コード例 #1
0
ファイル: gsubr.go プロジェクト: klueska/go-akaros
func gclean() {
	for i := 0; i < len(resvd); i++ {
		reg[resvd[i]]--
	}

	for i := x86.REG_AX; i <= x86.REG_DI; i++ {
		if reg[i] != 0 {
			gc.Yyerror("reg %v left allocated at %x", obj.Rconv(i), regpc[i])
		}
	}
	for i := x86.REG_X0; i <= x86.REG_X7; i++ {
		if reg[i] != 0 {
			gc.Yyerror("reg %v left allocated\n", obj.Rconv(i))
		}
	}
}
コード例 #2
0
ファイル: gsubr.go プロジェクト: klueska/go-akaros
func gclean() {
	for i := int(0); i < len(resvd); i++ {
		reg[resvd[i]-arm64.REG_R0]--
	}

	for i := int(0); i < len(reg); i++ {
		if reg[i] != 0 {
			gc.Yyerror("reg %v left allocated, %p\n", obj.Rconv(i+arm64.REG_R0), regpc[i])
		}
	}
}
コード例 #3
0
ファイル: gsubr.go プロジェクト: klueska/go-akaros
func gclean() {
	for i := 0; i < len(resvd); i++ {
		reg[resvd[i]]--
	}

	for i := 0; i < len(reg); i++ {
		if reg[i] != 0 {
			gc.Yyerror("reg %v left allocated\n", obj.Rconv(i))
		}
	}
}
コード例 #4
0
ファイル: gsubr.go プロジェクト: klueska/go-akaros
func gclean() {
	for i := 0; i < len(resvd); i++ {
		reg[resvd[i]]--
	}
	if gc.Nacl {
		reg[x86.REG_BP]--
		reg[x86.REG_R15]--
	} else if obj.Framepointer_enabled != 0 {
		reg[x86.REG_BP]--
	}

	for i := x86.REG_AX; i <= x86.REG_R15; i++ {
		if reg[i] != 0 {
			gc.Yyerror("reg %v left allocated\n", obj.Rconv(i))
		}
	}
	for i := x86.REG_X0; i <= x86.REG_X15; i++ {
		if reg[i] != 0 {
			gc.Yyerror("reg %v left allocated\n", obj.Rconv(i))
		}
	}
}
コード例 #5
0
ファイル: cgen.go プロジェクト: klueska/go-akaros
/*
 * generate:
 *	if(n == true) goto to;
 */
func bgen(n *gc.Node, true_ bool, likely int, to *obj.Prog) {
	if gc.Debug['g'] != 0 {
		gc.Dump("\nbgen", n)
	}

	if n == nil {
		n = gc.Nodbool(true)
	}

	if n.Ninit != nil {
		gc.Genlist(n.Ninit)
	}

	if n.Type == nil {
		gc.Convlit(&n, gc.Types[gc.TBOOL])
		if n.Type == nil {
			return
		}
	}

	et := int(n.Type.Etype)
	if et != gc.TBOOL {
		gc.Yyerror("cgen: bad type %v for %v", gc.Tconv(n.Type, 0), gc.Oconv(int(n.Op), 0))
		gc.Patch(gins(obj.AEND, nil, nil), to)
		return
	}

	var nr *gc.Node

	for n.Op == gc.OCONVNOP {
		n = n.Left
		if n.Ninit != nil {
			gc.Genlist(n.Ninit)
		}
	}

	var nl *gc.Node
	switch n.Op {
	default:
		var n1 gc.Node
		regalloc(&n1, n.Type, nil)
		cgen(n, &n1)
		var n2 gc.Node
		gc.Nodconst(&n2, n.Type, 0)
		gins(optoas(gc.OCMP, n.Type), &n1, &n2)
		a := ppc64.ABNE
		if !true_ {
			a = ppc64.ABEQ
		}
		gc.Patch(gc.Gbranch(a, n.Type, likely), to)
		regfree(&n1)
		return

		// need to ask if it is bool?
	case gc.OLITERAL:
		if !true_ == (n.Val.U.Bval == 0) {
			gc.Patch(gc.Gbranch(ppc64.ABR, nil, likely), to)
		}
		return

	case gc.OANDAND,
		gc.OOROR:
		if (n.Op == gc.OANDAND) == true_ {
			p1 := gc.Gbranch(obj.AJMP, nil, 0)
			p2 := gc.Gbranch(obj.AJMP, nil, 0)
			gc.Patch(p1, gc.Pc)
			bgen(n.Left, !true_, -likely, p2)
			bgen(n.Right, !true_, -likely, p2)
			p1 = gc.Gbranch(obj.AJMP, nil, 0)
			gc.Patch(p1, to)
			gc.Patch(p2, gc.Pc)
		} else {
			bgen(n.Left, true_, likely, to)
			bgen(n.Right, true_, likely, to)
		}

		return

	case gc.OEQ,
		gc.ONE,
		gc.OLT,
		gc.OGT,
		gc.OLE,
		gc.OGE:
		nr = n.Right
		if nr == nil || nr.Type == nil {
			return
		}
		fallthrough

	case gc.ONOT: // unary
		nl = n.Left

		if nl == nil || nl.Type == nil {
			return
		}
	}

	switch n.Op {
	case gc.ONOT:
		bgen(nl, !true_, likely, to)
		return

	case gc.OEQ,
		gc.ONE,
		gc.OLT,
		gc.OGT,
		gc.OLE,
		gc.OGE:
		a := int(n.Op)
		if !true_ {
			if gc.Isfloat[nr.Type.Etype] {
				// brcom is not valid on floats when NaN is involved.
				p1 := gc.Gbranch(ppc64.ABR, nil, 0)

				p2 := gc.Gbranch(ppc64.ABR, nil, 0)
				gc.Patch(p1, gc.Pc)
				ll := n.Ninit // avoid re-genning ninit
				n.Ninit = nil
				bgen(n, true, -likely, p2)
				n.Ninit = ll
				gc.Patch(gc.Gbranch(ppc64.ABR, nil, 0), to)
				gc.Patch(p2, gc.Pc)
				return
			}

			a = gc.Brcom(a)
			true_ = !true_
		}

		// make simplest on right
		if nl.Op == gc.OLITERAL || (nl.Ullman < nr.Ullman && nl.Ullman < gc.UINF) {
			a = gc.Brrev(a)
			r := nl
			nl = nr
			nr = r
		}

		if gc.Isslice(nl.Type) {
			// front end should only leave cmp to literal nil
			if (a != gc.OEQ && a != gc.ONE) || nr.Op != gc.OLITERAL {
				gc.Yyerror("illegal slice comparison")
				break
			}

			a = optoas(a, gc.Types[gc.Tptr])
			var n1 gc.Node
			igen(nl, &n1, nil)
			n1.Xoffset += int64(gc.Array_array)
			n1.Type = gc.Types[gc.Tptr]
			var tmp gc.Node
			gc.Nodconst(&tmp, gc.Types[gc.Tptr], 0)
			var n2 gc.Node
			regalloc(&n2, gc.Types[gc.Tptr], &n1)
			gmove(&n1, &n2)
			gins(optoas(gc.OCMP, gc.Types[gc.Tptr]), &n2, &tmp)
			regfree(&n2)
			gc.Patch(gc.Gbranch(a, gc.Types[gc.Tptr], likely), to)
			regfree(&n1)
			break
		}

		if gc.Isinter(nl.Type) {
			// front end should only leave cmp to literal nil
			if (a != gc.OEQ && a != gc.ONE) || nr.Op != gc.OLITERAL {
				gc.Yyerror("illegal interface comparison")
				break
			}

			a = optoas(a, gc.Types[gc.Tptr])
			var n1 gc.Node
			igen(nl, &n1, nil)
			n1.Type = gc.Types[gc.Tptr]
			var tmp gc.Node
			gc.Nodconst(&tmp, gc.Types[gc.Tptr], 0)
			var n2 gc.Node
			regalloc(&n2, gc.Types[gc.Tptr], &n1)
			gmove(&n1, &n2)
			gins(optoas(gc.OCMP, gc.Types[gc.Tptr]), &n2, &tmp)
			regfree(&n2)
			gc.Patch(gc.Gbranch(a, gc.Types[gc.Tptr], likely), to)
			regfree(&n1)
			break
		}

		if gc.Iscomplex[nl.Type.Etype] {
			gc.Complexbool(a, nl, nr, true_, likely, to)
			break
		}

		var n1 gc.Node
		var n2 gc.Node
		if nr.Ullman >= gc.UINF {
			regalloc(&n1, nl.Type, nil)
			cgen(nl, &n1)

			var tmp gc.Node
			gc.Tempname(&tmp, nl.Type)
			gmove(&n1, &tmp)
			regfree(&n1)

			regalloc(&n2, nr.Type, nil)
			cgen(nr, &n2)

			regalloc(&n1, nl.Type, nil)
			cgen(&tmp, &n1)

			goto cmp
		}

		regalloc(&n1, nl.Type, nil)
		cgen(nl, &n1)

		// TODO(minux): cmpi does accept 16-bit signed immediate as p->to.
		// and cmpli accepts 16-bit unsigned immediate.
		//if(smallintconst(nr)) {
		//	gins(optoas(OCMP, nr->type), &n1, nr);
		//	patch(gbranch(optoas(a, nr->type), nr->type, likely), to);
		//	regfree(&n1);
		//	break;
		//}

		regalloc(&n2, nr.Type, nil)

		cgen(nr, &n2)

	cmp:
		l := &n1
		r := &n2
		gins(optoas(gc.OCMP, nr.Type), l, r)
		if gc.Isfloat[nr.Type.Etype] && (a == gc.OLE || a == gc.OGE) {
			// To get NaN right, must rewrite x <= y into separate x < y or x = y.
			switch a {
			case gc.OLE:
				a = gc.OLT

			case gc.OGE:
				a = gc.OGT
			}

			gc.Patch(gc.Gbranch(optoas(a, nr.Type), nr.Type, likely), to)
			gc.Patch(gc.Gbranch(optoas(gc.OEQ, nr.Type), nr.Type, likely), to)
		} else {
			gc.Patch(gc.Gbranch(optoas(a, nr.Type), nr.Type, likely), to)
		}

		regfree(&n1)
		regfree(&n2)
	}

	return
}
コード例 #6
0
ファイル: gsubr.go プロジェクト: klueska/go-akaros
func anyregalloc() bool {
	var j int

	for i := x86.REG_AX; i <= x86.REG_DI; i++ {
		if reg[i] == 0 {
			goto ok
		}
		for j = 0; j < len(resvd); j++ {
			if resvd[j] == i {
				goto ok
			}
		}
		return true
	ok:
	}

	for i := x86.REG_X0; i <= x86.REG_X7; i++ {
		if reg[i] != 0 {
			return true
		}
	}
	return false
}

/*
 * allocate register of type t, leave in n.
 * if o != N, o is desired fixed register.
 * caller must regfree(n).
 */
func regalloc(n *gc.Node, t *gc.Type, o *gc.Node) {
	if t == nil {
		gc.Fatal("regalloc: t nil")
	}
	et := int(gc.Simtype[t.Etype])

	var i int
	switch et {
	case gc.TINT64,
		gc.TUINT64:
		gc.Fatal("regalloc64")

	case gc.TINT8,
		gc.TUINT8,
		gc.TINT16,
		gc.TUINT16,
		gc.TINT32,
		gc.TUINT32,
		gc.TPTR32,
		gc.TPTR64,
		gc.TBOOL:
		if o != nil && o.Op == gc.OREGISTER {
			i = int(o.Val.U.Reg)
			if i >= x86.REG_AX && i <= x86.REG_DI {
				goto out
			}
		}

		for i = x86.REG_AX; i <= x86.REG_DI; i++ {
			if reg[i] == 0 {
				goto out
			}
		}

		fmt.Printf("registers allocated at\n")
		for i := x86.REG_AX; i <= x86.REG_DI; i++ {
			fmt.Printf("\t%v\t%#x\n", obj.Rconv(i), regpc[i])
		}
		gc.Fatal("out of fixed registers")
		goto err

	case gc.TFLOAT32,
		gc.TFLOAT64:
		if gc.Use_sse == 0 {
			i = x86.REG_F0
			goto out
		}

		if o != nil && o.Op == gc.OREGISTER {
			i = int(o.Val.U.Reg)
			if i >= x86.REG_X0 && i <= x86.REG_X7 {
				goto out
			}
		}

		for i = x86.REG_X0; i <= x86.REG_X7; i++ {
			if reg[i] == 0 {
				goto out
			}
		}
		fmt.Printf("registers allocated at\n")
		for i := x86.REG_X0; i <= x86.REG_X7; i++ {
			fmt.Printf("\t%v\t%#x\n", obj.Rconv(i), regpc[i])
		}
		gc.Fatal("out of floating registers")
	}

	gc.Yyerror("regalloc: unknown type %v", gc.Tconv(t, 0))

err:
	gc.Nodreg(n, t, 0)
	return

out:
	if i == x86.REG_SP {
		fmt.Printf("alloc SP\n")
	}
	if reg[i] == 0 {
		regpc[i] = uint32(obj.Getcallerpc(&n))
		if i == x86.REG_AX || i == x86.REG_CX || i == x86.REG_DX || i == x86.REG_SP {
			gc.Dump("regalloc-o", o)
			gc.Fatal("regalloc %v", obj.Rconv(i))
		}
	}

	reg[i]++
	gc.Nodreg(n, t, i)
}

func regfree(n *gc.Node) {
	if n.Op == gc.ONAME {
		return
	}
	if n.Op != gc.OREGISTER && n.Op != gc.OINDREG {
		gc.Fatal("regfree: not a register")
	}
	i := int(n.Val.U.Reg)
	if i == x86.REG_SP {
		return
	}
	if i < 0 || i >= len(reg) {
		gc.Fatal("regfree: reg out of range")
	}
	if reg[i] <= 0 {
		gc.Fatal("regfree: reg not allocated")
	}
	reg[i]--
	if reg[i] == 0 && (i == x86.REG_AX || i == x86.REG_CX || i == x86.REG_DX || i == x86.REG_SP) {
		gc.Fatal("regfree %v", obj.Rconv(i))
	}
}

