// FunctionName returns a unique function path and name. // TODO refactor this code and everywhere it is called to remove duplication. func FuncPathName(fn *ssa.Function) (path, name string) { rx := fn.Signature.Recv() pf := MakeID(rootProgram.Fset.Position(fn.Pos()).String()) //fmt.Sprintf("fn%d", fn.Pos()) if rx != nil { // it is not the name of a normal function, but that of a method, so append the method description pf = rx.Type().String() // NOTE no underlying() } else { if fn.Pkg != nil { pf = fn.Pkg.Object.Path() // was .Name(), but not unique } } return pf, fn.Name() }
func GetFnNameParts(fn *ssa.Function) (pack, nam string) { mName := fn.Name() pName, _ := FuncPathName(fn) //fmt.Sprintf("fn%d", fn.Pos()) //uintptr(unsafe.Pointer(fn))) if fn.Pkg != nil { if fn.Pkg.Object != nil { pName = fn.Pkg.Object.Path() // was .Name() } } if fn.Signature.Recv() != nil { // we have a method pName = fn.Signature.Recv().Pkg().Name() + ":" + fn.Signature.Recv().Type().String() // note no underlying() //pName = LanguageList[l].PackageOverloadReplace(pName) } return pName, mName }
func checkFn(fn *ssa.Function, prog *ssa.Program, ptrResult *pointer.Result, roots []*ssa.Function) { nam := fn.String() if strings.HasPrefix(strings.TrimPrefix(nam, "("), *prefix) { hasPath := false usedExternally := false for _, r := range roots { if r != nil { nod, ok := ptrResult.CallGraph.Nodes[r] if ok { //fmt.Println("NODE root", r.Name()) pth := callgraph.PathSearch(nod, func(n *callgraph.Node) bool { if n == nil { return false } if n.Func == fn { for _, ine := range n.In { if ine.Caller.Func.Pkg != fn.Pkg { //fmt.Println("DEBUG diff? ", // ine.Caller.Func.Pkg, fn.Pkg) usedExternally = true break } } return true } return false }) if pth != nil { //fmt.Printf("DEBUG path from %v to %v = %v\n", // r, fn, pth) hasPath = true break } } } } isUpper := unicode.IsUpper(rune(fn.Name()[0])) pos := fn.Pos() //if strings.HasPrefix(nam, "(") && (!hasPath || (!usedExternally && isUpper)) { // fmt.Println("bad Pos", pos, prog.Fset.Position(pos).String()) //} loc := strings.TrimPrefix( prog.Fset.Position(pos).String(), gopath+"/src/"+*prefix+"/") showFuncResult(loc, nam, hasPath, usedExternally, isUpper) } wg.Done() }
// prettyFunc pretty-prints fn for the user interface. // TODO(adonovan): return HTML so we have more markup freedom. func prettyFunc(this *types.Package, fn *ssa.Function) string { if fn.Parent() != nil { return fmt.Sprintf("%s in %s", types.TypeString(fn.Signature, types.RelativeTo(this)), prettyFunc(this, fn.Parent())) } if fn.Synthetic != "" && fn.Name() == "init" { // (This is the actual initializer, not a declared 'func init'). if fn.Pkg.Pkg == this { return "package initializer" } return fmt.Sprintf("%q package initializer", fn.Pkg.Pkg.Path()) } return fn.RelString(this) }
// FuncPathName returns a unique function path and name. func (comp *Compilation) FuncPathName(fn *ssa.Function) (path, name string) { rx := fn.Signature.Recv() pf := tgoutil.MakeID(comp.rootProgram.Fset.Position(fn.Pos()).String()) //fmt.Sprintf("fn%d", fn.Pos()) if rx != nil { // it is not the name of a normal function, but that of a method, so append the method description pf = rx.Type().String() // NOTE no underlying() } else { if fn.Pkg != nil { pf = fn.Pkg.Object.Path() // was .Name(), but not unique } else { goroot := tgoutil.MakeID(LanguageList[comp.TargetLang].GOROOT + string(os.PathSeparator)) pf1 := strings.Split(pf, goroot) // make auto-generated names shorter if len(pf1) == 2 { pf = pf1[1] } // TODO use GOPATH for names not in std pkgs } } return pf, fn.Name() }
