// Change the aspect ratio of a rectangle. // The mode can be "area", "width", "height", "fit", "fill" or "stretch". // Panics if mode is empty or unrecognized. func SetAspect(w, h, aspect float64, mode string) (float64, float64) { switch mode { case "area": // aspect = width / height // width = height * aspect // width^2 = width * height * aspect // height = width / aspect // height^2 = width * height / aspect w, h = math.Sqrt(w*h*aspect), math.Sqrt(w*h/aspect) case "width": // Set height from width. h = w / aspect case "height": // Set width from height. w = h * aspect case "fit": // Shrink one dimension. w, h = math.Min(w, h*aspect), math.Min(h, w/aspect) case "fill": // Grow one dimension. w, h = math.Max(w, h*aspect), math.Max(h, w/aspect) case "stretch": // Do nothing. case "": panic("no mode specified") default: panic("unknown mode: " + mode) } return w, h }
// AdjustSigmoid changes the contrast of the image using a sigmoidal function and returns the adjusted image. // It's a non-linear contrast change useful for photo adjustments as it preserves highlight and shadow detail. // The midpoint parameter is the midpoint of contrast that must be between 0 and 1, typically 0.5. // The factor parameter indicates how much to increase or decrease the contrast, typically in range (-10, 10). // If the factor parameter is positive the image contrast is increased otherwise the contrast is decreased. // // Examples: // // dstImage = imaging.AdjustSigmoid(srcImage, 0.5, 3.0) // increase the contrast // dstImage = imaging.AdjustSigmoid(srcImage, 0.5, -3.0) // decrease the contrast // func AdjustSigmoid(img image.Image, midpoint, factor float64) *image.NRGBA { if factor == 0 { return Clone(img) } lut := make([]uint8, 256) a := math.Min(math.Max(midpoint, 0.0), 1.0) b := math.Abs(factor) sig0 := sigmoid(a, b, 0) sig1 := sigmoid(a, b, 1) e := 1.0e-6 if factor > 0 { for i := 0; i < 256; i++ { x := float64(i) / 255.0 sigX := sigmoid(a, b, x) f := (sigX - sig0) / (sig1 - sig0) lut[i] = clamp(f * 255.0) } } else { for i := 0; i < 256; i++ { x := float64(i) / 255.0 arg := math.Min(math.Max((sig1-sig0)*x+sig0, e), 1.0-e) f := a - math.Log(1.0/arg-1.0)/b lut[i] = clamp(f * 255.0) } } fn := func(c color.NRGBA) color.NRGBA { return color.NRGBA{lut[c.R], lut[c.G], lut[c.B], c.A} } return AdjustFunc(img, fn) }
func (b *Bounds) ExtendPointZ(pointZ PointZ) *Bounds { b.Min.X = math.Min(b.Min.X, pointZ.X) b.Min.Y = math.Min(b.Min.Y, pointZ.Y) b.Max.X = math.Max(b.Max.X, pointZ.X) b.Max.Y = math.Max(b.Max.Y, pointZ.Y) return b }
func distanceRectRect(rect1 Rect, rect2 Rect) float64 { var d float64 = 10000 for _, point := range rect1.MakeCorners() { d = math.Min(d, distancePointRect(point, rect2)) if d < 1 { return d } } for _, point := range rect2.MakeCorners() { d = math.Min(d, distancePointRect(point, rect1)) if d < 1 { return d } } for _, line := range rect1.MakeLines() { d = math.Min(d, distanceLineRect(line, rect2)) if d < 1 { return d } } return d }
func (v3 *Vector3) Min(v *Vector3) *Vector3 { v3.X = math.Min(v3.X, v.X) v3.Y = math.Min(v3.Y, v.Y) v3.Z = math.Min(v3.Z, v.Z) return v3 }