/*
 * generate
 *	as $c, reg
 */
func gconreg(as int, c int64, reg int) {
	var n1 gc.Node
	var n2 gc.Node

	gc.Nodconst(&n1, gc.Types[gc.TINT64], c)
	gc.Nodreg(&n2, gc.Types[gc.TINT64], reg)
	gins(as, &n1, &n2)
}

/*
 * swap node contents
 */
func nswap(a *gc.Node, b *gc.Node) {
	t := *a
	*a = *b
	*b = t
}

/*
 * return constant i node.
 * overwritten by next call, but useful in calls to gins.
 */

var ncon_n gc.Node

func ncon(i uint32) *gc.Node {
	if ncon_n.Type == nil {
		gc.Nodconst(&ncon_n, gc.Types[gc.TUINT32], 0)
	}
	gc.Mpmovecfix(ncon_n.Val.U.Xval, int64(i))
	return &ncon_n
}

var sclean [10]gc.Node

var nsclean int

/*
 * n is a 64-bit value.  fill in lo and hi to refer to its 32-bit halves.
 */
func split64(n *gc.Node, lo *gc.Node, hi *gc.Node) {
	if !gc.Is64(n.Type) {
		gc.Fatal("split64 %v", gc.Tconv(n.Type, 0))
	}

	if nsclean >= len(sclean) {
		gc.Fatal("split64 clean")
	}
	sclean[nsclean].Op = gc.OEMPTY
	nsclean++
	switch n.Op {
	default:
		switch n.Op {
		default:
			var n1 gc.Node
			if !dotaddable(n, &n1) {
				igen(n, &n1, nil)
				sclean[nsclean-1] = n1
			}

			n = &n1

		case gc.ONAME:
			if n.Class == gc.PPARAMREF {
				var n1 gc.Node
				cgen(n.Heapaddr, &n1)
				sclean[nsclean-1] = n1
				n = &n1
			}

			// nothing
		case gc.OINDREG:
			break
		}

		*lo = *n
		*hi = *n
		lo.Type = gc.Types[gc.TUINT32]
		if n.Type.Etype == gc.TINT64 {
			hi.Type = gc.Types[gc.TINT32]
		} else {
			hi.Type = gc.Types[gc.TUINT32]
		}
		hi.Xoffset += 4

	case gc.OLITERAL:
		var n1 gc.Node
		gc.Convconst(&n1, n.Type, &n.Val)
		i := gc.Mpgetfix(n1.Val.U.Xval)
		gc.Nodconst(lo, gc.Types[gc.TUINT32], int64(uint32(i)))
		i >>= 32
		if n.Type.Etype == gc.TINT64 {
			gc.Nodconst(hi, gc.Types[gc.TINT32], int64(int32(i)))
		} else {
			gc.Nodconst(hi, gc.Types[gc.TUINT32], int64(uint32(i)))
		}
	}
}

func splitclean() {
	if nsclean <= 0 {
		gc.Fatal("splitclean")
	}
	nsclean--
	if sclean[nsclean].Op != gc.OEMPTY {
		regfree(&sclean[nsclean])
	}
}

/*
 * set up nodes representing fp constants
 */
var zerof gc.Node

var two64f gc.Node

var two63f gc.Node

var bignodes_did int

func bignodes() {
	if bignodes_did != 0 {
		return
	}
	bignodes_did = 1

	two64f = *ncon(0)
	two64f.Type = gc.Types[gc.TFLOAT64]
	two64f.Val.Ctype = gc.CTFLT
	two64f.Val.U.Fval = new(gc.Mpflt)
	gc.Mpmovecflt(two64f.Val.U.Fval, 18446744073709551616.)

	two63f = two64f
	two63f.Val.U.Fval = new(gc.Mpflt)
	gc.Mpmovecflt(two63f.Val.U.Fval, 9223372036854775808.)

	zerof = two64f
	zerof.Val.U.Fval = new(gc.Mpflt)
	gc.Mpmovecflt(zerof.Val.U.Fval, 0)
}

func memname(n *gc.Node, t *gc.Type) {
	gc.Tempname(n, t)
	n.Sym = gc.Lookup("." + n.Sym.Name[1:]) // keep optimizer from registerizing
	n.Orig.Sym = n.Sym
}

func gmove(f *gc.Node, t *gc.Node) {
	if gc.Debug['M'] != 0 {
		fmt.Printf("gmove %v -> %v\n", gc.Nconv(f, 0), gc.Nconv(t, 0))
	}

	ft := gc.Simsimtype(f.Type)
	tt := gc.Simsimtype(t.Type)
	cvt := t.Type

	if gc.Iscomplex[ft] || gc.Iscomplex[tt] {
		gc.Complexmove(f, t)
		return
	}

	if gc.Isfloat[ft] || gc.Isfloat[tt] {
		floatmove(f, t)
		return
	}

	// cannot have two integer memory operands;
	// except 64-bit, which always copies via registers anyway.
	var r1 gc.Node
	var a int
	if gc.Isint[ft] && gc.Isint[tt] && !gc.Is64(f.Type) && !gc.Is64(t.Type) && gc.Ismem(f) && gc.Ismem(t) {
		goto hard
	}

	// convert constant to desired type
	if f.Op == gc.OLITERAL {
		var con gc.Node
		gc.Convconst(&con, t.Type, &f.Val)
		f = &con
		ft = gc.Simsimtype(con.Type)
	}

	// value -> value copy, only one memory operand.
	// figure out the instruction to use.
	// break out of switch for one-instruction gins.
	// goto rdst for "destination must be register".
	// goto hard for "convert to cvt type first".
	// otherwise handle and return.

	switch uint32(ft)<<16 | uint32(tt) {
	default:
		// should not happen
		gc.Fatal("gmove %v -> %v", gc.Nconv(f, 0), gc.Nconv(t, 0))
		return

		/*
		 * integer copy and truncate
		 */
	case gc.TINT8<<16 | gc.TINT8, // same size
		gc.TINT8<<16 | gc.TUINT8,
		gc.TUINT8<<16 | gc.TINT8,
		gc.TUINT8<<16 | gc.TUINT8:
		a = x86.AMOVB

	case gc.TINT16<<16 | gc.TINT8, // truncate
		gc.TUINT16<<16 | gc.TINT8,
		gc.TINT32<<16 | gc.TINT8,
		gc.TUINT32<<16 | gc.TINT8,
		gc.TINT16<<16 | gc.TUINT8,
		gc.TUINT16<<16 | gc.TUINT8,
		gc.TINT32<<16 | gc.TUINT8,
		gc.TUINT32<<16 | gc.TUINT8:
		a = x86.AMOVB

		goto rsrc

	case gc.TINT64<<16 | gc.TINT8, // truncate low word
		gc.TUINT64<<16 | gc.TINT8,
		gc.TINT64<<16 | gc.TUINT8,
		gc.TUINT64<<16 | gc.TUINT8:
		var flo gc.Node
		var fhi gc.Node
		split64(f, &flo, &fhi)

		var r1 gc.Node
		gc.Nodreg(&r1, t.Type, x86.REG_AX)
		gmove(&flo, &r1)
		gins(x86.AMOVB, &r1, t)
		splitclean()
		return

	case gc.TINT16<<16 | gc.TINT16, // same size
		gc.TINT16<<16 | gc.TUINT16,
		gc.TUINT16<<16 | gc.TINT16,
		gc.TUINT16<<16 | gc.TUINT16:
		a = x86.AMOVW

	case gc.TINT32<<16 | gc.TINT16, // truncate
		gc.TUINT32<<16 | gc.TINT16,
		gc.TINT32<<16 | gc.TUINT16,
		gc.TUINT32<<16 | gc.TUINT16:
		a = x86.AMOVW

		goto rsrc

	case gc.TINT64<<16 | gc.TINT16, // truncate low word
		gc.TUINT64<<16 | gc.TINT16,
		gc.TINT64<<16 | gc.TUINT16,
		gc.TUINT64<<16 | gc.TUINT16:
		var flo gc.Node
		var fhi gc.Node
		split64(f, &flo, &fhi)

		var r1 gc.Node
		gc.Nodreg(&r1, t.Type, x86.REG_AX)
		gmove(&flo, &r1)
		gins(x86.AMOVW, &r1, t)
		splitclean()
		return

	case gc.TINT32<<16 | gc.TINT32, // same size
		gc.TINT32<<16 | gc.TUINT32,
		gc.TUINT32<<16 | gc.TINT32,
		gc.TUINT32<<16 | gc.TUINT32:
		a = x86.AMOVL

	case gc.TINT64<<16 | gc.TINT32, // truncate
		gc.TUINT64<<16 | gc.TINT32,
		gc.TINT64<<16 | gc.TUINT32,
		gc.TUINT64<<16 | gc.TUINT32:
		var fhi gc.Node
		var flo gc.Node
		split64(f, &flo, &fhi)

		var r1 gc.Node
		gc.Nodreg(&r1, t.Type, x86.REG_AX)
		gmove(&flo, &r1)
		gins(x86.AMOVL, &r1, t)
		splitclean()
		return

	case gc.TINT64<<16 | gc.TINT64, // same size
		gc.TINT64<<16 | gc.TUINT64,
		gc.TUINT64<<16 | gc.TINT64,
		gc.TUINT64<<16 | gc.TUINT64:
		var fhi gc.Node
		var flo gc.Node
		split64(f, &flo, &fhi)

		var tlo gc.Node
		var thi gc.Node
		split64(t, &tlo, &thi)
		if f.Op == gc.OLITERAL {
			gins(x86.AMOVL, &flo, &tlo)
			gins(x86.AMOVL, &fhi, &thi)
		} else {
			var r1 gc.Node
			gc.Nodreg(&r1, gc.Types[gc.TUINT32], x86.REG_AX)
			var r2 gc.Node
			gc.Nodreg(&r2, gc.Types[gc.TUINT32], x86.REG_DX)
			gins(x86.AMOVL, &flo, &r1)
			gins(x86.AMOVL, &fhi, &r2)
			gins(x86.AMOVL, &r1, &tlo)
			gins(x86.AMOVL, &r2, &thi)
		}

		splitclean()
		splitclean()
		return

		/*
		 * integer up-conversions
		 */
	case gc.TINT8<<16 | gc.TINT16, // sign extend int8
		gc.TINT8<<16 | gc.TUINT16:
		a = x86.AMOVBWSX

		goto rdst

	case gc.TINT8<<16 | gc.TINT32,
		gc.TINT8<<16 | gc.TUINT32:
		a = x86.AMOVBLSX
		goto rdst

	case gc.TINT8<<16 | gc.TINT64, // convert via int32
		gc.TINT8<<16 | gc.TUINT64:
		cvt = gc.Types[gc.TINT32]

		goto hard

	case gc.TUINT8<<16 | gc.TINT16, // zero extend uint8
		gc.TUINT8<<16 | gc.TUINT16:
		a = x86.AMOVBWZX

		goto rdst

	case gc.TUINT8<<16 | gc.TINT32,
		gc.TUINT8<<16 | gc.TUINT32:
		a = x86.AMOVBLZX
		goto rdst

