func Fconv(fvp *Mpflt, flag int) string { if flag&obj.FmtSharp == 0 { return fvp.Val.Text('b', 0) } // use decimal format for error messages // determine sign f := &fvp.Val var sign string if f.Sign() < 0 { sign = "-" f = new(big.Float).Abs(f) } else if flag&obj.FmtSign != 0 { sign = "+" } // Don't try to convert infinities (will not terminate). if f.IsInf() { return sign + "Inf" } // Use exact fmt formatting if in float64 range (common case): // proceed if f doesn't underflow to 0 or overflow to inf. if x, _ := f.Float64(); f.Sign() == 0 == (x == 0) && !math.IsInf(x, 0) { return fmt.Sprintf("%s%.6g", sign, x) } // Out of float64 range. Do approximate manual to decimal // conversion to avoid precise but possibly slow Float // formatting. // f = mant * 2**exp var mant big.Float exp := f.MantExp(&mant) // 0.5 <= mant < 1.0 // approximate float64 mantissa m and decimal exponent d // f ~ m * 10**d m, _ := mant.Float64() // 0.5 <= m < 1.0 d := float64(exp) * (math.Ln2 / math.Ln10) // log_10(2) // adjust m for truncated (integer) decimal exponent e e := int64(d) m *= math.Pow(10, d-float64(e)) // ensure 1 <= m < 10 switch { case m < 1-0.5e-6: // The %.6g format below rounds m to 5 digits after the // decimal point. Make sure that m*10 < 10 even after // rounding up: m*10 + 0.5e-5 < 10 => m < 1 - 0.5e6. m *= 10 e-- case m >= 10: m /= 10 e++ } return fmt.Sprintf("%s%.6ge%+d", sign, m, e) }
func Fconv(fvp *Mpflt, flag int) string { if flag&obj.FmtSharp == 0 { return fvp.Val.Text('b', 0) } // use decimal format for error messages // determine sign f := &fvp.Val var sign string if f.Sign() < 0 { sign = "-" f = new(big.Float).Abs(f) } else if flag&obj.FmtSign != 0 { sign = "+" } // Don't try to convert infinities (will not terminate). if f.IsInf() { return sign + "Inf" } // Use fmt formatting if in float64 range (common case). if x, _ := f.Float64(); !math.IsInf(x, 0) { return fmt.Sprintf("%s%.6g", sign, x) } // Out of float64 range. Do approximate manual to decimal // conversion to avoid precise but possibly slow Float // formatting. The exponent is > 0 since a negative out- // of-range exponent would have underflowed and led to 0. // f = mant * 2**exp var mant big.Float exp := float64(f.MantExp(&mant)) // 0.5 <= mant < 1.0, exp > 0 // approximate float64 mantissa m and decimal exponent d // f ~ m * 10**d m, _ := mant.Float64() // 0.5 <= m < 1.0 d := exp * (math.Ln2 / math.Ln10) // log_10(2) // adjust m for truncated (integer) decimal exponent e e := int64(d) m *= math.Pow(10, d-float64(e)) for m >= 10 { m /= 10 e++ } return fmt.Sprintf("%s%.5fe+%d", sign, m, e) }