// visitFunc analyses function body. func visitFunc(fn *ssa.Function, infer *TypeInfer, f *Function) { infer.Env.MigoProg.AddFunction(f.FuncDef) infer.Logger.Printf(f.Sprintf(FuncEnterSymbol+"───── func %s ─────", fn.Name())) defer infer.Logger.Printf(f.Sprintf(FuncExitSymbol+"───── func %s ─────", fn.Name())) if fn.Name() == "init" { if _, ok := f.Prog.InitPkgs[fn.Package()]; !ok { f.Prog.InitPkgs[fn.Package()] = true } f.hasBody = true return } for val, instance := range f.locals { infer.Logger.Printf(f.Sprintf(ParamSymbol+"%s = %s", val.Name(), instance)) f.revlookup[instance.String()] = val.Name() // If it comes from params.. } if fn.Blocks == nil { infer.Logger.Print(f.Sprintf(MoreSymbol + "« no function body »")) f.hasBody = false // No body return } // When entering function, always visit as block 0 block0 := NewBlock(f, fn.Blocks[0], 0) visitBasicBlock(fn.Blocks[0], infer, f, block0, &Loop{Parent: f}) f.hasBody = true }
func IsOverloaded(f *ssa.Function) bool { pn := "unknown" // Defensive, as some synthetic or other edge-case functions may not have a valid package name rx := f.Signature.Recv() if rx == nil { // ordinary function if f.Pkg != nil { if f.Pkg.Object != nil { pn = f.Pkg.Object.Path() //was .Name() } } else { if f.Object() != nil { if f.Object().Pkg() != nil { pn = f.Object().Pkg().Path() //was .Name() } } } } else { // determine the package information from the type description typ := rx.Type() ts := typ.String() if ts[0] == '*' { ts = ts[1:] } tss := strings.Split(ts, ".") if len(tss) >= 2 { ts = tss[len(tss)-2] // take the part before the final dot } else { ts = tss[0] // no dot! } pn = ts } tss := strings.Split(pn, "/") // TODO check this also works in Windows ts := tss[len(tss)-1] // take the last part of the path pn = ts // TODO this is incorrect, but not currently a problem as there is no function overloading //println("DEBUG package name: " + pn) if LanguageList[TargetLang].FunctionOverloaded(pn, f.Name()) || strings.HasPrefix(pn, "_") { // the package is not in the target language, signaled by a leading underscore and return true } return false }
func (l langType) FuncName(fnx *ssa.Function) string { pn := "" if fnx.Signature.Recv() != nil { pn = fnx.Signature.Recv().Type().String() // NOTE no use of underlying here } else { pn, _ = pogo.FuncPathName(fnx) //fmt.Sprintf("fn%d", fnx.Pos()) fn := ssa.EnclosingFunction(fnx.Package(), []ast.Node{fnx.Syntax()}) if fn == nil { fn = fnx } if fn.Pkg != nil { if fn.Pkg.Object != nil { pn = fn.Pkg.Object.Path() // was .Name() } } else { if fn.Object() != nil { if fn.Object().Pkg() != nil { pn = fn.Object().Pkg().Path() // was .Name() } } } } return l.LangName(pn, fnx.Name()) }
func (u *unit) getFunctionLinkage(f *ssa.Function) llvm.Linkage { switch { case f.Pkg == nil: // Synthetic functions outside packages may appear in multiple packages. return llvm.LinkOnceODRLinkage case f.Parent() != nil: // Anonymous. return llvm.InternalLinkage case f.Signature.Recv() == nil && !ast.IsExported(f.Name()) && !(f.Name() == "main" && f.Pkg.Object.Path() == "main") && f.Name() != "init": // Unexported methods may be referenced as part of an interface method // table in another package. TODO(pcc): detect when this cannot happen. return llvm.InternalLinkage default: return llvm.ExternalLinkage } }