func subtractPSF(psf []float32, psfWidth uint64, residual []float32, residualWidth uint64, peakPos uint64, psfPeakPos uint64, absPeakVal float32, gain float32) { var rx = float64(xpos(peakPos, residualWidth)) var ry = float64(ypos(peakPos, residualWidth)) var px = float64(xpos(psfPeakPos, psfWidth)) var py = float64(ypos(psfPeakPos, psfWidth)) var diffx uint64 = uint64(rx - px) var diffy uint64 = uint64(ry - py) var startx = math.Max(0, float64(rx-px)) var starty = math.Max(0, float64(ry-py)) var stopx = math.Min(float64(residualWidth-1), rx+(float64(psfWidth)-px-1)) var stopy = math.Min(float64(residualWidth-1), ry+(float64(psfWidth)-py-1)) factor := gain * absPeakVal for y := uint64(starty); y <= uint64(stopy); y++ { for x := uint64(startx); x <= uint64(stopx); x++ { residual[posToIdx(residualWidth, x, y)] -= factor * psf[posToIdx(psfWidth, x-diffx, y-diffy)] } } }
func (driver *MesosSchedulerDriver) doReliableRegistration(maxBackoff float64) { for { if !driver.registerOnce() { return } maxBackoff = math.Min(maxBackoff, registrationRetryIntervalMax) // If failover timeout is present, bound the maximum backoff // by 1/10th of the failover timeout. if driver.failoverTimeout > 0 { maxBackoff = math.Min(maxBackoff, driver.failoverTimeout/10.0) } // Determine the delay for next attempt by picking a random // duration between 0 and 'maxBackoff' (jitter). delay := time.Duration(maxBackoff * rand.Float64()) log.V(1).Infof("will retry registration in %v if necessary", delay) t := time.NewTimer(delay) defer t.Stop() select { case <-driver.stopCh: return case <-t.C: maxBackoff *= 2 } } }
func extractImage(image *C.struct__VipsImage, o Options) (*C.struct__VipsImage, error) { var err error = nil inWidth := int(image.Xsize) inHeight := int(image.Ysize) switch { case o.Crop: width := int(math.Min(float64(inWidth), float64(o.Width))) height := int(math.Min(float64(inHeight), float64(o.Height))) left, top := calculateCrop(inWidth, inHeight, o.Width, o.Height, o.Gravity) left, top = int(math.Max(float64(left), 0)), int(math.Max(float64(top), 0)) image, err = vipsExtract(image, left, top, width, height) break case o.Embed: left, top := (o.Width-inWidth)/2, (o.Height-inHeight)/2 image, err = vipsEmbed(image, left, top, o.Width, o.Height, o.Extend) break case o.Top > 0 || o.Left > 0: if o.AreaWidth == 0 { o.AreaHeight = o.Width } if o.AreaHeight == 0 { o.AreaHeight = o.Height } if o.AreaWidth == 0 || o.AreaHeight == 0 { return nil, errors.New("Extract area width/height params are required") } image, err = vipsExtract(image, o.Left, o.Top, o.AreaWidth, o.AreaHeight) break } return image, err }
// startingStepSize implements the algorithm for estimating the starting step // size as described in: // - Hairer, E., Wanner, G., Nørsett, S.: Solving Ordinary Differential // Equations I: Nonstiff Problems. Springer Berlin Heidelberg (1993) func startingStepSize(rhs Function, init, tmp *State, weight Weighting, w []float64, order float64, s *Settings) float64 { // Store 1 / (rtol * |Y_i| + atol) into w. weight(init.Y, w) d0 := s.Norm(init.Y, w) d1 := s.Norm(init.YDot, w) var h0 float64 if math.Min(d0, d1) < 1e-5 { h0 = 1e-6 } else { // Make the increment of an explicit Euler step small compared to the // size of the initial value. h0 = 0.01 * d0 / d1 } // Perform one explicit Euler step. floats.AddScaledTo(tmp.Y, init.Y, h0, init.YDot) // Evaluate the right-hand side f(init.Time+h, tmp.Y). rhs(tmp.YDot, init.Time+h0, tmp.Y) // Estimate the second derivative of the solution. floats.Sub(tmp.YDot, init.YDot) d2 := s.Norm(tmp.YDot, w) / h0 var h1 float64 if math.Max(d1, d2) < 1e-15 { h1 = math.Max(1e-6, 1e-3*h0) } else { h1 = math.Pow(0.01/math.Max(d1, d2), 1/(order+1)) } return math.Min(100*h0, h1) }