	case gc.TUINT8<<16 | gc.TINT64, // convert via uint32
		gc.TUINT8<<16 | gc.TUINT64:
		cvt = gc.Types[gc.TUINT32]

		goto hard

	case gc.TINT16<<16 | gc.TINT32, // sign extend int16
		gc.TINT16<<16 | gc.TUINT32:
		a = x86.AMOVWLSX

		goto rdst

	case gc.TINT16<<16 | gc.TINT64, // convert via int32
		gc.TINT16<<16 | gc.TUINT64:
		cvt = gc.Types[gc.TINT32]

		goto hard

	case gc.TUINT16<<16 | gc.TINT32, // zero extend uint16
		gc.TUINT16<<16 | gc.TUINT32:
		a = x86.AMOVWLZX

		goto rdst

	case gc.TUINT16<<16 | gc.TINT64, // convert via uint32
		gc.TUINT16<<16 | gc.TUINT64:
		cvt = gc.Types[gc.TUINT32]

		goto hard

	case gc.TINT32<<16 | gc.TINT64, // sign extend int32
		gc.TINT32<<16 | gc.TUINT64:
		var thi gc.Node
		var tlo gc.Node
		split64(t, &tlo, &thi)

		var flo gc.Node
		gc.Nodreg(&flo, tlo.Type, x86.REG_AX)
		var fhi gc.Node
		gc.Nodreg(&fhi, thi.Type, x86.REG_DX)
		gmove(f, &flo)
		gins(x86.ACDQ, nil, nil)
		gins(x86.AMOVL, &flo, &tlo)
		gins(x86.AMOVL, &fhi, &thi)
		splitclean()
		return

	case gc.TUINT32<<16 | gc.TINT64, // zero extend uint32
		gc.TUINT32<<16 | gc.TUINT64:
		var tlo gc.Node
		var thi gc.Node
		split64(t, &tlo, &thi)

		gmove(f, &tlo)
		gins(x86.AMOVL, ncon(0), &thi)
		splitclean()
		return
	}

	gins(a, f, t)
	return

	// requires register source
rsrc:
	regalloc(&r1, f.Type, t)

	gmove(f, &r1)
	gins(a, &r1, t)
	regfree(&r1)
	return

	// requires register destination
rdst:
	{
		regalloc(&r1, t.Type, t)

		gins(a, f, &r1)
		gmove(&r1, t)
		regfree(&r1)
		return
	}

	// requires register intermediate
hard:
	regalloc(&r1, cvt, t)

	gmove(f, &r1)
	gmove(&r1, t)
	regfree(&r1)
	return
}

func floatmove(f *gc.Node, t *gc.Node) {
	var r1 gc.Node

	ft := gc.Simsimtype(f.Type)
	tt := gc.Simsimtype(t.Type)
	cvt := t.Type

	// cannot have two floating point memory operands.
	if gc.Isfloat[ft] && gc.Isfloat[tt] && gc.Ismem(f) && gc.Ismem(t) {
		goto hard
	}

	// convert constant to desired type
	if f.Op == gc.OLITERAL {
		var con gc.Node
		gc.Convconst(&con, t.Type, &f.Val)
		f = &con
		ft = gc.Simsimtype(con.Type)

		// some constants can't move directly to memory.
		if gc.Ismem(t) {
			// float constants come from memory.
			if gc.Isfloat[tt] {
				goto hard
			}
		}
	}

	// value -> value copy, only one memory operand.
	// figure out the instruction to use.
	// break out of switch for one-instruction gins.
	// goto rdst for "destination must be register".
	// goto hard for "convert to cvt type first".
	// otherwise handle and return.

	switch uint32(ft)<<16 | uint32(tt) {
	default:
		if gc.Use_sse != 0 {
			floatmove_sse(f, t)
		} else {
			floatmove_387(f, t)
		}
		return

		// float to very long integer.
	case gc.TFLOAT32<<16 | gc.TINT64,
		gc.TFLOAT64<<16 | gc.TINT64:
		if f.Op == gc.OREGISTER {
			cvt = f.Type
			goto hardmem
		}

		var r1 gc.Node
		gc.Nodreg(&r1, gc.Types[ft], x86.REG_F0)
		if ft == gc.TFLOAT32 {
			gins(x86.AFMOVF, f, &r1)
		} else {
			gins(x86.AFMOVD, f, &r1)
		}

		// set round to zero mode during conversion
		var t1 gc.Node
		memname(&t1, gc.Types[gc.TUINT16])

		var t2 gc.Node
		memname(&t2, gc.Types[gc.TUINT16])
		gins(x86.AFSTCW, nil, &t1)
		gins(x86.AMOVW, ncon(0xf7f), &t2)
		gins(x86.AFLDCW, &t2, nil)
		if tt == gc.TINT16 {
			gins(x86.AFMOVWP, &r1, t)
		} else if tt == gc.TINT32 {
			gins(x86.AFMOVLP, &r1, t)
		} else {
			gins(x86.AFMOVVP, &r1, t)
		}
		gins(x86.AFLDCW, &t1, nil)
		return

	case gc.TFLOAT32<<16 | gc.TUINT64,
		gc.TFLOAT64<<16 | gc.TUINT64:
		if !gc.Ismem(f) {
			cvt = f.Type
			goto hardmem
		}

		bignodes()
		var f0 gc.Node
		gc.Nodreg(&f0, gc.Types[ft], x86.REG_F0)
		var f1 gc.Node
		gc.Nodreg(&f1, gc.Types[ft], x86.REG_F0+1)
		var ax gc.Node
		gc.Nodreg(&ax, gc.Types[gc.TUINT16], x86.REG_AX)

		if ft == gc.TFLOAT32 {
			gins(x86.AFMOVF, f, &f0)
		} else {
			gins(x86.AFMOVD, f, &f0)
		}

		// if 0 > v { answer = 0 }
		gins(x86.AFMOVD, &zerof, &f0)

		gins(x86.AFUCOMIP, &f0, &f1)
		p1 := gc.Gbranch(optoas(gc.OGT, gc.Types[tt]), nil, 0)

		// if 1<<64 <= v { answer = 0 too }
		gins(x86.AFMOVD, &two64f, &f0)

		gins(x86.AFUCOMIP, &f0, &f1)
		p2 := gc.Gbranch(optoas(gc.OGT, gc.Types[tt]), nil, 0)
		gc.Patch(p1, gc.Pc)
		gins(x86.AFMOVVP, &f0, t) // don't care about t, but will pop the stack
		var thi gc.Node
		var tlo gc.Node
		split64(t, &tlo, &thi)
		gins(x86.AMOVL, ncon(0), &tlo)
		gins(x86.AMOVL, ncon(0), &thi)
		splitclean()
		p1 = gc.Gbranch(obj.AJMP, nil, 0)
		gc.Patch(p2, gc.Pc)

		// in range; algorithm is:
		//	if small enough, use native float64 -> int64 conversion.
		//	otherwise, subtract 2^63, convert, and add it back.

		// set round to zero mode during conversion
		var t1 gc.Node
		memname(&t1, gc.Types[gc.TUINT16])

		var t2 gc.Node
		memname(&t2, gc.Types[gc.TUINT16])
		gins(x86.AFSTCW, nil, &t1)
		gins(x86.AMOVW, ncon(0xf7f), &t2)
		gins(x86.AFLDCW, &t2, nil)

		// actual work
		gins(x86.AFMOVD, &two63f, &f0)

		gins(x86.AFUCOMIP, &f0, &f1)
		p2 = gc.Gbranch(optoas(gc.OLE, gc.Types[tt]), nil, 0)
		gins(x86.AFMOVVP, &f0, t)
		p3 := gc.Gbranch(obj.AJMP, nil, 0)
		gc.Patch(p2, gc.Pc)
		gins(x86.AFMOVD, &two63f, &f0)
		gins(x86.AFSUBDP, &f0, &f1)
		gins(x86.AFMOVVP, &f0, t)
		split64(t, &tlo, &thi)
		gins(x86.AXORL, ncon(0x80000000), &thi) // + 2^63
		gc.Patch(p3, gc.Pc)
		splitclean()

		// restore rounding mode
		gins(x86.AFLDCW, &t1, nil)

		gc.Patch(p1, gc.Pc)
		return

		/*
		 * integer to float
		 */
	case gc.TINT64<<16 | gc.TFLOAT32,
		gc.TINT64<<16 | gc.TFLOAT64:
		if t.Op == gc.OREGISTER {
			goto hardmem
		}
		var f0 gc.Node
		gc.Nodreg(&f0, t.Type, x86.REG_F0)
		gins(x86.AFMOVV, f, &f0)
		if tt == gc.TFLOAT32 {
			gins(x86.AFMOVFP, &f0, t)
		} else {
			gins(x86.AFMOVDP, &f0, t)
		}
		return

		// algorithm is:
	//	if small enough, use native int64 -> float64 conversion.
	//	otherwise, halve (rounding to odd?), convert, and double.
	case gc.TUINT64<<16 | gc.TFLOAT32,
		gc.TUINT64<<16 | gc.TFLOAT64:
		var ax gc.Node
		gc.Nodreg(&ax, gc.Types[gc.TUINT32], x86.REG_AX)

		var dx gc.Node
		gc.Nodreg(&dx, gc.Types[gc.TUINT32], x86.REG_DX)
		var cx gc.Node
		gc.Nodreg(&cx, gc.Types[gc.TUINT32], x86.REG_CX)
		var t1 gc.Node
		gc.Tempname(&t1, f.Type)
		var tlo gc.Node
		var thi gc.Node
		split64(&t1, &tlo, &thi)
		gmove(f, &t1)
		gins(x86.ACMPL, &thi, ncon(0))
		p1 := gc.Gbranch(x86.AJLT, nil, 0)

		// native
		var r1 gc.Node
		gc.Nodreg(&r1, gc.Types[tt], x86.REG_F0)

		gins(x86.AFMOVV, &t1, &r1)
		if tt == gc.TFLOAT32 {
			gins(x86.AFMOVFP, &r1, t)
		} else {
			gins(x86.AFMOVDP, &r1, t)
		}
		p2 := gc.Gbranch(obj.AJMP, nil, 0)

		// simulated
		gc.Patch(p1, gc.Pc)

		gmove(&tlo, &ax)
		gmove(&thi, &dx)
		p1 = gins(x86.ASHRL, ncon(1), &ax)
		p1.From.Index = x86.REG_DX // double-width shift DX -> AX
		p1.From.Scale = 0
		gins(x86.AMOVL, ncon(0), &cx)
		gins(x86.ASETCC, nil, &cx)
		gins(x86.AORL, &cx, &ax)
		gins(x86.ASHRL, ncon(1), &dx)
		gmove(&dx, &thi)
		gmove(&ax, &tlo)
		gc.Nodreg(&r1, gc.Types[tt], x86.REG_F0)
		var r2 gc.Node
		gc.Nodreg(&r2, gc.Types[tt], x86.REG_F0+1)
		gins(x86.AFMOVV, &t1, &r1)
		gins(x86.AFMOVD, &r1, &r1)
		gins(x86.AFADDDP, &r1, &r2)
		if tt == gc.TFLOAT32 {
			gins(x86.AFMOVFP, &r1, t)
		} else {
			gins(x86.AFMOVDP, &r1, t)
		}
		gc.Patch(p2, gc.Pc)
		splitclean()
		return
	}

	// requires register intermediate
hard:
	regalloc(&r1, cvt, t)

	gmove(f, &r1)
	gmove(&r1, t)
	regfree(&r1)
	return

	// requires memory intermediate
hardmem:
	gc.Tempname(&r1, cvt)

	gmove(f, &r1)
	gmove(&r1, t)
	return
}

func floatmove_387(f *gc.Node, t *gc.Node) {
	var r1 gc.Node
	var a int

	ft := gc.Simsimtype(f.Type)
	tt := gc.Simsimtype(t.Type)
	cvt := t.Type

	switch uint32(ft)<<16 | uint32(tt) {
	default:
		goto fatal

		/*
		* float to integer
		 */
	case gc.TFLOAT32<<16 | gc.TINT16,
		gc.TFLOAT32<<16 | gc.TINT32,
		gc.TFLOAT32<<16 | gc.TINT64,
		gc.TFLOAT64<<16 | gc.TINT16,
		gc.TFLOAT64<<16 | gc.TINT32,
		gc.TFLOAT64<<16 | gc.TINT64:
		if t.Op == gc.OREGISTER {
			goto hardmem
		}
		var r1 gc.Node
		gc.Nodreg(&r1, gc.Types[ft], x86.REG_F0)
		if f.Op != gc.OREGISTER {
			if ft == gc.TFLOAT32 {
				gins(x86.AFMOVF, f, &r1)
			} else {
				gins(x86.AFMOVD, f, &r1)
			}
		}