func (visit *visitor) function(fn *ssa.Function, isOvl isOverloaded) { if !visit.seen[fn] { // been, exists := visit.seen[fn]; !been || !exists { vprintln("DEBUG 1st visit to: ", fn.String()) visit.seen[fn] = true visit.usesGR[fn] = false if isOvl(fn) { vprintln("DEBUG overloaded: ", fn.String()) return } if len(fn.Blocks) == 0 { // exclude functions that reference C/assembler code // NOTE: not marked as seen, because we don't want to include in output // if used, the symbol will be included in the golibruntime replacement packages // TODO review vprintln("DEBUG no code for: ", fn.String()) return // external functions cannot use goroutines } var buf [10]*ssa.Value // avoid alloc in common case for _, b := range fn.Blocks { for _, instr := range b.Instrs { for _, op := range instr.Operands(buf[:0]) { areRecursing := false afn, isFn := (*op).(*ssa.Function) if isFn { if afn == fn { areRecursing = true } visit.function(afn, isOvl) if visit.usesGR[afn] { vprintln("marked as using GR because referenced func uses GR") visit.usesGR[fn] = true } vprintln(fn.Name(), " calls ", afn.Name()) } // TODO, review if this code should be included if !visit.usesGR[fn] { if _, ok := (*op).(ssa.Value); ok { typ := (*op).Type() typ = DeRefUl(typ) switch typ.(type) { // TODO use oracle techniques to determine which interfaces or functions may require GR case *types.Chan, *types.Interface: visit.usesGR[fn] = true // may be too conservative vprintln("marked as using GR because uses Chan/Interface") case *types.Signature: if !areRecursing { if !isFn { visit.usesGR[fn] = true vprintln("marked as using GR because uses Signature") } } } } } } if _, ok := instr.(*ssa.Call); ok { switch instr.(*ssa.Call).Call.Value.(type) { case *ssa.Builtin: //NoOp default: cc := instr.(*ssa.Call).Common() if cc != nil { afn := cc.StaticCallee() if afn != nil { visit.function(afn, isOvl) if visit.usesGR[afn] { visit.usesGR[fn] = true vprintln("marked as using GR because call target uses GR") } vprintln(fn.Name(), " calls ", afn.Name()) } } } } if !visit.usesGR[fn] { switch instr.(type) { case *ssa.Go, *ssa.MakeChan, *ssa.Defer, *ssa.Panic, *ssa.Send, *ssa.Select: vprintln("usesGR because uses Go...", fn.Name()) visit.usesGR[fn] = true case *ssa.UnOp: if instr.(*ssa.UnOp).Op.String() == "<-" { vprintln("usesGR because uses <-", fn.Name()) visit.usesGR[fn] = true } } } } } } }
func (u *unit) defineFunction(f *ssa.Function) { // Only define functions from this package, or synthetic // wrappers (which do not have a package). if f.Pkg != nil && f.Pkg != u.pkg { return } llfn := u.resolveFunctionGlobal(f) linkage := u.getFunctionLinkage(f) isMethod := f.Signature.Recv() != nil // Methods cannot be referred to via a descriptor. if !isMethod { llfd := u.resolveFunctionDescriptorGlobal(f) llfd.SetInitializer(llvm.ConstBitCast(llfn, llvm.PointerType(llvm.Int8Type(), 0))) llfd.SetLinkage(linkage) } // We only need to emit a descriptor for functions without bodies. if len(f.Blocks) == 0 { return } ssaopt.LowerAllocsToStack(f) if u.DumpSSA { f.WriteTo(os.Stderr) } fr := newFrame(u, llfn) defer fr.dispose() fr.addCommonFunctionAttrs(fr.function) fr.function.SetLinkage(linkage) fr.logf("Define function: %s", f.String()) fti := u.llvmtypes.getSignatureInfo(f.Signature) delete(u.undefinedFuncs, f) fr.retInf = fti.retInf // Push the compile unit and function onto the debug context. if u.GenerateDebug { u.debug.PushFunction(fr.function, f.Signature, f.Pos()) defer u.debug.PopFunction() u.debug.SetLocation(fr.builder, f.Pos()) } // If a function calls recover, we create a separate function to // hold the real function, and this function calls __go_can_recover // and bridges to it. if callsRecover(f) { fr = fr.bridgeRecoverFunc(fr.function, fti) } fr.blocks = make([]llvm.BasicBlock, len(f.Blocks)) fr.lastBlocks = make([]llvm.BasicBlock, len(f.Blocks)) for i, block := range f.Blocks { fr.blocks[i] = llvm.AddBasicBlock(fr.function, fmt.Sprintf(".