// generateValidatedLengthExample generates a random size array of examples based on what's given. func (eg *exampleGenerator) generateValidatedLengthExample() interface{} { minlength, maxlength := math.Inf(1), math.Inf(-1) for _, v := range eg.a.Validations { switch actual := v.(type) { case *dslengine.MinLengthValidationDefinition: minlength = math.Min(minlength, float64(actual.MinLength)) maxlength = math.Max(maxlength, float64(actual.MinLength)) case *dslengine.MaxLengthValidationDefinition: minlength = math.Min(minlength, float64(actual.MaxLength)) maxlength = math.Max(maxlength, float64(actual.MaxLength)) } } count := 0 if math.IsInf(minlength, 1) { count = int(maxlength) - (eg.r.Int() % 3) } else if math.IsInf(maxlength, -1) { count = int(minlength) + (eg.r.Int() % 3) } else if minlength < maxlength { count = int(minlength) + (eg.r.Int() % int(maxlength-minlength)) } else if minlength == maxlength { count = int(minlength) } else { panic("Validation: MinLength > MaxLength") } if !eg.a.Type.IsArray() { return eg.r.faker.Characters(count) } res := make([]interface{}, count) for i := 0; i < count; i++ { res[i] = eg.a.Type.ToArray().ElemType.GenerateExample(eg.r) } return res }
func (self *Population) evaluate() { for k := 0; k < self.conf.CrossoversCount; k++ { if rand.Float64() < self.conf.CrossoverProb { g1 := self.P[rand.Int31n(int32(math.Min(float64(len(self.P)), float64(self.conf.SelectionCount))))] g2 := self.P[rand.Int31n(int32(math.Min(float64(len(self.P)), float64(self.conf.SelectionCount))))] child := g1.Crossover(g2) if rand.Float64() < self.conf.MutationProb { child.Mutate() } child.EvalFitness() self.P = append(self.P, child) } } self.sort() if self.conf.RemoveDuplicates { self.removeDuplicates() } for i := range self.P { self.P[i].EvalFitness() } if len(self.P) > self.conf.PopulationSize { self.P = self.P[:self.conf.PopulationSize] } // pretty.Println(self.P) }
// stepMovingObj steps the specified MovingObj and draws its image to its new position onto the LabImg. func stepMovingObj(m *model.MovingObj) { x, y := int(m.Pos.X), int(m.Pos.Y) // Only horizontal or vertical movement is allowed! if x != m.TargetPos.X { dx := math.Min(dt*model.V, math.Abs(float64(m.TargetPos.X)-m.Pos.X)) if x > m.TargetPos.X { dx = -dx m.Direction = model.DirLeft } else { m.Direction = model.DirRight } m.Pos.X += dx } else if y != m.TargetPos.Y { dy := math.Min(dt*model.V, math.Abs(float64(m.TargetPos.Y)-m.Pos.Y)) if y > m.TargetPos.Y { dy = -dy m.Direction = model.DirUp } else { m.Direction = model.DirDown } m.Pos.Y += dy } // Draw image at new position m.DrawImg() }
func (pm *ProjectileManager) CheckCollision(p pM.Projectiler, dx, dy float64) (bool, gameObjectsBase.Activer) { center := p.GetCenter() newCenter := geometry.MakePoint(center.X+dx, center.Y+dy) rects := make([]*geometry.Rectangle, 0, 100) rect2obj := make(map[*geometry.Rectangle]gameObjectsBase.Activer) for i := int(math.Min(center.Y, newCenter.Y)); i <= int(math.Max(center.Y, newCenter.Y)); i++ { for j := int(math.Min(center.X, newCenter.X)); j <= int(math.Max(center.X, newCenter.X)); j++ { if pm.field.IsBlocked(j, i) { rects = append(rects, pm.field.GetCellRectangle(j, i)) } else { for _, actor := range pm.field.GetActors(j, i) { r := actor.GetRectangle() rects = append(rects, &r) rect2obj[&r] = actor } } } } s := geometry.MakeSegment(center.X, center.Y, center.X+dx, center.Y+dy) for _, rect := range rects { if rect.CrossedBySegment(s) { return true, rect2obj[rect] } } return false, nil }