		// set round to zero mode during conversion
		var t1 gc.Node
		memname(&t1, gc.Types[gc.TUINT16])

		var t2 gc.Node
		memname(&t2, gc.Types[gc.TUINT16])
		gins(x86.AFSTCW, nil, &t1)
		gins(x86.AMOVW, ncon(0xf7f), &t2)
		gins(x86.AFLDCW, &t2, nil)
		if tt == gc.TINT16 {
			gins(x86.AFMOVWP, &r1, t)
		} else if tt == gc.TINT32 {
			gins(x86.AFMOVLP, &r1, t)
		} else {
			gins(x86.AFMOVVP, &r1, t)
		}
		gins(x86.AFLDCW, &t1, nil)
		return

		// convert via int32.
	case gc.TFLOAT32<<16 | gc.TINT8,
		gc.TFLOAT32<<16 | gc.TUINT16,
		gc.TFLOAT32<<16 | gc.TUINT8,
		gc.TFLOAT64<<16 | gc.TINT8,
		gc.TFLOAT64<<16 | gc.TUINT16,
		gc.TFLOAT64<<16 | gc.TUINT8:
		var t1 gc.Node
		gc.Tempname(&t1, gc.Types[gc.TINT32])

		gmove(f, &t1)
		switch tt {
		default:
			gc.Fatal("gmove %v", gc.Nconv(t, 0))

		case gc.TINT8:
			gins(x86.ACMPL, &t1, ncon(-0x80&(1<<32-1)))
			p1 := gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TINT32]), nil, -1)
			gins(x86.ACMPL, &t1, ncon(0x7f))
			p2 := gc.Gbranch(optoas(gc.OGT, gc.Types[gc.TINT32]), nil, -1)
			p3 := gc.Gbranch(obj.AJMP, nil, 0)
			gc.Patch(p1, gc.Pc)
			gc.Patch(p2, gc.Pc)
			gmove(ncon(-0x80&(1<<32-1)), &t1)
			gc.Patch(p3, gc.Pc)
			gmove(&t1, t)

		case gc.TUINT8:
			gins(x86.ATESTL, ncon(0xffffff00), &t1)
			p1 := gc.Gbranch(x86.AJEQ, nil, +1)
			gins(x86.AMOVL, ncon(0), &t1)
			gc.Patch(p1, gc.Pc)
			gmove(&t1, t)

		case gc.TUINT16:
			gins(x86.ATESTL, ncon(0xffff0000), &t1)
			p1 := gc.Gbranch(x86.AJEQ, nil, +1)
			gins(x86.AMOVL, ncon(0), &t1)
			gc.Patch(p1, gc.Pc)
			gmove(&t1, t)
		}

		return

		// convert via int64.
	case gc.TFLOAT32<<16 | gc.TUINT32,
		gc.TFLOAT64<<16 | gc.TUINT32:
		cvt = gc.Types[gc.TINT64]

		goto hardmem

		/*
		 * integer to float
		 */
	case gc.TINT16<<16 | gc.TFLOAT32,
		gc.TINT16<<16 | gc.TFLOAT64,
		gc.TINT32<<16 | gc.TFLOAT32,
		gc.TINT32<<16 | gc.TFLOAT64,
		gc.TINT64<<16 | gc.TFLOAT32,
		gc.TINT64<<16 | gc.TFLOAT64:
		if t.Op != gc.OREGISTER {
			goto hard
		}
		if f.Op == gc.OREGISTER {
			cvt = f.Type
			goto hardmem
		}

		switch ft {
		case gc.TINT16:
			a = x86.AFMOVW

		case gc.TINT32:
			a = x86.AFMOVL

		default:
			a = x86.AFMOVV
		}

		// convert via int32 memory
	case gc.TINT8<<16 | gc.TFLOAT32,
		gc.TINT8<<16 | gc.TFLOAT64,
		gc.TUINT16<<16 | gc.TFLOAT32,
		gc.TUINT16<<16 | gc.TFLOAT64,
		gc.TUINT8<<16 | gc.TFLOAT32,
		gc.TUINT8<<16 | gc.TFLOAT64:
		cvt = gc.Types[gc.TINT32]

		goto hardmem

		// convert via int64 memory
	case gc.TUINT32<<16 | gc.TFLOAT32,
		gc.TUINT32<<16 | gc.TFLOAT64:
		cvt = gc.Types[gc.TINT64]

		goto hardmem

		// The way the code generator uses floating-point
	// registers, a move from F0 to F0 is intended as a no-op.
	// On the x86, it's not: it pushes a second copy of F0
	// on the floating point stack.  So toss it away here.
	// Also, F0 is the *only* register we ever evaluate
	// into, so we should only see register/register as F0/F0.
	/*
	 * float to float
	 */
	case gc.TFLOAT32<<16 | gc.TFLOAT32,
		gc.TFLOAT64<<16 | gc.TFLOAT64:
		if gc.Ismem(f) && gc.Ismem(t) {
			goto hard
		}
		if f.Op == gc.OREGISTER && t.Op == gc.OREGISTER {
			if f.Val.U.Reg != x86.REG_F0 || t.Val.U.Reg != x86.REG_F0 {
				goto fatal
			}
			return
		}

		a = x86.AFMOVF
		if ft == gc.TFLOAT64 {
			a = x86.AFMOVD
		}
		if gc.Ismem(t) {
			if f.Op != gc.OREGISTER || f.Val.U.Reg != x86.REG_F0 {
				gc.Fatal("gmove %v", gc.Nconv(f, 0))
			}
			a = x86.AFMOVFP
			if ft == gc.TFLOAT64 {
				a = x86.AFMOVDP
			}
		}

	case gc.TFLOAT32<<16 | gc.TFLOAT64:
		if gc.Ismem(f) && gc.Ismem(t) {
			goto hard
		}
		if f.Op == gc.OREGISTER && t.Op == gc.OREGISTER {
			if f.Val.U.Reg != x86.REG_F0 || t.Val.U.Reg != x86.REG_F0 {
				goto fatal
			}
			return
		}

		if f.Op == gc.OREGISTER {
			gins(x86.AFMOVDP, f, t)
		} else {
			gins(x86.AFMOVF, f, t)
		}
		return

	case gc.TFLOAT64<<16 | gc.TFLOAT32:
		if gc.Ismem(f) && gc.Ismem(t) {
			goto hard
		}
		if f.Op == gc.OREGISTER && t.Op == gc.OREGISTER {
			var r1 gc.Node
			gc.Tempname(&r1, gc.Types[gc.TFLOAT32])
			gins(x86.AFMOVFP, f, &r1)
			gins(x86.AFMOVF, &r1, t)
			return
		}

		if f.Op == gc.OREGISTER {
			gins(x86.AFMOVFP, f, t)
		} else {
			gins(x86.AFMOVD, f, t)
		}
		return
	}

	gins(a, f, t)
	return

	// requires register intermediate
hard:
	regalloc(&r1, cvt, t)

	gmove(f, &r1)
	gmove(&r1, t)
	regfree(&r1)
	return

	// requires memory intermediate
hardmem:
	gc.Tempname(&r1, cvt)

	gmove(f, &r1)
	gmove(&r1, t)
	return

	// should not happen
fatal:
	gc.Fatal("gmove %v -> %v", gc.Nconv(f, obj.FmtLong), gc.Nconv(t, obj.FmtLong))

	return
}

func floatmove_sse(f *gc.Node, t *gc.Node) {
	var r1 gc.Node
	var cvt *gc.Type
	var a int

	ft := gc.Simsimtype(f.Type)
	tt := gc.Simsimtype(t.Type)

	switch uint32(ft)<<16 | uint32(tt) {
	// should not happen
	default:
		gc.Fatal("gmove %v -> %v", gc.Nconv(f, 0), gc.Nconv(t, 0))

		return

		// convert via int32.
	/*
	* float to integer
	 */
	case gc.TFLOAT32<<16 | gc.TINT16,
		gc.TFLOAT32<<16 | gc.TINT8,
		gc.TFLOAT32<<16 | gc.TUINT16,
		gc.TFLOAT32<<16 | gc.TUINT8,
		gc.TFLOAT64<<16 | gc.TINT16,
		gc.TFLOAT64<<16 | gc.TINT8,
		gc.TFLOAT64<<16 | gc.TUINT16,
		gc.TFLOAT64<<16 | gc.TUINT8:
		cvt = gc.Types[gc.TINT32]

		goto hard

		// convert via int64.
	case gc.TFLOAT32<<16 | gc.TUINT32,
		gc.TFLOAT64<<16 | gc.TUINT32:
		cvt = gc.Types[gc.TINT64]

		goto hardmem

	case gc.TFLOAT32<<16 | gc.TINT32:
		a = x86.ACVTTSS2SL
		goto rdst

	case gc.TFLOAT64<<16 | gc.TINT32:
		a = x86.ACVTTSD2SL
		goto rdst

		// convert via int32 memory
	/*
	 * integer to float
	 */
	case gc.TINT8<<16 | gc.TFLOAT32,
		gc.TINT8<<16 | gc.TFLOAT64,
		gc.TINT16<<16 | gc.TFLOAT32,
		gc.TINT16<<16 | gc.TFLOAT64,
		gc.TUINT16<<16 | gc.TFLOAT32,
		gc.TUINT16<<16 | gc.TFLOAT64,
		gc.TUINT8<<16 | gc.TFLOAT32,
		gc.TUINT8<<16 | gc.TFLOAT64:
		cvt = gc.Types[gc.TINT32]

		goto hard

		// convert via int64 memory
	case gc.TUINT32<<16 | gc.TFLOAT32,
		gc.TUINT32<<16 | gc.TFLOAT64:
		cvt = gc.Types[gc.TINT64]

		goto hardmem

	case gc.TINT32<<16 | gc.TFLOAT32:
		a = x86.ACVTSL2SS
		goto rdst

	case gc.TINT32<<16 | gc.TFLOAT64:
		a = x86.ACVTSL2SD
		goto rdst

		/*
		 * float to float
		 */
	case gc.TFLOAT32<<16 | gc.TFLOAT32:
		a = x86.AMOVSS

	case gc.TFLOAT64<<16 | gc.TFLOAT64:
		a = x86.AMOVSD

	case gc.TFLOAT32<<16 | gc.TFLOAT64:
		a = x86.ACVTSS2SD
		goto rdst

	case gc.TFLOAT64<<16 | gc.TFLOAT32:
		a = x86.ACVTSD2SS
		goto rdst
	}

	gins(a, f, t)
	return

	// requires register intermediate
hard:
	regalloc(&r1, cvt, t)

	gmove(f, &r1)
	gmove(&r1, t)
	regfree(&r1)
	return

	// requires memory intermediate
hardmem:
	gc.Tempname(&r1, cvt)

	gmove(f, &r1)
	gmove(&r1, t)
	return

	// requires register destination
rdst:
	regalloc(&r1, t.Type, t)

	gins(a, f, &r1)
	gmove(&r1, t)
	regfree(&r1)
	return
}

func samaddr(f *gc.Node, t *gc.Node) bool {
	if f.Op != t.Op {
		return false
	}

	switch f.Op {
	case gc.OREGISTER:
		if f.Val.U.Reg != t.Val.U.Reg {
			break
		}
		return true
	}

	return false
}

/*
 * generate one instruction:
 *	as f, t
 */
func gins(as int, f *gc.Node, t *gc.Node) *obj.Prog {
	if as == x86.AFMOVF && f != nil && f.Op == gc.OREGISTER && t != nil && t.Op == gc.OREGISTER {
		gc.Fatal("gins MOVF reg, reg")
	}
	if as == x86.ACVTSD2SS && f != nil && f.Op == gc.OLITERAL {
		gc.Fatal("gins CVTSD2SS const")
	}
	if as == x86.AMOVSD && t != nil && t.Op == gc.OREGISTER && t.Val.U.Reg == x86.REG_F0 {
		gc.Fatal("gins MOVSD into F0")
	}

	switch as {
	case x86.AMOVB,
		x86.AMOVW,
		x86.AMOVL:
		if f != nil && t != nil && samaddr(f, t) {
			return nil
		}

	case x86.ALEAL:
		if f != nil && gc.Isconst(f, gc.CTNIL) {
			gc.Fatal("gins LEAL nil %v", gc.Tconv(f.Type, 0))
		}
	}

	var af obj.Addr
	var at obj.Addr
	if f != nil {
		af = gc.Naddr(f)
	}
	if t != nil {
		at = gc.Naddr(t)
	}
	p := gc.Prog(as)
	if f != nil {
		p.From = af
	}
	if t != nil {
		p.To = at
	}
	if gc.Debug['g'] != 0 {
		fmt.Printf("%v\n", p)
	}

