.Underlying() if inProgress[typ] { // We're already looking at this type. The call that started it will take care of it. return true } inProgress[typ] = true switch typ := typ.(type) { case *types.Signature: return t&argPointer != 0 case *types.Map: // Recur: map[int]int matches %d. return t&argPointer != 0 || (f.matchArgTypeInternal(t, typ.Key(), arg, inProgress) && f.matchArgTypeInternal(t, typ.Elem(), arg, inProgress)) case *types.Chan: return t&argPointer != 0 case *types.Array: // Same as slice. if types.Identical(typ.Elem().Underlying(), types.Typ[types.Byte]) && t&argString != 0 { return true // %s matches []byte } // Recur: []int matches %d. return t&argPointer != 0 || f.matchArgTypeInternal(t, typ.Elem().Underlying(), arg, inProgress) case *types.Slice: // Same as array. if types.Identical(typ.Elem().Underlying(), types.Typ[types.Byte]) && t&argString != 0 { return true // %s matches []byte } // Recur: []int matches %d. But watch out for // type T []T // If the element is a pointer type (type T[]*T), it's handled fine by the Pointer case below. return t&argPointer != 0 || f.matchArgTypeInternal(t, typ.Elem(), arg, inProgress) case *types.Pointer: // Ugly, but dealing with an edge case: a known pointer to an invalid type, // probably something from a failed import. if typ.Elem().String() == "invalid type" { if *verbose { f.Warnf(arg.Pos(), "printf argument %v is pointer to invalid or unknown type", f.gofmt(arg)) } return true // special case } // If it's actually a pointer with %p, it prints as one. if t == argPointer { return true } // If it's pointer to struct, that's equivalent in our analysis to whether we can print the struct. if str, ok := typ.Elem().Underlying().(*types.Struct); ok { return f.matchStructArgType(t, str, arg, inProgress) } // The rest can print with %p as pointers, or as integers with %x etc. return t&(argInt|argPointer) != 0 case *types.Struct: return f.matchStructArgType(t, typ, arg, inProgress) case *types.Interface: // If the static type of the argument is empty interface, there's little we can do. // Example: // func f(x interface{}) { fmt.Printf("%s", x) } // Whether x is valid for %s depends on the type of the argument to f. One day // we will be able to do better. For now, we assume that empty interface is OK // but non-empty interfaces, with Stringer and Error handled above, are errors. return typ.NumMethods() == 0 case *types.Basic: switch typ.Kind() { case types.UntypedBool, types.Bool: return t&argBool != 0 case types.UntypedInt, types.Int, types.Int8, types.Int16, types.Int32, types.Int64, types.Uint, types.Uint8, types.Uint16, types.Uint32, types.Uint64, types.Uintptr: return t&argInt != 0 case types.UntypedFloat, types.Float32, types.Float64: return t&argFloat != 0 case types.UntypedComplex, types.Complex64, types.Complex128: return t&argComplex != 0 case types.UntypedString, types.String: return t&argString != 0 case types.UnsafePointer: return t&(argPointer|argInt) != 0 case types.UntypedRune: return t&(argInt|argRune) != 0 case types.UntypedNil: return t&argPointer != 0 // TODO? case types.Invalid: if *verbose { f.Warnf(arg.Pos(), "printf argument %v has invalid or unknown type", f.gofmt(arg)) } return true // Probably a type check problem. } panic("unreachable") } return false }
func (w *Walker) writeType(buf *bytes.Buffer, typ types.Type) { switch typ := typ.(type) { case *types.Basic: s := typ.Name() switch typ.Kind() { case types.UnsafePointer: s = "unsafe.Pointer" case types.UntypedBool: s = "ideal-bool" case types.UntypedInt: s = "ideal-int" case types.UntypedRune: // "ideal-char" for compatibility with old tool // TODO(gri) change to "ideal-rune" s = "ideal-char" case types.UntypedFloat: s = "ideal-float" case types.UntypedComplex: s = "ideal-complex" case types.UntypedString: s = "ideal-string" case types.UntypedNil: panic("should never see untyped nil type") default: switch s { case "byte": s = "uint8" case "rune": s = "int32" } } buf.WriteString(s) case *types.Array: fmt.Fprintf(buf, "[%d]", typ.Len()) w.writeType(buf, typ.Elem()) case *types.Slice: buf.WriteString("[]") w.writeType(buf, typ.Elem()) case *types.Struct: buf.WriteString("struct") case *types.Pointer: buf.WriteByte('*') w.writeType(buf, typ.Elem()) case *types.Tuple: panic("should never see a tuple type") case *types.Signature: buf.WriteString("func") w.writeSignature(buf, typ) case *types.Interface: buf.WriteString("interface{") if typ.NumMethods() > 0 { buf.WriteByte(' ') buf.WriteString(strings.Join(sortedMethodNames(typ), ", ")) buf.WriteByte(' ') } buf.WriteString("}") case *types.Map: buf.WriteString("map[") w.writeType(buf, typ.Key()) buf.WriteByte(']') w.writeType(buf, typ.Elem()) case *types.Chan: var s string switch typ.Dir() { case types.SendOnly: s = "chan<- " case types.RecvOnly: s = "<-chan " case types.SendRecv: s = "chan " default: panic("unreachable") } buf.WriteString(s) w.writeType(buf, typ.Elem()) case *types.Named: obj := typ.Obj() pkg := obj.Pkg() if pkg != nil && pkg != w.current { buf.WriteString(pkg.Name()) buf.WriteByte('.') } buf.WriteString(typ.Obj().Name()) default: panic(fmt.Sprintf("unknown type %T", typ)) } }
// hashFor computes the hash of t. func (h Hasher) hashFor(t types.Type) uint32 { // See Identical for rationale. switch t := t.(type) { case *types.Basic: return uint32(t.Kind()) case *types.Array: return 9043 + 2*uint32(t.Len()) + 3*h.Hash(t.Elem()) case *types.Slice: return 9049 + 2*h.Hash(t.Elem()) case *types.Struct: var hash uint32 = 9059 for i, n := 0, t.NumFields(); i < n; i++ { f := t.Field(i) if f.Anonymous() { hash += 8861 } hash += hashString(t.Tag(i)) hash += hashString(f.Name()) // (ignore f.Pkg) hash += h.Hash(f.Type()) } return hash case *types.Pointer: return 9067 + 2*h.Hash(t.Elem()) case *types.Signature: var hash uint32 = 9091 if t.Variadic() { hash *= 8863 } return hash + 3*h.hashTuple(t.Params()) + 5*h.hashTuple(t.Results()) case *types.Interface: var hash uint32 = 9103 for i, n := 0, t.NumMethods(); i < n; i++ { // See go/types.identicalMethods for rationale. // Method order is not significant. // Ignore m.Pkg(). m := t.Method(i) hash += 3*hashString(m.Name()) + 5*h.Hash(m.Type()) } return hash case *types.Map: return 9109 + 2*h.Hash(t.Key()) + 3*h.Hash(t.Elem()) case *types.Chan: return 9127 + 2*uint32(t.Dir()) + 3*h.Hash(t.Elem()) case *types.Named: // Not safe with a copying GC; objects may move. return uint32(reflect.ValueOf(t.Obj()).Pointer()) case *types.Tuple: return h.hashTuple(t) } panic(t) }