func GeoCell(lat, lon float64, resolution int) string { north := 90.0 south := -90.0 east := 180.0 west := -180.0 cell := make([]byte, resolution, resolution) for i := 0; i < resolution; i++ { subcellLonSpan := (east - west) / GEOCELL_GRID_SIZE subcellLatSpan := (north - south) / GEOCELL_GRID_SIZE x := int(math.Min(GEOCELL_GRID_SIZE*(lon-west)/(east-west), GEOCELL_GRID_SIZE-1)) y := int(math.Min(GEOCELL_GRID_SIZE*(lat-south)/(north-south), GEOCELL_GRID_SIZE-1)) pos := (y&2)<<2 | (x&2)<<1 | (y&1)<<1 | (x&1)<<0 cell[i] = GEOCELL_ALPHABET[pos] south += subcellLatSpan * float64(y) north = south + subcellLatSpan west += subcellLonSpan * float64(x) east = west + subcellLonSpan } return string(cell) }
// RGBToHSV converts an RGB triple to a HSV triple. // // Ported from http://goo.gl/Vg1h9 func RGBToHSV(r, g, b uint8) (h, s, v float64) { fR := float64(r) / 255 fG := float64(g) / 255 fB := float64(b) / 255 max := math.Max(math.Max(fR, fG), fB) min := math.Min(math.Min(fR, fG), fB) d := max - min s, v = 0, max if max > 0 { s = d / max } if max == min { // Achromatic. h = 0 } else { // Chromatic. switch max { case fR: h = (fG - fB) / d if fG < fB { h += 6 } case fG: h = (fB-fR)/d + 2 case fB: h = (fR-fG)/d + 4 } h /= 6 } return }
// Expand returns a bounding box that holds both bounding box and a vector. func (b BB) Expand(v Vect) BB { return BB{ math.Min(b.l, v.X), math.Min(b.b, v.Y), math.Max(b.r, v.X), math.Max(b.t, v.Y)} }
func recursive(string1, string2 string) float64 { if len(string1) == 0 { return float64(len(string2)) } if len(string2) == 0 { return float64(len(string1)) } if (len(string2) == 0) && (len(string1) == 0) { return 0.0 } mismatch_1 := recursive(string1, string2[0:len(string2)-1]) + 1.0 mismatch_2 := recursive(string1[0:len(string1)-1], string2) + 1.0 var cost float64 if string1[len(string1)-1] == string2[len(string2)-1] { cost = 0.0 } else { cost = 1.0 } mismatch_3 := recursive(string1[0:len(string1)-1], string2[0:len(string2)-1]) + cost return math.Min(math.Min(mismatch_1, mismatch_2), mismatch_3) }
// Merge returns a bounding box that holds both bounding boxes. func (a BB) Merge(b BB) BB { return BB{ math.Min(a.l, b.l), math.Min(a.b, b.b), math.Max(a.r, b.r), math.Max(a.t, b.t)} }
func (b *Microfacet) G(wo, wi, wh *Vector) float64 { NdotWh := AbsCosTheta(wh) NdotWo := AbsCosTheta(wo) NdotWi := AbsCosTheta(wi) WOdotWh := AbsDotVector(wo, wh) return math.Min(1.0, math.Min((2.0*NdotWh*NdotWo/WOdotWh), (2.0*NdotWh*NdotWi/WOdotWh))) }
//uses local absolute path, generates metadata for file func createFileMeta(path string, f os.FileInfo) (bt bt_file, err error) { d, err := ioutil.ReadFile(path) if err != nil { return bt, err } fmt.Println(f.Size()) //TODO compute this smarter, not just min(256k, len(file)) plength := int(math.Min(float64(PIECE_LENGTH), float64(f.Size()))) if plength == 0 { return bt, err } iters := len(d) / plength if len(d)%plength > 0 { iters += 1 } //compute sha1 of each piece var wg sync.WaitGroup pieces := make([]byte, 0, iters*20) wg.Add(iters) for i := 0; i < iters; i++ { go func(i int) { s := sha1.Sum(d[plength*i : int(math.Min(float64(plength*(i+1)), float64(len(d))))]) pieces = append(pieces[:i*20], append(s[:], pieces[i*20:]...)...) wg.Done() }(i) } wg.Wait() return bt_file{f.ModTime().Unix(), f.Size(), plength, string(pieces)}, nil }