	w := 0
	switch as {
	case x86.AMOVB:
		w = 1

	case x86.AMOVW:
		w = 2

	case x86.AMOVL:
		w = 4
	}

	if true && w != 0 && f != nil && (af.Width > int64(w) || at.Width > int64(w)) {
		gc.Dump("bad width from:", f)
		gc.Dump("bad width to:", t)
		gc.Fatal("bad width: %v (%d, %d)\n", p, af.Width, at.Width)
	}

	if p.To.Type == obj.TYPE_ADDR && w > 0 {
		gc.Fatal("bad use of addr: %v", p)
	}

	return p
}

func dotaddable(n *gc.Node, n1 *gc.Node) bool {
	if n.Op != gc.ODOT {
		return false
	}

	var oary [10]int64
	var nn *gc.Node
	o := gc.Dotoffset(n, oary[:], &nn)
	if nn != nil && nn.Addable != 0 && o == 1 && oary[0] >= 0 {
		*n1 = *nn
		n1.Type = n.Type
		n1.Xoffset += oary[0]
		return true
	}

	return false
}

func sudoclean() {
}

func sudoaddable(as int, n *gc.Node, a *obj.Addr) bool {
	*a = obj.Addr{}
	return false
}
コード例 #7
0
ファイル: gsubr.go プロジェクト: klueska/go-akaros
func anyregalloc() bool {
	var j int

	for i := 0; i < len(reg); i++ {
		if reg[i] == 0 {
			goto ok
		}
		for j = 0; j < len(resvd); j++ {
			if resvd[j] == i {
				goto ok
			}
		}
		return true
	ok:
	}

	return false
}

var regpc [REGALLOC_FMAX + 1]uint32

/*
 * allocate register of type t, leave in n.
 * if o != N, o is desired fixed register.
 * caller must regfree(n).
 */
func regalloc(n *gc.Node, t *gc.Type, o *gc.Node) {
	if false && gc.Debug['r'] != 0 {
		fixfree := 0
		for i := REGALLOC_R0; i <= REGALLOC_RMAX; i++ {
			if reg[i] == 0 {
				fixfree++
			}
		}
		floatfree := 0
		for i := REGALLOC_F0; i <= REGALLOC_FMAX; i++ {
			if reg[i] == 0 {
				floatfree++
			}
		}
		fmt.Printf("regalloc fix %d float %d\n", fixfree, floatfree)
	}

	if t == nil {
		gc.Fatal("regalloc: t nil")
	}
	et := int(gc.Simtype[t.Etype])
	if gc.Is64(t) {
		gc.Fatal("regalloc: 64 bit type %v")
	}

	var i int
	switch et {
	case gc.TINT8,
		gc.TUINT8,
		gc.TINT16,
		gc.TUINT16,
		gc.TINT32,
		gc.TUINT32,
		gc.TPTR32,
		gc.TBOOL:
		if o != nil && o.Op == gc.OREGISTER {
			i = int(o.Val.U.Reg)
			if i >= REGALLOC_R0 && i <= REGALLOC_RMAX {
				goto out
			}
		}

		for i = REGALLOC_R0; i <= REGALLOC_RMAX; i++ {
			if reg[i] == 0 {
				regpc[i] = uint32(obj.Getcallerpc(&n))
				goto out
			}
		}

		fmt.Printf("registers allocated at\n")
		for i := REGALLOC_R0; i <= REGALLOC_RMAX; i++ {
			fmt.Printf("%d %p\n", i, regpc[i])
		}
		gc.Fatal("out of fixed registers")
		goto err

	case gc.TFLOAT32,
		gc.TFLOAT64:
		if o != nil && o.Op == gc.OREGISTER {
			i = int(o.Val.U.Reg)
			if i >= REGALLOC_F0 && i <= REGALLOC_FMAX {
				goto out
			}
		}

		for i = REGALLOC_F0; i <= REGALLOC_FMAX; i++ {
			if reg[i] == 0 {
				goto out
			}
		}
		gc.Fatal("out of floating point registers")
		goto err

	case gc.TCOMPLEX64,
		gc.TCOMPLEX128:
		gc.Tempname(n, t)
		return
	}

	gc.Yyerror("regalloc: unknown type %v", gc.Tconv(t, 0))

err:
	gc.Nodreg(n, t, arm.REG_R0)
	return

out:
	reg[i]++
	gc.Nodreg(n, t, i)
}

func regfree(n *gc.Node) {
	if false && gc.Debug['r'] != 0 {
		fixfree := 0
		for i := REGALLOC_R0; i <= REGALLOC_RMAX; i++ {
			if reg[i] == 0 {
				fixfree++
			}
		}
		floatfree := 0
		for i := REGALLOC_F0; i <= REGALLOC_FMAX; i++ {
			if reg[i] == 0 {
				floatfree++
			}
		}
		fmt.Printf("regalloc fix %d float %d\n", fixfree, floatfree)
	}

	if n.Op == gc.ONAME {
		return
	}
	if n.Op != gc.OREGISTER && n.Op != gc.OINDREG {
		gc.Fatal("regfree: not a register")
	}
	i := int(n.Val.U.Reg)
	if i == arm.REGSP {
		return
	}
	if i < 0 || i >= len(reg) || i >= len(regpc) {
		gc.Fatal("regfree: reg out of range")
	}
	if reg[i] <= 0 {
		gc.Fatal("regfree: reg %v not allocated", obj.Rconv(i))
	}
	reg[i]--
	if reg[i] == 0 {
		regpc[i] = 0
	}
}

/*
 * return constant i node.
 * overwritten by next call, but useful in calls to gins.
 */

var ncon_n gc.Node

func ncon(i uint32) *gc.Node {
	if ncon_n.Type == nil {
		gc.Nodconst(&ncon_n, gc.Types[gc.TUINT32], 0)
	}
	gc.Mpmovecfix(ncon_n.Val.U.Xval, int64(i))
	return &ncon_n
}

var sclean [10]gc.Node

var nsclean int

/*
 * n is a 64-bit value.  fill in lo and hi to refer to its 32-bit halves.
 */
func split64(n *gc.Node, lo *gc.Node, hi *gc.Node) {
	if !gc.Is64(n.Type) {
		gc.Fatal("split64 %v", gc.Tconv(n.Type, 0))
	}

	if nsclean >= len(sclean) {
		gc.Fatal("split64 clean")
	}
	sclean[nsclean].Op = gc.OEMPTY
	nsclean++
	switch n.Op {
	default:
		switch n.Op {
		default:
			var n1 gc.Node
			if !dotaddable(n, &n1) {
				igen(n, &n1, nil)
				sclean[nsclean-1] = n1
			}

			n = &n1

		case gc.ONAME:
			if n.Class == gc.PPARAMREF {
				var n1 gc.Node
				cgen(n.Heapaddr, &n1)
				sclean[nsclean-1] = n1
				n = &n1
			}

			// nothing
		case gc.OINDREG:
			break
		}

		*lo = *n
		*hi = *n
		lo.Type = gc.Types[gc.TUINT32]
		if n.Type.Etype == gc.TINT64 {
			hi.Type = gc.Types[gc.TINT32]
		} else {
			hi.Type = gc.Types[gc.TUINT32]
		}
		hi.Xoffset += 4

	case gc.OLITERAL:
		var n1 gc.Node
		gc.Convconst(&n1, n.Type, &n.Val)
		i := gc.Mpgetfix(n1.Val.U.Xval)
		gc.Nodconst(lo, gc.Types[gc.TUINT32], int64(uint32(i)))
		i >>= 32
		if n.Type.Etype == gc.TINT64 {
			gc.Nodconst(hi, gc.Types[gc.TINT32], int64(int32(i)))
		} else {
			gc.Nodconst(hi, gc.Types[gc.TUINT32], int64(uint32(i)))
		}
	}
}

func splitclean() {
	if nsclean <= 0 {
		gc.Fatal("splitclean")
	}
	nsclean--
	if sclean[nsclean].Op != gc.OEMPTY {
		regfree(&sclean[nsclean])
	}
}

func gmove(f *gc.Node, t *gc.Node) {
	if gc.Debug['M'] != 0 {
		fmt.Printf("gmove %v -> %v\n", gc.Nconv(f, 0), gc.Nconv(t, 0))
	}

	ft := gc.Simsimtype(f.Type)
	tt := gc.Simsimtype(t.Type)
	cvt := t.Type

	if gc.Iscomplex[ft] || gc.Iscomplex[tt] {
		gc.Complexmove(f, t)
		return
	}

	// cannot have two memory operands;
	// except 64-bit, which always copies via registers anyway.
	var a int
	var r1 gc.Node
	if !gc.Is64(f.Type) && !gc.Is64(t.Type) && gc.Ismem(f) && gc.Ismem(t) {
		goto hard
	}

	// convert constant to desired type
	if f.Op == gc.OLITERAL {
		var con gc.Node
		switch tt {
		default:
			gc.Convconst(&con, t.Type, &f.Val)

		case gc.TINT16,
			gc.TINT8:
			var con gc.Node
			gc.Convconst(&con, gc.Types[gc.TINT32], &f.Val)
			var r1 gc.Node
			regalloc(&r1, con.Type, t)
			gins(arm.AMOVW, &con, &r1)
			gmove(&r1, t)
			regfree(&r1)
			return

		case gc.TUINT16,
			gc.TUINT8:
			var con gc.Node
			gc.Convconst(&con, gc.Types[gc.TUINT32], &f.Val)
			var r1 gc.Node
			regalloc(&r1, con.Type, t)
			gins(arm.AMOVW, &con, &r1)
			gmove(&r1, t)
			regfree(&r1)
			return
		}

		f = &con
		ft = gc.Simsimtype(con.Type)

		// constants can't move directly to memory
		if gc.Ismem(t) && !gc.Is64(t.Type) {
			goto hard
		}
	}

	// value -> value copy, only one memory operand.
	// figure out the instruction to use.
	// break out of switch for one-instruction gins.
	// goto rdst for "destination must be register".
	// goto hard for "convert to cvt type first".
	// otherwise handle and return.

	switch uint32(ft)<<16 | uint32(tt) {
	default:
		// should not happen
		gc.Fatal("gmove %v -> %v", gc.Nconv(f, 0), gc.Nconv(t, 0))
		return

		/*
		 * integer copy and truncate
		 */
	case gc.TINT8<<16 | gc.TINT8: // same size
		if !gc.Ismem(f) {
			a = arm.AMOVB
			break
		}
		fallthrough

	case gc.TUINT8<<16 | gc.TINT8,
		gc.TINT16<<16 | gc.TINT8, // truncate
		gc.TUINT16<<16 | gc.TINT8,
		gc.TINT32<<16 | gc.TINT8,
		gc.TUINT32<<16 | gc.TINT8:
		a = arm.AMOVBS

	case gc.TUINT8<<16 | gc.TUINT8:
		if !gc.Ismem(f) {
			a = arm.AMOVB
			break
		}
		fallthrough

	case gc.TINT8<<16 | gc.TUINT8,
		gc.TINT16<<16 | gc.TUINT8,
		gc.TUINT16<<16 | gc.TUINT8,
		gc.TINT32<<16 | gc.TUINT8,
		gc.TUINT32<<16 | gc.TUINT8:
		a = arm.AMOVBU

	case gc.TINT64<<16 | gc.TINT8, // truncate low word
		gc.TUINT64<<16 | gc.TINT8:
		a = arm.AMOVBS

		goto trunc64

	case gc.TINT64<<16 | gc.TUINT8,
		gc.TUINT64<<16 | gc.TUINT8:
		a = arm.AMOVBU
		goto trunc64

	case gc.TINT16<<16 | gc.TINT16: // same size
		if !gc.Ismem(f) {
			a = arm.AMOVH
			break
		}
		fallthrough

	case gc.TUINT16<<16 | gc.TINT16,
		gc.TINT32<<16 | gc.TINT16, // truncate
		gc.TUINT32<<16 | gc.TINT16:
		a = arm.AMOVHS

	case gc.TUINT16<<16 | gc.TUINT16:
		if !gc.Ismem(f) {
			a = arm.AMOVH
			break
		}
		fallthrough

	case gc.TINT16<<16 | gc.TUINT16,
		gc.TINT32<<16 | gc.TUINT16,
		gc.TUINT32<<16 | gc.TUINT16:
		a = arm.AMOVHU

	case gc.TINT64<<16 | gc.TINT16, // truncate low word
		gc.TUINT64<<16 | gc.TINT16:
		a = arm.AMOVHS

