// IntLiteral returns the Node's literal value as an interger. func (n *Node) IntLiteral() (x int64, ok bool) { switch { case n == nil: return case Isconst(n, CTINT): return n.Int(), true case Isconst(n, CTBOOL): return int64(obj.Bool2int(n.Bool())), true } return }
// Convconst converts constant node n to type t and // places the result in con. func (n *Node) Convconst(con *Node, t *Type) { tt := Simsimtype(t) // copy the constant for conversion Nodconst(con, Types[TINT8], 0) con.Type = t con.SetVal(n.Val()) if Isint[tt] { con.SetVal(Val{new(Mpint)}) var i int64 switch n.Val().Ctype() { default: Fatalf("convconst ctype=%d %v", n.Val().Ctype(), Tconv(t, obj.FmtLong)) case CTINT, CTRUNE: i = Mpgetfix(n.Val().U.(*Mpint)) case CTBOOL: i = int64(obj.Bool2int(n.Val().U.(bool))) case CTNIL: i = 0 } i = iconv(i, tt) Mpmovecfix(con.Val().U.(*Mpint), i) return } if Isfloat[tt] { con.SetVal(toflt(con.Val())) if con.Val().Ctype() != CTFLT { Fatalf("convconst ctype=%d %v", con.Val().Ctype(), t) } if tt == TFLOAT32 { con.SetVal(Val{truncfltlit(con.Val().U.(*Mpflt), t)}) } return } if Iscomplex[tt] { con.SetVal(tocplx(con.Val())) if tt == TCOMPLEX64 { con.Val().U.(*Mpcplx).Real = *truncfltlit(&con.Val().U.(*Mpcplx).Real, Types[TFLOAT32]) con.Val().U.(*Mpcplx).Imag = *truncfltlit(&con.Val().U.(*Mpcplx).Imag, Types[TFLOAT32]) } return } Fatalf("convconst %v constant", Tconv(t, obj.FmtLong)) }
func dtypesym(t *Type) *Sym { // Replace byte, rune aliases with real type. // They've been separate internally to make error messages // better, but we have to merge them in the reflect tables. if t == bytetype || t == runetype { t = Types[t.Etype] } if isideal(t) { Fatalf("dtypesym %v", t) } s := typesym(t) if s.Flags&SymSiggen != 0 { return s } s.Flags |= SymSiggen // special case (look for runtime below): // when compiling package runtime, // emit the type structures for int, float, etc. tbase := t if Isptr[t.Etype] && t.Sym == nil && t.Type.Sym != nil { tbase = t.Type } dupok := 0 if tbase.Sym == nil { dupok = obj.DUPOK } if myimportpath == "runtime" && (tbase == Types[tbase.Etype] || tbase == bytetype || tbase == runetype || tbase == errortype) { // int, float, etc goto ok } // named types from other files are defined only by those files if tbase.Sym != nil && !tbase.Local { return s } if isforw[tbase.Etype] { return s } ok: ot := 0 xt := 0 switch t.Etype { default: ot = dcommontype(s, ot, t) xt = ot - 2*Widthptr case TARRAY: if t.Bound >= 0 { // ../../runtime/type.go:/ArrayType s1 := dtypesym(t.Type) t2 := typ(TARRAY) t2.Type = t.Type t2.Bound = -1 // slice s2 := dtypesym(t2) ot = dcommontype(s, ot, t) xt = ot - 2*Widthptr ot = dsymptr(s, ot, s1, 0) ot = dsymptr(s, ot, s2, 0) ot = duintptr(s, ot, uint64(t.Bound)) } else { // ../../runtime/type.go:/SliceType s1 := dtypesym(t.Type) ot = dcommontype(s, ot, t) xt = ot - 2*Widthptr ot = dsymptr(s, ot, s1, 0) } // ../../runtime/type.go:/ChanType case TCHAN: s1 := dtypesym(t.Type) ot = dcommontype(s, ot, t) xt = ot - 2*Widthptr ot = dsymptr(s, ot, s1, 0) ot = duintptr(s, ot, uint64(t.Chan)) case TFUNC: for t1 := getthisx(t).Type; t1 != nil; t1 = t1.Down { dtypesym(t1.Type) } isddd := false for t1 := getinargx(t).Type; t1 != nil; t1 = t1.Down { isddd = t1.Isddd dtypesym(t1.Type) } for t1 := getoutargx(t).Type; t1 != nil; t1 = t1.Down { dtypesym(t1.Type) } ot = dcommontype(s, ot, t) xt = ot - 2*Widthptr ot = duint8(s, ot, uint8(obj.Bool2int(isddd))) // two slice headers: in and out. ot = int(Rnd(int64(ot), int64(Widthptr))) ot = dsymptr(s, ot, s, ot+2*(Widthptr+2*Widthint)) n := t.Thistuple + t.Intuple ot = duintxx(s, ot, uint64(n), Widthint) ot = duintxx(s, ot, uint64(n), Widthint) ot = dsymptr(s, ot, s, ot+1*(Widthptr+2*Widthint)+n*Widthptr) ot = duintxx(s, ot, uint64(t.Outtuple), Widthint) ot = duintxx(s, ot, uint64(t.Outtuple), Widthint) // slice data for t1 := getthisx(t).Type; t1 != nil; t1 = t1.Down { ot = dsymptr(s, ot, dtypesym(t1.Type), 0) n++ } for t1 := getinargx(t).Type; t1 != nil; t1 = t1.Down { ot = dsymptr(s, ot, dtypesym(t1.Type), 0) n++ } for t1 := getoutargx(t).Type; t1 != nil; t1 = t1.Down { ot = dsymptr(s, ot, dtypesym(t1.Type), 0) n++ } case TINTER: m := imethods(t) n := len(m) for _, a := range m { dtypesym(a.type_) } // ../../../runtime/type.go:/InterfaceType ot = dcommontype(s, ot, t) xt = ot - 2*Widthptr ot = dsymptr(s, ot, s, ot+Widthptr+2*Widthint) ot = duintxx(s, ot, uint64(n), Widthint) ot = duintxx(s, ot, uint64(n), Widthint) for _, a := range m { // ../../../runtime/type.go:/imethod ot = dgostringptr(s, ot, a.name) ot = dgopkgpath(s, ot, a.pkg) ot = dsymptr(s, ot, dtypesym(a.type_), 0) } // ../../../runtime/type.go:/MapType case TMAP: s1 := dtypesym(t.Down) s2 := dtypesym(t.Type) s3 := dtypesym(mapbucket(t)) s4 := dtypesym(hmap(t)) ot = dcommontype(s, ot, t) xt = ot - 2*Widthptr ot = dsymptr(s, ot, s1, 0) ot = dsymptr(s, ot, s2, 0) ot = dsymptr(s, ot, s3, 0) ot = dsymptr(s, ot, s4, 0) if t.Down.Width > MAXKEYSIZE { ot = duint8(s, ot, uint8(Widthptr)) ot = duint8(s, ot, 1) // indirect } else { ot = duint8(s, ot, uint8(t.Down.Width)) ot = duint8(s, ot, 0) // not indirect } if t.Type.Width > MAXVALSIZE { ot = duint8(s, ot, uint8(Widthptr)) ot = duint8(s, ot, 1) // indirect } else { ot = duint8(s, ot, uint8(t.Type.Width)) ot = duint8(s, ot, 0) // not indirect } ot = duint16(s, ot, uint16(mapbucket(t).Width)) ot = duint8(s, ot, uint8(obj.Bool2int(isreflexive(t.Down)))) ot = duint8(s, ot, uint8(obj.Bool2int(needkeyupdate(t.Down)))) case TPTR32, TPTR64: if t.Type.Etype == TANY { // ../../runtime/type.go:/UnsafePointerType ot = dcommontype(s, ot, t) break } // ../../runtime/type.go:/PtrType s1 := dtypesym(t.Type) ot = dcommontype(s, ot, t) xt = ot - 2*Widthptr ot = dsymptr(s, ot, s1, 0) // ../../runtime/type.go:/StructType // for security, only the exported fields. case TSTRUCT: n := 0 for t1 := t.Type; t1 != nil; t1 = t1.Down { dtypesym(t1.Type) n++ } ot = dcommontype(s, ot, t) xt = ot - 2*Widthptr ot = dsymptr(s, ot, s, ot+Widthptr+2*Widthint) ot = duintxx(s, ot, uint64(n), Widthint) ot = duintxx(s, ot, uint64(n), Widthint) for t1 := t.Type; t1 != nil; t1 = t1.Down { // ../../runtime/type.go:/structField if t1.Sym != nil && t1.Embedded == 0 { ot = dgostringptr(s, ot, t1.Sym.Name) if exportname(t1.Sym.Name) { ot = dgostringptr(s, ot, "") } else { ot = dgopkgpath(s, ot, t1.Sym.Pkg) } } else { ot = dgostringptr(s, ot, "") if t1.Type.Sym != nil && (t1.Type.Sym.Pkg == builtinpkg || !exportname(t1.Type.Sym.Name)) { ot = dgopkgpath(s, ot, localpkg) } else { ot = dgostringptr(s, ot, "") } } ot = dsymptr(s, ot, dtypesym(t1.Type), 