Esempio n. 1
0
func (d *DIBuilder) descriptorNamed(t *types.Named) llvm.Metadata {
	var diFile llvm.Metadata
	var line int
	if file := d.fset.File(t.Obj().Pos()); file != nil {
		line = file.Line(t.Obj().Pos())
		diFile = d.getFile(file)
	}

	// Create a placeholder for the named type, to terminate cycles.
	name := t.Obj().Name()
	placeholder := d.builder.CreateReplaceableCompositeType(d.scope(), llvm.DIReplaceableCompositeType{
		Tag:  dwarf.TagStructType,
		Name: name,
		File: diFile,
		Line: line,
	})
	d.types.Set(t, placeholder)

	typedef := d.builder.CreateTypedef(llvm.DITypedef{
		Type: d.DIType(t.Underlying()),
		Name: name,
		File: diFile,
		Line: line,
	})
	placeholder.ReplaceAllUsesWith(typedef)
	return typedef
}
Esempio n. 2
0
// addRuntimeType is called for each concrete type that can be the
// dynamic type of some interface or reflect.Value.
// Adapted from needMethods in go/ssa/builder.go
//
func (r *rta) addRuntimeType(T types.Type, skip bool) {
	if prev, ok := r.result.RuntimeTypes.At(T).(bool); ok {
		if skip && !prev {
			r.result.RuntimeTypes.Set(T, skip)
		}
		return
	}
	r.result.RuntimeTypes.Set(T, skip)

	mset := r.prog.MethodSets.MethodSet(T)

	if _, ok := T.Underlying().(*types.Interface); !ok {
		// T is a new concrete type.
		for i, n := 0, mset.Len(); i < n; i++ {
			sel := mset.At(i)
			m := sel.Obj()

			if m.Exported() {
				// Exported methods are always potentially callable via reflection.
				r.addReachable(r.prog.Method(sel), true)
			}
		}

		// Add callgraph edge for each existing dynamic
		// "invoke"-mode call via that interface.
		for _, I := range r.interfaces(T) {
			sites, _ := r.invokeSites.At(I).([]ssa.CallInstruction)
			for _, site := range sites {
				r.addInvokeEdge(site, T)
			}
		}
	}

	// Precondition: T is not a method signature (*Signature with Recv()!=nil).
	// Recursive case: skip => don't call makeMethods(T).
	// Each package maintains its own set of types it has visited.

	var n *types.Named
	switch T := T.(type) {
	case *types.Named:
		n = T
	case *types.Pointer:
		n, _ = T.Elem().(*types.Named)
	}
	if n != nil {
		owner := n.Obj().Pkg()
		if owner == nil {
			return // built-in error type
		}
	}

	// Recursion over signatures of each exported method.
	for i := 0; i < mset.Len(); i++ {
		if mset.At(i).Obj().Exported() {
			sig := mset.At(i).Type().(*types.Signature)
			r.addRuntimeType(sig.Params(), true)  // skip the Tuple itself
			r.addRuntimeType(sig.Results(), true) // skip the Tuple itself
		}
	}

	switch t := T.(type) {
	case *types.Basic:
		// nop

	case *types.Interface:
		// nop---handled by recursion over method set.

	case *types.Pointer:
		r.addRuntimeType(t.Elem(), false)

	case *types.Slice:
		r.addRuntimeType(t.Elem(), false)

	case *types.Chan:
		r.addRuntimeType(t.Elem(), false)

	case *types.Map:
		r.addRuntimeType(t.Key(), false)
		r.addRuntimeType(t.Elem(), false)

	case *types.Signature:
		if t.Recv() != nil {
			panic(fmt.Sprintf("Signature %s has Recv %s", t, t.Recv()))
		}
		r.addRuntimeType(t.Params(), true)  // skip the Tuple itself
		r.addRuntimeType(t.Results(), true) // skip the Tuple itself

	case *types.Named:
		// A pointer-to-named type can be derived from a named
		// type via reflection.  It may have methods too.
		r.addRuntimeType(types.NewPointer(T), false)

		// Consider 'type T struct{S}' where S has methods.
		// Reflection provides no way to get from T to struct{S},
		// only to S, so the method set of struct{S} is unwanted,
		// so set 'skip' flag during recursion.
		r.addRuntimeType(t.Underlying(), true)

	case *types.Array:
		r.addRuntimeType(t.Elem(), false)

	case *types.Struct:
		for i, n := 0, t.NumFields(); i < n; i++ {
			r.addRuntimeType(t.Field(i).Type(), false)
		}

	case *types.Tuple:
		for i, n := 0, t.Len(); i < n; i++ {
			r.addRuntimeType(t.At(i).Type(), false)
		}

	default:
		panic(T)
	}
}