		goto trunc64

	case gc.TINT64<<16 | gc.TUINT16,
		gc.TUINT64<<16 | gc.TUINT16:
		a = arm.AMOVHU
		goto trunc64

	case gc.TINT32<<16 | gc.TINT32, // same size
		gc.TINT32<<16 | gc.TUINT32,
		gc.TUINT32<<16 | gc.TINT32,
		gc.TUINT32<<16 | gc.TUINT32:
		a = arm.AMOVW

	case gc.TINT64<<16 | gc.TINT32, // truncate
		gc.TUINT64<<16 | gc.TINT32,
		gc.TINT64<<16 | gc.TUINT32,
		gc.TUINT64<<16 | gc.TUINT32:
		var flo gc.Node
		var fhi gc.Node
		split64(f, &flo, &fhi)

		var r1 gc.Node
		regalloc(&r1, t.Type, nil)
		gins(arm.AMOVW, &flo, &r1)
		gins(arm.AMOVW, &r1, t)
		regfree(&r1)
		splitclean()
		return

	case gc.TINT64<<16 | gc.TINT64, // same size
		gc.TINT64<<16 | gc.TUINT64,
		gc.TUINT64<<16 | gc.TINT64,
		gc.TUINT64<<16 | gc.TUINT64:
		var fhi gc.Node
		var flo gc.Node
		split64(f, &flo, &fhi)

		var tlo gc.Node
		var thi gc.Node
		split64(t, &tlo, &thi)
		var r1 gc.Node
		regalloc(&r1, flo.Type, nil)
		var r2 gc.Node
		regalloc(&r2, fhi.Type, nil)
		gins(arm.AMOVW, &flo, &r1)
		gins(arm.AMOVW, &fhi, &r2)
		gins(arm.AMOVW, &r1, &tlo)
		gins(arm.AMOVW, &r2, &thi)
		regfree(&r1)
		regfree(&r2)
		splitclean()
		splitclean()
		return

		/*
		 * integer up-conversions
		 */
	case gc.TINT8<<16 | gc.TINT16, // sign extend int8
		gc.TINT8<<16 | gc.TUINT16,
		gc.TINT8<<16 | gc.TINT32,
		gc.TINT8<<16 | gc.TUINT32:
		a = arm.AMOVBS

		goto rdst

	case gc.TINT8<<16 | gc.TINT64, // convert via int32
		gc.TINT8<<16 | gc.TUINT64:
		cvt = gc.Types[gc.TINT32]

		goto hard

	case gc.TUINT8<<16 | gc.TINT16, // zero extend uint8
		gc.TUINT8<<16 | gc.TUINT16,
		gc.TUINT8<<16 | gc.TINT32,
		gc.TUINT8<<16 | gc.TUINT32:
		a = arm.AMOVBU

		goto rdst

	case gc.TUINT8<<16 | gc.TINT64, // convert via uint32
		gc.TUINT8<<16 | gc.TUINT64:
		cvt = gc.Types[gc.TUINT32]

		goto hard

	case gc.TINT16<<16 | gc.TINT32, // sign extend int16
		gc.TINT16<<16 | gc.TUINT32:
		a = arm.AMOVHS

		goto rdst

	case gc.TINT16<<16 | gc.TINT64, // convert via int32
		gc.TINT16<<16 | gc.TUINT64:
		cvt = gc.Types[gc.TINT32]

		goto hard

	case gc.TUINT16<<16 | gc.TINT32, // zero extend uint16
		gc.TUINT16<<16 | gc.TUINT32:
		a = arm.AMOVHU

		goto rdst

	case gc.TUINT16<<16 | gc.TINT64, // convert via uint32
		gc.TUINT16<<16 | gc.TUINT64:
		cvt = gc.Types[gc.TUINT32]

		goto hard

	case gc.TINT32<<16 | gc.TINT64, // sign extend int32
		gc.TINT32<<16 | gc.TUINT64:
		var tlo gc.Node
		var thi gc.Node
		split64(t, &tlo, &thi)

		var r1 gc.Node
		regalloc(&r1, tlo.Type, nil)
		var r2 gc.Node
		regalloc(&r2, thi.Type, nil)
		gmove(f, &r1)
		p1 := gins(arm.AMOVW, &r1, &r2)
		p1.From.Type = obj.TYPE_SHIFT
		p1.From.Offset = 2<<5 | 31<<7 | int64(r1.Val.U.Reg)&15 // r1->31
		p1.From.Reg = 0

		//print("gmove: %P\n", p1);
		gins(arm.AMOVW, &r1, &tlo)

		gins(arm.AMOVW, &r2, &thi)
		regfree(&r1)
		regfree(&r2)
		splitclean()
		return

	case gc.TUINT32<<16 | gc.TINT64, // zero extend uint32
		gc.TUINT32<<16 | gc.TUINT64:
		var thi gc.Node
		var tlo gc.Node
		split64(t, &tlo, &thi)

		gmove(f, &tlo)
		var r1 gc.Node
		regalloc(&r1, thi.Type, nil)
		gins(arm.AMOVW, ncon(0), &r1)
		gins(arm.AMOVW, &r1, &thi)
		regfree(&r1)
		splitclean()
		return

		//	case CASE(TFLOAT64, TUINT64):
	/*
	* float to integer
	 */
	case gc.TFLOAT32<<16 | gc.TINT8,
		gc.TFLOAT32<<16 | gc.TUINT8,
		gc.TFLOAT32<<16 | gc.TINT16,
		gc.TFLOAT32<<16 | gc.TUINT16,
		gc.TFLOAT32<<16 | gc.TINT32,
		gc.TFLOAT32<<16 | gc.TUINT32,

		//	case CASE(TFLOAT32, TUINT64):

		gc.TFLOAT64<<16 | gc.TINT8,
		gc.TFLOAT64<<16 | gc.TUINT8,
		gc.TFLOAT64<<16 | gc.TINT16,
		gc.TFLOAT64<<16 | gc.TUINT16,
		gc.TFLOAT64<<16 | gc.TINT32,
		gc.TFLOAT64<<16 | gc.TUINT32:
		fa := arm.AMOVF

		a := arm.AMOVFW
		if ft == gc.TFLOAT64 {
			fa = arm.AMOVD
			a = arm.AMOVDW
		}

		ta := arm.AMOVW
		switch tt {
		case gc.TINT8:
			ta = arm.AMOVBS

		case gc.TUINT8:
			ta = arm.AMOVBU

		case gc.TINT16:
			ta = arm.AMOVHS

		case gc.TUINT16:
			ta = arm.AMOVHU
		}

		var r1 gc.Node
		regalloc(&r1, gc.Types[ft], f)
		var r2 gc.Node
		regalloc(&r2, gc.Types[tt], t)
		gins(fa, f, &r1)        // load to fpu
		p1 := gins(a, &r1, &r1) // convert to w
		switch tt {
		case gc.TUINT8,
			gc.TUINT16,
			gc.TUINT32:
			p1.Scond |= arm.C_UBIT
		}

		gins(arm.AMOVW, &r1, &r2) // copy to cpu
		gins(ta, &r2, t)          // store
		regfree(&r1)
		regfree(&r2)
		return

		/*
		 * integer to float
		 */
	case gc.TINT8<<16 | gc.TFLOAT32,
		gc.TUINT8<<16 | gc.TFLOAT32,
		gc.TINT16<<16 | gc.TFLOAT32,
		gc.TUINT16<<16 | gc.TFLOAT32,
		gc.TINT32<<16 | gc.TFLOAT32,
		gc.TUINT32<<16 | gc.TFLOAT32,
		gc.TINT8<<16 | gc.TFLOAT64,
		gc.TUINT8<<16 | gc.TFLOAT64,
		gc.TINT16<<16 | gc.TFLOAT64,
		gc.TUINT16<<16 | gc.TFLOAT64,
		gc.TINT32<<16 | gc.TFLOAT64,
		gc.TUINT32<<16 | gc.TFLOAT64:
		fa := arm.AMOVW

		switch ft {
		case gc.TINT8:
			fa = arm.AMOVBS

		case gc.TUINT8:
			fa = arm.AMOVBU

		case gc.TINT16:
			fa = arm.AMOVHS

		case gc.TUINT16:
			fa = arm.AMOVHU
		}

		a := arm.AMOVWF
		ta := arm.AMOVF
		if tt == gc.TFLOAT64 {
			a = arm.AMOVWD
			ta = arm.AMOVD
		}

		var r1 gc.Node
		regalloc(&r1, gc.Types[ft], f)
		var r2 gc.Node
		regalloc(&r2, gc.Types[tt], t)
		gins(fa, f, &r1)          // load to cpu
		gins(arm.AMOVW, &r1, &r2) // copy to fpu
		p1 := gins(a, &r2, &r2)   // convert
		switch ft {
		case gc.TUINT8,
			gc.TUINT16,
			gc.TUINT32:
			p1.Scond |= arm.C_UBIT
		}

		gins(ta, &r2, t) // store
		regfree(&r1)
		regfree(&r2)
		return

	case gc.TUINT64<<16 | gc.TFLOAT32,
		gc.TUINT64<<16 | gc.TFLOAT64:
		gc.Fatal("gmove UINT64, TFLOAT not implemented")
		return

		/*
		 * float to float
		 */
	case gc.TFLOAT32<<16 | gc.TFLOAT32:
		a = arm.AMOVF

	case gc.TFLOAT64<<16 | gc.TFLOAT64:
		a = arm.AMOVD

	case gc.TFLOAT32<<16 | gc.TFLOAT64:
		var r1 gc.Node
		regalloc(&r1, gc.Types[gc.TFLOAT64], t)
		gins(arm.AMOVF, f, &r1)
		gins(arm.AMOVFD, &r1, &r1)
		gins(arm.AMOVD, &r1, t)
		regfree(&r1)
		return

	case gc.TFLOAT64<<16 | gc.TFLOAT32:
		var r1 gc.Node
		regalloc(&r1, gc.Types[gc.TFLOAT64], t)
		gins(arm.AMOVD, f, &r1)
		gins(arm.AMOVDF, &r1, &r1)
		gins(arm.AMOVF, &r1, t)
		regfree(&r1)
		return
	}

	gins(a, f, t)
	return

	// TODO(kaib): we almost always require a register dest anyway, this can probably be
	// removed.
	// requires register destination
rdst:
	{
		regalloc(&r1, t.Type, t)

		gins(a, f, &r1)
		gmove(&r1, t)
		regfree(&r1)
		return
	}

	// requires register intermediate
hard:
	regalloc(&r1, cvt, t)

	gmove(f, &r1)
	gmove(&r1, t)
	regfree(&r1)
	return

	// truncate 64 bit integer
trunc64:
	var fhi gc.Node
	var flo gc.Node
	split64(f, &flo, &fhi)

	regalloc(&r1, t.Type, nil)
	gins(a, &flo, &r1)
	gins(a, &r1, t)
	regfree(&r1)
	splitclean()
	return
}

func samaddr(f *gc.Node, t *gc.Node) bool {
	if f.Op != t.Op {
		return false
	}

	switch f.Op {
	case gc.OREGISTER:
		if f.Val.U.Reg != t.Val.U.Reg {
			break
		}
		return true
	}

	return false
}

/*
 * generate one instruction:
 *	as f, t
 */
func gins(as int, f *gc.Node, t *gc.Node) *obj.Prog {
	//	Node nod;
	//	int32 v;

	if f != nil && f.Op == gc.OINDEX {
		gc.Fatal("gins OINDEX not implemented")
	}

	//		regalloc(&nod, &regnode, Z);
	//		v = constnode.vconst;
	//		cgen(f->right, &nod);
	//		constnode.vconst = v;
	//		idx.reg = nod.reg;
	//		regfree(&nod);
	if t != nil && t.Op == gc.OINDEX {
		gc.Fatal("gins OINDEX not implemented")
	}

	//		regalloc(&nod, &regnode, Z);
	//		v = constnode.vconst;
	//		cgen(t->right, &nod);
	//		constnode.vconst = v;
	//		idx.reg = nod.reg;
	//		regfree(&nod);
	var af obj.Addr

	var at obj.Addr
	if f != nil {
		af = gc.Naddr(f)
	}
	if t != nil {
		at = gc.Naddr(t)
	}
	p := gc.Prog(as)
	if f != nil {
		p.From = af
	}
	if t != nil {
		p.To = at
	}
	if gc.Debug['g'] != 0 {
		fmt.Printf("%v\n", p)
	}
	return p
}