%d.%s", i, block.Comment)) } fr.builder.SetInsertPointAtEnd(fr.blocks[0]) prologueBlock := llvm.InsertBasicBlock(fr.blocks[0], "prologue") fr.builder.SetInsertPointAtEnd(prologueBlock) // Map parameter positions to indices. We use this // when processing locals to map back to parameters // when generating debug metadata. paramPos := make(map[token.Pos]int) for i, param := range f.Params { paramPos[param.Pos()] = i llparam := fti.argInfos[i].decode(llvm.GlobalContext(), fr.builder, fr.builder) if isMethod && i == 0 { if _, ok := param.Type().Underlying().(*types.Pointer); !ok { llparam = fr.builder.CreateBitCast(llparam, llvm.PointerType(fr.types.ToLLVM(param.Type()), 0), "") llparam = fr.builder.CreateLoad(llparam, "") } } fr.env[param] = newValue(llparam, param.Type()) } // Load closure, extract free vars. if len(f.FreeVars) > 0 { for _, fv := range f.FreeVars { fr.env[fv] = newValue(llvm.ConstNull(u.llvmtypes.ToLLVM(fv.Type())), fv.Type()) } elemTypes := make([]llvm.Type, len(f.FreeVars)+1) elemTypes[0] = llvm.PointerType(llvm.Int8Type(), 0) // function pointer for i, fv := range f.FreeVars { elemTypes[i+1] = u.llvmtypes.ToLLVM(fv.Type()) } structType := llvm.StructType(elemTypes, false) closure := fr.runtime.getClosure.call(fr)[0] closure = fr.builder.CreateBitCast(closure, llvm.PointerType(structType, 0), "") for i, fv := range f.FreeVars { ptr := fr.builder.CreateStructGEP(closure, i+1, "") ptr = fr.builder.CreateLoad(ptr, "") fr.env[fv] = newValue(ptr, fv.Type()) } } // Allocate stack space for locals in the prologue block. for _, local := range f.Locals { typ := fr.llvmtypes.ToLLVM(deref(local.Type())) alloca := fr.builder.CreateAlloca(typ, local.Comment) fr.memsetZero(alloca, llvm.SizeOf(typ)) bcalloca := fr.builder.CreateBitCast(alloca, llvm.PointerType(llvm.Int8Type(), 0), "") value := newValue(bcalloca, local.Type()) fr.env[local] = value if fr.GenerateDebug { paramIndex, ok := paramPos[local.Pos()] if !ok { paramIndex = -1 } fr.debug.Declare(fr.builder, local, alloca, paramIndex) } } // If this is the "init" function, enable init-specific optimizations. if !isMethod && f.Name() == "init" { fr.isInit = true } // If the function contains any defers, we must first create // an unwind block. We can short-circuit the check for defers with // f.Recover != nil. if f.Recover != nil || hasDefer(f) { fr.unwindBlock = llvm.AddBasicBlock(fr.function, "") fr.frameptr = fr.builder.CreateAlloca(llvm.Int8Type(), "") } term := fr.builder.CreateBr(fr.blocks[0]) fr.allocaBuilder.SetInsertPointBefore(term) for _, block := range f.DomPreorder() { fr.translateBlock(block, fr.blocks[block.Index]) } fr.fixupPhis() if !fr.unwindBlock.IsNil() { fr.setupUnwindBlock(f.Recover, f.Signature.Results()) } // The init function needs to register the GC roots first. We do this // after generating code for it because allocations may have caused // additional GC roots to be created. if fr.isInit { fr.builder.SetInsertPointBefore(prologueBlock.FirstInstruction()) fr.registerGcRoots() } }