func (p *Paginator) Pages() []int { if p.pageRange == nil && p.nums > 0 { var pages []int pageNums := p.PageNums() page := p.Page() switch { case page >= pageNums-4 && pageNums > 9: start := pageNums - 9 + 1 pages = make([]int, 9) for i, _ := range pages { pages[i] = start + i } case page >= 5 && pageNums > 9: start := page - 5 + 1 pages = make([]int, int(math.Min(9, float64(page+4+1)))) for i, _ := range pages { pages[i] = start + i } default: pages = make([]int, int(math.Min(9, float64(pageNums)))) for i, _ := range pages { pages[i] = i + 1 } } p.pageRange = pages } return p.pageRange }
// RGBToHSL converts an RGB triple to a HSL triple. // // Ported from http://goo.gl/Vg1h9 func RGBToHSL(r, g, b uint8) (h, s, l float64) { fR := float64(r) / 255 fG := float64(g) / 255 fB := float64(b) / 255 max := math.Max(math.Max(fR, fG), fB) min := math.Min(math.Min(fR, fG), fB) l = (max + min) / 2 if max == min { // Achromatic. h, s = 0, 0 } else { // Chromatic. d := max - min if l > 0.5 { s = d / (2.0 - max - min) } else { s = d / (max + min) } switch max { case fR: h = (fG - fB) / d if fG < fB { h += 6 } case fG: h = (fB-fR)/d + 2 case fB: h = (fR-fG)/d + 4 } h /= 6 } return }
func cellIDFromFaceIJWrap(f, i, j int) CellID { // Convert i and j to the coordinates of a leaf cell just beyond the // boundary of this face. This prevents 32-bit overflow in the case // of finding the neighbors of a face cell. i = clamp(i, -1, maxSize) j = clamp(j, -1, maxSize) // We want to wrap these coordinates onto the appropriate adjacent face. // The easiest way to do this is to convert the (i,j) coordinates to (x,y,z) // (which yields a point outside the normal face boundary), and then call // xyzToFaceUV to project back onto the correct face. // // The code below converts (i,j) to (si,ti), and then (si,ti) to (u,v) using // the linear projection (u=2*s-1 and v=2*t-1). (The code further below // converts back using the inverse projection, s=0.5*(u+1) and t=0.5*(v+1). // Any projection would work here, so we use the simplest.) We also clamp // the (u,v) coordinates so that the point is barely outside the // [-1,1]x[-1,1] face rectangle, since otherwise the reprojection step // (which divides by the new z coordinate) might change the other // coordinates enough so that we end up in the wrong leaf cell. const scale = 1.0 / maxSize limit := math.Nextafter(1, 2) u := math.Max(-limit, math.Min(limit, scale*float64((i<<1)+1-maxSize))) v := math.Max(-limit, math.Min(limit, scale*float64((j<<1)+1-maxSize))) // Find the leaf cell coordinates on the adjacent face, and convert // them to a cell id at the appropriate level. f, u, v = xyzToFaceUV(faceUVToXYZ(f, u, v)) return cellIDFromFaceIJ(f, stToIJ(0.5*(u+1)), stToIJ(0.5*(v+1))) }
func RectsIntersection(r1, r2 Rect) (ri Rect) { ri.Min.X = math.Max(r1.Min.X, r2.Min.X) ri.Min.Y = math.Max(r1.Min.Y, r2.Min.Y) ri.Max.X = math.Min(r1.Max.X, r2.Max.X) ri.Max.Y = math.Min(r1.Max.Y, r2.Max.Y) return }
func (v3 *Vector3) Clamp(min, max *Vector3) *Vector3 { v3.X = math.Max(min.X, math.Min(max.X, v3.X)) v3.Y = math.Max(min.Y, math.Min(max.Y, v3.Y)) v3.Z = math.Max(min.Z, math.Min(max.Z, v3.Z)) return v3 }