/*
 * insert n into reg slot of p
 */
func raddr(n *gc.Node, p *obj.Prog) {
	var a obj.Addr

	a = gc.Naddr(n)
	if a.Type != obj.TYPE_REG {
		if n != nil {
			gc.Fatal("bad in raddr: %v", gc.Oconv(int(n.Op), 0))
		} else {
			gc.Fatal("bad in raddr: <null>")
		}
		p.Reg = 0
	} else {
		p.Reg = a.Reg
	}
}

/* generate a comparison
TODO(kaib): one of the args can actually be a small constant. relax the constraint and fix call sites.
*/
func gcmp(as int, lhs *gc.Node, rhs *gc.Node) *obj.Prog {
	if lhs.Op != gc.OREGISTER {
		gc.Fatal("bad operands to gcmp: %v %v", gc.Oconv(int(lhs.Op), 0), gc.Oconv(int(rhs.Op), 0))
	}

	p := gins(as, rhs, nil)
	raddr(lhs, p)
	return p
}

/* generate a constant shift
 * arm encodes a shift by 32 as 0, thus asking for 0 shift is illegal.
 */
func gshift(as int, lhs *gc.Node, stype int32, sval int32, rhs *gc.Node) *obj.Prog {
	if sval <= 0 || sval > 32 {
		gc.Fatal("bad shift value: %d", sval)
	}

	sval = sval & 0x1f

	p := gins(as, nil, rhs)
	p.From.Type = obj.TYPE_SHIFT
	p.From.Offset = int64(stype) | int64(sval)<<7 | int64(lhs.Val.U.Reg)&15
	return p
}

/* generate a register shift
 */
func gregshift(as int, lhs *gc.Node, stype int32, reg *gc.Node, rhs *gc.Node) *obj.Prog {
	p := gins(as, nil, rhs)
	p.From.Type = obj.TYPE_SHIFT
	p.From.Offset = int64(stype) | (int64(reg.Val.U.Reg)&15)<<8 | 1<<4 | int64(lhs.Val.U.Reg)&15
	return p
}

/*
 * return Axxx for Oxxx on type t.
 */
func optoas(op int, t *gc.Type) int {
	if t == nil {
		gc.Fatal("optoas: t is nil")
	}

	a := obj.AXXX
	switch uint32(op)<<16 | uint32(gc.Simtype[t.Etype]) {
	default:
		gc.Fatal("optoas: no entry %v-%v etype %v simtype %v", gc.Oconv(int(op), 0), gc.Tconv(t, 0), gc.Tconv(gc.Types[t.Etype], 0), gc.Tconv(gc.Types[gc.Simtype[t.Etype]], 0))

		/*	case CASE(OADDR, TPTR32):
				a = ALEAL;
				break;

			case CASE(OADDR, TPTR64):
				a = ALEAQ;
				break;
		*/
	// TODO(kaib): make sure the conditional branches work on all edge cases
	case gc.OEQ<<16 | gc.TBOOL,
		gc.OEQ<<16 | gc.TINT8,
		gc.OEQ<<16 | gc.TUINT8,
		gc.OEQ<<16 | gc.TINT16,
		gc.OEQ<<16 | gc.TUINT16,
		gc.OEQ<<16 | gc.TINT32,
		gc.OEQ<<16 | gc.TUINT32,
		gc.OEQ<<16 | gc.TINT64,
		gc.OEQ<<16 | gc.TUINT64,
		gc.OEQ<<16 | gc.TPTR32,
		gc.OEQ<<16 | gc.TPTR64,
		gc.OEQ<<16 | gc.TFLOAT32,
		gc.OEQ<<16 | gc.TFLOAT64:
		a = arm.ABEQ

	case gc.ONE<<16 | gc.TBOOL,
		gc.ONE<<16 | gc.TINT8,
		gc.ONE<<16 | gc.TUINT8,
		gc.ONE<<16 | gc.TINT16,
		gc.ONE<<16 | gc.TUINT16,
		gc.ONE<<16 | gc.TINT32,
		gc.ONE<<16 | gc.TUINT32,
		gc.ONE<<16 | gc.TINT64,
		gc.ONE<<16 | gc.TUINT64,
		gc.ONE<<16 | gc.TPTR32,
		gc.ONE<<16 | gc.TPTR64,
		gc.ONE<<16 | gc.TFLOAT32,
		gc.ONE<<16 | gc.TFLOAT64:
		a = arm.ABNE

	case gc.OLT<<16 | gc.TINT8,
		gc.OLT<<16 | gc.TINT16,
		gc.OLT<<16 | gc.TINT32,
		gc.OLT<<16 | gc.TINT64,
		gc.OLT<<16 | gc.TFLOAT32,
		gc.OLT<<16 | gc.TFLOAT64:
		a = arm.ABLT

	case gc.OLT<<16 | gc.TUINT8,
		gc.OLT<<16 | gc.TUINT16,
		gc.OLT<<16 | gc.TUINT32,
		gc.OLT<<16 | gc.TUINT64:
		a = arm.ABLO

	case gc.OLE<<16 | gc.TINT8,
		gc.OLE<<16 | gc.TINT16,
		gc.OLE<<16 | gc.TINT32,
		gc.OLE<<16 | gc.TINT64,
		gc.OLE<<16 | gc.TFLOAT32,
		gc.OLE<<16 | gc.TFLOAT64:
		a = arm.ABLE

	case gc.OLE<<16 | gc.TUINT8,
		gc.OLE<<16 | gc.TUINT16,
		gc.OLE<<16 | gc.TUINT32,
		gc.OLE<<16 | gc.TUINT64:
		a = arm.ABLS

	case gc.OGT<<16 | gc.TINT8,
		gc.OGT<<16 | gc.TINT16,
		gc.OGT<<16 | gc.TINT32,
		gc.OGT<<16 | gc.TINT64,
		gc.OGT<<16 | gc.TFLOAT32,
		gc.OGT<<16 | gc.TFLOAT64:
		a = arm.ABGT

	case gc.OGT<<16 | gc.TUINT8,
		gc.OGT<<16 | gc.TUINT16,
		gc.OGT<<16 | gc.TUINT32,
		gc.OGT<<16 | gc.TUINT64:
		a = arm.ABHI

	case gc.OGE<<16 | gc.TINT8,
		gc.OGE<<16 | gc.TINT16,
		gc.OGE<<16 | gc.TINT32,
		gc.OGE<<16 | gc.TINT64,
		gc.OGE<<16 | gc.TFLOAT32,
		gc.OGE<<16 | gc.TFLOAT64:
		a = arm.ABGE

	case gc.OGE<<16 | gc.TUINT8,
		gc.OGE<<16 | gc.TUINT16,
		gc.OGE<<16 | gc.TUINT32,
		gc.OGE<<16 | gc.TUINT64:
		a = arm.ABHS

	case gc.OCMP<<16 | gc.TBOOL,
		gc.OCMP<<16 | gc.TINT8,
		gc.OCMP<<16 | gc.TUINT8,
		gc.OCMP<<16 | gc.TINT16,
		gc.OCMP<<16 | gc.TUINT16,
		gc.OCMP<<16 | gc.TINT32,
		gc.OCMP<<16 | gc.TUINT32,
		gc.OCMP<<16 | gc.TPTR32:
		a = arm.ACMP

	case gc.OCMP<<16 | gc.TFLOAT32:
		a = arm.ACMPF

	case gc.OCMP<<16 | gc.TFLOAT64:
		a = arm.ACMPD

	case gc.OAS<<16 | gc.TBOOL:
		a = arm.AMOVB

	case gc.OAS<<16 | gc.TINT8:
		a = arm.AMOVBS

	case gc.OAS<<16 | gc.TUINT8:
		a = arm.AMOVBU

	case gc.OAS<<16 | gc.TINT16:
		a = arm.AMOVHS

	case gc.OAS<<16 | gc.TUINT16:
		a = arm.AMOVHU

	case gc.OAS<<16 | gc.TINT32,
		gc.OAS<<16 | gc.TUINT32,
		gc.OAS<<16 | gc.TPTR32:
		a = arm.AMOVW

	case gc.OAS<<16 | gc.TFLOAT32:
		a = arm.AMOVF

	case gc.OAS<<16 | gc.TFLOAT64:
		a = arm.AMOVD

	case gc.OADD<<16 | gc.TINT8,
		gc.OADD<<16 | gc.TUINT8,
		gc.OADD<<16 | gc.TINT16,
		gc.OADD<<16 | gc.TUINT16,
		gc.OADD<<16 | gc.TINT32,
		gc.OADD<<16 | gc.TUINT32,
		gc.OADD<<16 | gc.TPTR32:
		a = arm.AADD

	case gc.OADD<<16 | gc.TFLOAT32:
		a = arm.AADDF

	case gc.OADD<<16 | gc.TFLOAT64:
		a = arm.AADDD

	case gc.OSUB<<16 | gc.TINT8,
		gc.OSUB<<16 | gc.TUINT8,
		gc.OSUB<<16 | gc.TINT16,
		gc.OSUB<<16 | gc.TUINT16,
		gc.OSUB<<16 | gc.TINT32,
		gc.OSUB<<16 | gc.TUINT32,
		gc.OSUB<<16 | gc.TPTR32:
		a = arm.ASUB

	case gc.OSUB<<16 | gc.TFLOAT32:
		a = arm.ASUBF

	case gc.OSUB<<16 | gc.TFLOAT64:
		a = arm.ASUBD

	case gc.OMINUS<<16 | gc.TINT8,
		gc.OMINUS<<16 | gc.TUINT8,
		gc.OMINUS<<16 | gc.TINT16,
		gc.OMINUS<<16 | gc.TUINT16,
		gc.OMINUS<<16 | gc.TINT32,
		gc.OMINUS<<16 | gc.TUINT32,
		gc.OMINUS<<16 | gc.TPTR32:
		a = arm.ARSB

	case gc.OAND<<16 | gc.TINT8,
		gc.OAND<<16 | gc.TUINT8,
		gc.OAND<<16 | gc.TINT16,
		gc.OAND<<16 | gc.TUINT16,
		gc.OAND<<16 | gc.TINT32,
		gc.OAND<<16 | gc.TUINT32,
		gc.OAND<<16 | gc.TPTR32:
		a = arm.AAND

	case gc.OOR<<16 | gc.TINT8,
		gc.OOR<<16 | gc.TUINT8,
		gc.OOR<<16 | gc.TINT16,
		gc.OOR<<16 | gc.TUINT16,
		gc.OOR<<16 | gc.TINT32,
		gc.OOR<<16 | gc.TUINT32,
		gc.OOR<<16 | gc.TPTR32:
		a = arm.AORR

	case gc.OXOR<<16 | gc.TINT8,
		gc.OXOR<<16 | gc.TUINT8,
		gc.OXOR<<16 | gc.TINT16,
		gc.OXOR<<16 | gc.TUINT16,
		gc.OXOR<<16 | gc.TINT32,
		gc.OXOR<<16 | gc.TUINT32,
		gc.OXOR<<16 | gc.TPTR32:
		a = arm.AEOR

	case gc.OLSH<<16 | gc.TINT8,
		gc.OLSH<<16 | gc.TUINT8,
		gc.OLSH<<16 | gc.TINT16,
		gc.OLSH<<16 | gc.TUINT16,
		gc.OLSH<<16 | gc.TINT32,
		gc.OLSH<<16 | gc.TUINT32,
		gc.OLSH<<16 | gc.TPTR32:
		a = arm.ASLL

	case gc.ORSH<<16 | gc.TUINT8,
		gc.ORSH<<16 | gc.TUINT16,
		gc.ORSH<<16 | gc.TUINT32,
		gc.ORSH<<16 | gc.TPTR32:
		a = arm.ASRL

	case gc.ORSH<<16 | gc.TINT8,
		gc.ORSH<<16 | gc.TINT16,
		gc.ORSH<<16 | gc.TINT32:
		a = arm.ASRA

	case gc.OMUL<<16 | gc.TUINT8,
		gc.OMUL<<16 | gc.TUINT16,
		gc.OMUL<<16 | gc.TUINT32,
		gc.OMUL<<16 | gc.TPTR32:
		a = arm.AMULU

	case gc.OMUL<<16 | gc.TINT8,
		gc.OMUL<<16 | gc.TINT16,
		gc.OMUL<<16 | gc.TINT32:
		a = arm.AMUL

	case gc.OMUL<<16 | gc.TFLOAT32:
		a = arm.AMULF

	case gc.OMUL<<16 | gc.TFLOAT64:
		a = arm.AMULD

	case gc.ODIV<<16 | gc.TUINT8,
		gc.ODIV<<16 | gc.TUINT16,
		gc.ODIV<<16 | gc.TUINT32,
		gc.ODIV<<16 | gc.TPTR32:
		a = arm.ADIVU

	case gc.ODIV<<16 | gc.TINT8,
		gc.ODIV<<16 | gc.TINT16,
		gc.ODIV<<16 | gc.TINT32:
		a = arm.ADIV

	case gc.OMOD<<16 | gc.TUINT8,
		gc.OMOD<<16 | gc.TUINT16,
		gc.OMOD<<16 | gc.TUINT32,
		gc.OMOD<<16 | gc.TPTR32:
		a = arm.AMODU

	case gc.OMOD<<16 | gc.TINT8,
		gc.OMOD<<16 | gc.TINT16,
		gc.OMOD<<16 | gc.TINT32:
		a = arm.AMOD

