// Resample returns a resampled copy of the tipimage slice r of m. // The returned tipimage has width w and height h. func Resample(m tipimage.Image, r tipimage.Rectangle, w, h int) tipimage.Image { if w < 0 || h < 0 { return nil } if w == 0 || h == 0 || r.Dx() <= 0 || r.Dy() <= 0 { return tipimage.NewRGBA64(tipimage.Rect(0, 0, w, h)) } curw, curh := r.Dx(), r.Dy() img := tipimage.NewRGBA(tipimage.Rect(0, 0, w, h)) for y := 0; y < h; y++ { for x := 0; x < w; x++ { // Get a source pixel. subx := x * curw / w suby := y * curh / h r32, g32, b32, a32 := m.At(subx, suby).RGBA() r := uint8(r32 >> 8) g := uint8(g32 >> 8) b := uint8(b32 >> 8) a := uint8(a32 >> 8) img.SetRGBA(x, y, color.RGBA{r, g, b, a}) } } return img }
// Resize returns a scaled copy of the tipimage slice r of m. // The returned tipimage has width w and height h. func Resize(m tipimage.Image, r tipimage.Rectangle, w, h int) tipimage.Image { if w < 0 || h < 0 { return nil } if w == 0 || h == 0 || r.Dx() <= 0 || r.Dy() <= 0 { return tipimage.NewRGBA64(tipimage.Rect(0, 0, w, h)) } switch m := m.(type) { case *tipimage.RGBA: return resizeRGBA(m, r, w, h) case *tipimage.YCbCr: if m, ok := resizeYCbCr(m, r, w, h); ok { return m } } ww, hh := uint64(w), uint64(h) dx, dy := uint64(r.Dx()), uint64(r.Dy()) // The scaling algorithm is to nearest-neighbor magnify the dx * dy source // to a (ww*dx) * (hh*dy) intermediate tipimage and then minify the intermediate // tipimage back down to a ww * hh destination with a simple box filter. // The intermediate tipimage is implied, we do not physically allocate a slice // of length ww*dx*hh*dy. // For example, consider a 4*3 source tipimage. Label its pixels from a-l: // abcd // efgh // ijkl // To resize this to a 3*2 destination tipimage, the intermediate is 12*6. // Whitespace has been added to delineate the destination pixels: // aaab bbcc cddd // aaab bbcc cddd // eeef ffgg ghhh // // eeef ffgg ghhh // iiij jjkk klll // iiij jjkk klll // Thus, the 'b' source pixel contributes one third of its value to the // (0, 0) destination pixel and two thirds to (1, 0). // The implementation is a two-step process. First, the source pixels are // iterated over and each source pixel's contribution to 1 or more // destination pixels are summed. Second, the sums are divided by a scaling // factor to yield the destination pixels. // TODO: By interleaving the two steps, instead of doing all of // step 1 first and all of step 2 second, we could allocate a smaller sum // slice of length 4*w*2 instead of 4*w*h, although the resultant code // would become more complicated. n, sum := dx*dy, make([]uint64, 4*w*h) for y := r.Min.Y; y < r.Max.Y; y++ { for x := r.Min.X; x < r.Max.X; x++ { // Get the source pixel. r32, g32, b32, a32 := m.At(x, y).RGBA() r64 := uint64(r32) g64 := uint64(g32) b64 := uint64(b32) a64 := uint64(a32) // Spread the source pixel over 1 or more destination rows. py := uint64(y) * hh for remy := hh; remy > 0; { qy := dy - (py % dy) if qy > remy { qy = remy } // Spread the source pixel over 1 or more destination columns. px := uint64(x) * ww index := 4 * ((py/dy)*ww + (px / dx)) for remx := ww; remx > 0; { qx := dx - (px % dx) if qx > remx { qx = remx } sum[index+0] += r64 * qx * qy sum[index+1] += g64 * qx * qy sum[index+2] += b64 * qx * qy sum[index+3] += a64 * qx * qy index += 4 px += qx remx -= qx } py += qy remy -= qy } } } return average(sum, w, h, n*0x0101) }