0) ot = dgostrlitptr(s, ot, t1.Note) ot = duintptr(s, ot, uint64(t1.Width)) // field offset } } ot = dextratype(s, ot, t, xt) ggloblsym(s, int32(ot), int16(dupok|obj.RODATA)) // generate typelink.foo pointing at s = type.foo. // The linker will leave a table of all the typelinks for // types in the binary, so reflect can find them. // We only need the link for unnamed composites that // we want be able to find. if t.Sym == nil { switch t.Etype { case TPTR32, TPTR64: // The ptrto field of the type data cannot be relied on when // dynamic linking: a type T may be defined in a module that makes // no use of pointers to that type, but another module can contain // a package that imports the first one and does use *T pointers. // The second module will end up defining type data for *T and a // type.*T symbol pointing at it. It's important that calling // .PtrTo() on the reflect.Type for T returns this type data and // not some synthesized object, so we need reflect to be able to // find it! if !Ctxt.Flag_dynlink { break } fallthrough case TARRAY, TCHAN, TFUNC, TMAP: slink := typelinksym(t) dsymptr(slink, 0, s, 0) ggloblsym(slink, int32(Widthptr), int16(dupok|obj.RODATA)) } } return s }
// Naddr rewrites a to refer to n. // It assumes that a is zeroed on entry. func Naddr(a *obj.Addr, n *Node) { if n == nil { return } if n.Type != nil && n.Type.Etype != TIDEAL { // TODO(rsc): This is undone by the selective clearing of width below, // to match architectures that were not as aggressive in setting width // during naddr. Those widths must be cleared to avoid triggering // failures in gins when it detects real but heretofore latent (and one // hopes innocuous) type mismatches. // The type mismatches should be fixed and the clearing below removed. dowidth(n.Type) a.Width = n.Type.Width } switch n.Op { default: a := a // copy to let escape into Ctxt.Dconv Debug['h'] = 1 Dump("naddr", n) Fatalf("naddr: bad %v %v", Oconv(int(n.Op), 0), Ctxt.Dconv(a)) case OREGISTER: a.Type = obj.TYPE_REG a.Reg = n.Reg a.Sym = nil if Thearch.Thechar == '8' { // TODO(rsc): Never clear a->width. a.Width = 0 } case OINDREG: a.Type = obj.TYPE_MEM a.Reg = n.Reg a.Sym = Linksym(n.Sym) a.Offset = n.Xoffset if a.Offset != int64(int32(a.Offset)) { Yyerror("offset %d too large for OINDREG", a.Offset) } if Thearch.Thechar == '8' { // TODO(rsc): Never clear a->width. a.Width = 0 } // n->left is PHEAP ONAME for stack parameter. // compute address of actual parameter on stack. case OPARAM: a.Etype = uint8(Simtype[n.Left.Type.Etype]) a.Width = n.Left.Type.Width a.Offset = n.Xoffset a.Sym = Linksym(n.Left.Sym) a.Type = obj.TYPE_MEM a.Name = obj.NAME_PARAM a.Node = n.Left.Orig case OCLOSUREVAR: if !Curfn.Func.Needctxt { Fatalf("closurevar without needctxt") } a.Type = obj.TYPE_MEM a.Reg = int16(Thearch.REGCTXT) a.Sym = nil a.Offset = n.Xoffset case OCFUNC: Naddr(a, n.Left) a.Sym = Linksym(n.Left.Sym) case ONAME: a.Etype = 0 if n.Type != nil { a.Etype = uint8(Simtype[n.Type.Etype]) } a.Offset = n.Xoffset s := n.Sym a.Node = n.Orig //if(a->node >= (Node*)&n) // fatal("stack node"); if s == nil { s = Lookup(".noname") } if n.Name.Method { if n.Type != nil { if n.Type.Sym != nil { if n.Type.Sym.Pkg != nil { s = Pkglookup(s.Name, n.Type.Sym.Pkg) } } } } a.Type = obj.TYPE_MEM switch n.Class { default: Fatalf("naddr: ONAME class %v %d\n", n.Sym, n.Class) case PEXTERN: a.Name = obj.NAME_EXTERN case PAUTO: a.Name = obj.NAME_AUTO case PPARAM, PPARAMOUT: a.Name = obj.NAME_PARAM case PFUNC: a.Name = obj.NAME_EXTERN a.Type = obj.TYPE_ADDR a.Width = int64(Widthptr) s = funcsym(s) } a.Sym = Linksym(s) case ODOT: // A special case to make write barriers more efficient. // Taking the address of the first field of a named struct // is the same as taking the address of the struct. if n.Left.Type.Etype != TSTRUCT || n.Left.Type.Type.Sym != n.Right.Sym { Debug['h'] = 1 Dump("naddr", n) Fatalf("naddr: bad %v %v", Oconv(int(n.Op), 0), Ctxt.Dconv(a)) } Naddr(a, n.Left) case OLITERAL: if Thearch.Thechar == '8' { a.Width = 0 } switch n.Val().Ctype() { default: Fatalf("naddr: const %v", Tconv(n.Type, obj.FmtLong)) case CTFLT: a.Type = obj.TYPE_FCONST a.Val = mpgetflt(n.Val().U.(*Mpflt)) case CTINT, CTRUNE: a.Sym = nil a.Type = obj.TYPE_CONST a.Offset = Mpgetfix(n.Val().U.(*Mpint)) case CTSTR: datagostring(n.Val().U.(string), a) case CTBOOL: a.Sym = nil a.Type = obj.TYPE_CONST a.Offset = int64(obj.Bool2int(n.Val().U.(bool))) case CTNIL: a.Sym = nil a.Type = obj.TYPE_CONST a.Offset = 0 } case OADDR: Naddr(a, n.Left) a.Etype = uint8(Tptr) if Thearch.Thechar != '0' && Thearch.Thechar != '5' && Thearch.Thechar != '7' && Thearch.Thechar != '9' { // TODO(rsc): Do this even for arm, ppc64. a.Width = int64(Widthptr) } if a.Type != obj.TYPE_MEM { a := a // copy to let escape into Ctxt.Dconv Fatalf("naddr: OADDR %v (from %v)", Ctxt.Dconv(a), Oconv(int(n.Left.Op), 0)) } a.Type = obj.TYPE_ADDR // itable of interface value case OITAB: Naddr(a, n.Left) if a.Type == obj.TYPE_CONST && a.Offset == 0 { break // itab(nil) } a.Etype = uint8(Tptr) a.Width = int64(Widthptr) // pointer in a string or slice case OSPTR: Naddr(a, n.Left) if a.Type == obj.TYPE_CONST && a.Offset == 0 { break // ptr(nil) } a.Etype = uint8(Simtype[Tptr]) a.Offset += int64(Array_array) a.Width = int64(Widthptr) // len of string or slice case OLEN: Naddr(a, n.Left) if a.Type == obj.TYPE_CONST && a.Offset == 0 { break // len(nil) } a.Etype = uint8(Simtype[TUINT]) a.Offset += int64(Array_nel) if Thearch.Thechar != '5' { // TODO(rsc): Do this even on arm. a.Width = int64(Widthint) } // cap of string or slice case OCAP: Naddr(a, n.Left) if a.Type == obj.TYPE_CONST && a.Offset == 0 { break // cap(nil) } a.Etype = uint8(Simtype[TUINT]) a.Offset += int64(Array_cap) if Thearch.Thechar != '5' { // TODO(rsc): Do this even on arm. a.Width = int64(Widthint) } } return }
func haspointers(t *Type) bool { if t.Haspointers != 0 { return t.Haspointers-1 != 0 } var ret bool switch t.Etype { case TINT, TUINT, TINT8, TUINT8, TINT16, TUINT16, TINT32, TUINT32, TINT64, TUINT64, TUINTPTR, TFLOAT32, TFLOAT64, TCOMPLEX64, TCOMPLEX128, TBOOL: ret = false case TARRAY: if t.Bound < 0 { // slice ret = true break } if t.Bound == 0 { // empty array ret = false break } ret = haspointers(t.Type) case TSTRUCT: ret = false for t1 := t.Type; t1 != nil; t1 = t1.Down { if haspointers(t1.Type) { ret = true break } } case TSTRING, TPTR32, TPTR64, TUNSAFEPTR, TINTER, TCHAN, TMAP, TFUNC: fallthrough default: ret = true case TFIELD: Fatalf("haspointers: unexpected type, %v", t) } t.Haspointers = 1 + uint8(obj.Bool2int(ret)) return ret }