func (p *Pagination) Pages(maxShowPages int) []int { if maxShowPages < 5 || maxShowPages > MAX_SHOW_PAGE { maxShowPages = MAX_SHOW_PAGE } middlePageNum := maxShowPages / 2 if p.pageRange == nil && p.Total > 0 { var pages []int pageNums := p.TotalPages() page := p.Page switch { case page >= pageNums-middlePageNum && pageNums > maxShowPages: start := pageNums - maxShowPages + 1 pages = make([]int, maxShowPages) for i := range pages { pages[i] = start + i } case page >= (middlePageNum+1) && pageNums > maxShowPages: start := page - middlePageNum pages = make([]int, int(math.Min(float64(maxShowPages), float64(page+middlePageNum+1)))) for i := range pages { pages[i] = start + i } default: pages = make([]int, int(math.Min(float64(maxShowPages), float64(pageNums)))) for i := range pages { pages[i] = i + 1 } } p.pageRange = pages } return p.pageRange }
func (b *Bounds) ExtendPoint(point Point) *Bounds { b.Min.X = math.Min(b.Min.X, point.X) b.Min.Y = math.Min(b.Min.Y, point.Y) b.Max.X = math.Max(b.Max.X, point.X) b.Max.Y = math.Max(b.Max.Y, point.Y) return b }
// GetStringBounds returns the approximate pixel bounds of the string s at x, y. // The left edge of the em square of the first character of s // and the baseline intersect at 0, 0 in the returned coordinates. // Therefore the top and left coordinates may well be negative. func (gc *ImageGraphicContext) GetStringBounds(s string) (left, top, right, bottom float64) { font, err := gc.loadCurrentFont() if err != nil { log.Println(err) return 0, 0, 0, 0 } top, left, bottom, right = 10e6, 10e6, -10e6, -10e6 cursor := 0.0 prev, hasPrev := truetype.Index(0), false for _, rune := range s { index := font.Index(rune) if hasPrev { cursor += fUnitsToFloat64(font.Kerning(int32(gc.Current.Scale), prev, index)) } if err := gc.glyphBuf.Load(gc.Current.Font, int32(gc.Current.Scale), index, truetype.NoHinting); err != nil { log.Println(err) return 0, 0, 0, 0 } e0 := 0 for _, e1 := range gc.glyphBuf.End { ps := gc.glyphBuf.Point[e0:e1] for _, p := range ps { x, y := pointToF64Point(p) top = math.Min(top, y) bottom = math.Max(bottom, y) left = math.Min(left, x+cursor) right = math.Max(right, x+cursor) } } cursor += fUnitsToFloat64(font.HMetric(int32(gc.Current.Scale), index).AdvanceWidth) prev, hasPrev = index, true } return left, top, right, bottom }
func (b *Bounds) ExtendPointZM(pointZM PointZM) *Bounds { b.Min.X = math.Min(b.Min.X, pointZM.X) b.Min.Y = math.Min(b.Min.Y, pointZM.Y) b.Max.X = math.Max(b.Max.X, pointZM.X) b.Max.Y = math.Max(b.Max.Y, pointZM.Y) return b }
// fast nearest-neighbor resize, no filtering func resizeNearest(src *image.NRGBA, width, height int) *image.NRGBA { dstW, dstH := width, height srcBounds := src.Bounds() srcW := srcBounds.Max.X srcH := srcBounds.Max.Y dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH)) dx := float64(srcW) / float64(dstW) dy := float64(srcH) / float64(dstH) Parallel(dstH, func(partStart, partEnd int) { for dstY := partStart; dstY < partEnd; dstY++ { fy := (float64(dstY)+0.5)*dy - 0.5 for dstX := 0; dstX < dstW; dstX++ { fx := (float64(dstX)+0.5)*dx - 0.5 srcX := int(math.Min(math.Max(math.Floor(fx+0.5), 0.0), float64(srcW))) srcY := int(math.Min(math.Max(math.Floor(fy+0.5), 0.0), float64(srcH))) srcOff := srcY*src.Stride + srcX*4 dstOff := dstY*dst.Stride + dstX*4 copy(dst.Pix[dstOff:dstOff+4], src.Pix[srcOff:srcOff+4]) } } }) return dst }