		//	case CASE(OEXTEND, TINT16):
	//		a = ACWD;
	//		break;

	//	case CASE(OEXTEND, TINT32):
	//		a = ACDQ;
	//		break;

	//	case CASE(OEXTEND, TINT64):
	//		a = ACQO;
	//		break;

	case gc.ODIV<<16 | gc.TFLOAT32:
		a = arm.ADIVF

	case gc.ODIV<<16 | gc.TFLOAT64:
		a = arm.ADIVD
	}

	return a
}

const (
	ODynam = 1 << 0
	OPtrto = 1 << 1
)

var clean [20]gc.Node

var cleani int = 0

func sudoclean() {
	if clean[cleani-1].Op != gc.OEMPTY {
		regfree(&clean[cleani-1])
	}
	if clean[cleani-2].Op != gc.OEMPTY {
		regfree(&clean[cleani-2])
	}
	cleani -= 2
}

func dotaddable(n *gc.Node, n1 *gc.Node) bool {
	if n.Op != gc.ODOT {
		return false
	}

	var oary [10]int64
	var nn *gc.Node
	o := gc.Dotoffset(n, oary[:], &nn)
	if nn != nil && nn.Addable != 0 && o == 1 && oary[0] >= 0 {
		*n1 = *nn
		n1.Type = n.Type
		n1.Xoffset += oary[0]
		return true
	}

	return false
}

/*
 * generate code to compute address of n,
 * a reference to a (perhaps nested) field inside
 * an array or struct.
 * return 0 on failure, 1 on success.
 * on success, leaves usable address in a.
 *
 * caller is responsible for calling sudoclean
 * after successful sudoaddable,
 * to release the register used for a.
 */
func sudoaddable(as int, n *gc.Node, a *obj.Addr, w *int) bool {
	if n.Type == nil {
		return false
	}

	*a = obj.Addr{}

	switch n.Op {
	case gc.OLITERAL:
		if !gc.Isconst(n, gc.CTINT) {
			break
		}
		v := gc.Mpgetfix(n.Val.U.Xval)
		if v >= 32000 || v <= -32000 {
			break
		}
		switch as {
		default:
			return false

		case arm.AADD,
			arm.ASUB,
			arm.AAND,
			arm.AORR,
			arm.AEOR,
			arm.AMOVB,
			arm.AMOVBS,
			arm.AMOVBU,
			arm.AMOVH,
			arm.AMOVHS,
			arm.AMOVHU,
			arm.AMOVW:
			break
		}

		cleani += 2
		reg := &clean[cleani-1]
		reg1 := &clean[cleani-2]
		reg.Op = gc.OEMPTY
		reg1.Op = gc.OEMPTY
		*a = gc.Naddr(n)
		return true

	case gc.ODOT,
		gc.ODOTPTR:
		cleani += 2
		reg := &clean[cleani-1]
		reg1 := &clean[cleani-2]
		reg.Op = gc.OEMPTY
		reg1.Op = gc.OEMPTY
		var nn *gc.Node
		var oary [10]int64
		o := gc.Dotoffset(n, oary[:], &nn)
		if nn == nil {
			sudoclean()
			return false
		}

		if nn.Addable != 0 && o == 1 && oary[0] >= 0 {
			// directly addressable set of DOTs
			n1 := *nn

			n1.Type = n.Type
			n1.Xoffset += oary[0]
			*a = gc.Naddr(&n1)
			return true
		}

		regalloc(reg, gc.Types[gc.Tptr], nil)
		n1 := *reg
		n1.Op = gc.OINDREG
		if oary[0] >= 0 {
			agen(nn, reg)
			n1.Xoffset = oary[0]
		} else {
			cgen(nn, reg)
			gc.Cgen_checknil(reg)
			n1.Xoffset = -(oary[0] + 1)
		}

		for i := 1; i < o; i++ {
			if oary[i] >= 0 {
				gc.Fatal("can't happen")
			}
			gins(arm.AMOVW, &n1, reg)
			gc.Cgen_checknil(reg)
			n1.Xoffset = -(oary[i] + 1)
		}

		a.Type = obj.TYPE_NONE
		a.Name = obj.NAME_NONE
		n1.Type = n.Type
		*a = gc.Naddr(&n1)
		return true

	case gc.OINDEX:
		return false
	}

	return false
}
コード例 #8
0
ファイル: cgen.go プロジェクト: klueska/go-akaros
/*
 * generate:
 *	if(n == true) goto to;
 */
func bgen(n *gc.Node, true_ bool, likely int, to *obj.Prog) {
	if gc.Debug['g'] != 0 {
		gc.Dump("\nbgen", n)
	}

	if n == nil {
		n = gc.Nodbool(true)
	}

	if n.Ninit != nil {
		gc.Genlist(n.Ninit)
	}

	if n.Type == nil {
		gc.Convlit(&n, gc.Types[gc.TBOOL])
		if n.Type == nil {
			return
		}
	}

	et := int(n.Type.Etype)
	if et != gc.TBOOL {
		gc.Yyerror("cgen: bad type %v for %v", gc.Tconv(n.Type, 0), gc.Oconv(int(n.Op), 0))
		gc.Patch(gins(obj.AEND, nil, nil), to)
		return
	}

	for n.Op == gc.OCONVNOP {
		n = n.Left
		if n.Ninit != nil {
			gc.Genlist(n.Ninit)
		}
	}

	var nl *gc.Node
	var nr *gc.Node
	switch n.Op {
	default:
		goto def

		// need to ask if it is bool?
	case gc.OLITERAL:
		if !true_ == (n.Val.U.Bval == 0) {
			gc.Patch(gc.Gbranch(obj.AJMP, nil, likely), to)
		}
		return

	case gc.ONAME:
		if n.Addable == 0 {
			goto def
		}
		var n1 gc.Node
		gc.Nodconst(&n1, n.Type, 0)
		gins(optoas(gc.OCMP, n.Type), n, &n1)
		a := x86.AJNE
		if !true_ {
			a = x86.AJEQ
		}
		gc.Patch(gc.Gbranch(a, n.Type, likely), to)
		return

	case gc.OANDAND,
		gc.OOROR:
		if (n.Op == gc.OANDAND) == true_ {
			p1 := gc.Gbranch(obj.AJMP, nil, 0)
			p2 := gc.Gbranch(obj.AJMP, nil, 0)
			gc.Patch(p1, gc.Pc)
			bgen(n.Left, !true_, -likely, p2)
			bgen(n.Right, !true_, -likely, p2)
			p1 = gc.Gbranch(obj.AJMP, nil, 0)
			gc.Patch(p1, to)
			gc.Patch(p2, gc.Pc)
		} else {
			bgen(n.Left, true_, likely, to)
			bgen(n.Right, true_, likely, to)
		}

		return

	case gc.OEQ,
		gc.ONE,
		gc.OLT,
		gc.OGT,
		gc.OLE,
		gc.OGE:
		nr = n.Right
		if nr == nil || nr.Type == nil {
			return
		}
		fallthrough

	case gc.ONOT: // unary
		nl = n.Left

		if nl == nil || nl.Type == nil {
			return
		}
	}

	switch n.Op {
	case gc.ONOT:
		bgen(nl, !true_, likely, to)
		return

	case gc.OEQ,
		gc.ONE,
		gc.OLT,
		gc.OGT,
		gc.OLE,
		gc.OGE:
		a := int(n.Op)
		if !true_ {
			if gc.Isfloat[nr.Type.Etype] {
				// brcom is not valid on floats when NaN is involved.
				p1 := gc.Gbranch(obj.AJMP, nil, 0)

				p2 := gc.Gbranch(obj.AJMP, nil, 0)
				gc.Patch(p1, gc.Pc)
				ll := n.Ninit // avoid re-genning ninit
				n.Ninit = nil
				bgen(n, true, -likely, p2)
				n.Ninit = ll
				gc.Patch(gc.Gbranch(obj.AJMP, nil, 0), to)
				gc.Patch(p2, gc.Pc)
				return
			}

			a = gc.Brcom(a)
			true_ = !true_
		}

		// make simplest on right
		if nl.Op == gc.OLITERAL || (nl.Ullman < nr.Ullman && nl.Ullman < gc.UINF) {
			a = gc.Brrev(a)
			r := nl
			nl = nr
			nr = r
		}

		if gc.Isslice(nl.Type) {
			// front end should only leave cmp to literal nil
			if (a != gc.OEQ && a != gc.ONE) || nr.Op != gc.OLITERAL {
				gc.Yyerror("illegal slice comparison")
				break
			}

			a = optoas(a, gc.Types[gc.Tptr])
			var n1 gc.Node
			igen(nl, &n1, nil)
			n1.Xoffset += int64(gc.Array_array)
			n1.Type = gc.Types[gc.Tptr]
			var tmp gc.Node
			gc.Nodconst(&tmp, gc.Types[gc.Tptr], 0)
			gins(optoas(gc.OCMP, gc.Types[gc.Tptr]), &n1, &tmp)
			gc.Patch(gc.Gbranch(a, gc.Types[gc.Tptr], likely), to)
			regfree(&n1)
			break
		}

		if gc.Isinter(nl.Type) {
			// front end should only leave cmp to literal nil
			if (a != gc.OEQ && a != gc.ONE) || nr.Op != gc.OLITERAL {
				gc.Yyerror("illegal interface comparison")
				break
			}

			a = optoas(a, gc.Types[gc.Tptr])
			var n1 gc.Node
			igen(nl, &n1, nil)
			n1.Type = gc.Types[gc.Tptr]
			var tmp gc.Node
			gc.Nodconst(&tmp, gc.Types[gc.Tptr], 0)
			gins(optoas(gc.OCMP, gc.Types[gc.Tptr]), &n1, &tmp)
			gc.Patch(gc.Gbranch(a, gc.Types[gc.Tptr], likely), to)
			regfree(&n1)
			break
		}

		if gc.Iscomplex[nl.Type.Etype] {
			gc.Complexbool(a, nl, nr, true_, likely, to)
			break
		}

		var n2 gc.Node
		var n1 gc.Node
		if nr.Ullman >= gc.UINF {
			regalloc(&n1, nl.Type, nil)
			cgen(nl, &n1)

			var tmp gc.Node
			gc.Tempname(&tmp, nl.Type)
			gmove(&n1, &tmp)
			regfree(&n1)

			regalloc(&n2, nr.Type, nil)
			cgen(nr, &n2)

			regalloc(&n1, nl.Type, nil)
			cgen(&tmp, &n1)

			goto cmp
		}

		regalloc(&n1, nl.Type, nil)
		cgen(nl, &n1)

		if gc.Smallintconst(nr) {
			gins(optoas(gc.OCMP, nr.Type), &n1, nr)
			gc.Patch(gc.Gbranch(optoas(a, nr.Type), nr.Type, likely), to)
			regfree(&n1)
			break
		}

		regalloc(&n2, nr.Type, nil)
		cgen(nr, &n2)

		// only < and <= work right with NaN; reverse if needed
	cmp:
		l := &n1

		r := &n2
		if gc.Isfloat[nl.Type.Etype] && (a == gc.OGT || a == gc.OGE) {
			l = &n2
			r = &n1
			a = gc.Brrev(a)
		}

		gins(optoas(gc.OCMP, nr.Type), l, r)

		if gc.Isfloat[nr.Type.Etype] && (n.Op == gc.OEQ || n.Op == gc.ONE) {
			if n.Op == gc.OEQ {
				// neither NE nor P
				p1 := gc.Gbranch(x86.AJNE, nil, -likely)

				p2 := gc.Gbranch(x86.AJPS, nil, -likely)
				gc.Patch(gc.Gbranch(obj.AJMP, nil, 0), to)
				gc.Patch(p1, gc.Pc)
				gc.Patch(p2, gc.Pc)
			} else {
				// either NE or P
				gc.Patch(gc.Gbranch(x86.AJNE, nil, likely), to)

				gc.Patch(gc.Gbranch(x86.AJPS, nil, likely), to)
			}
		} else {
			gc.Patch(gc.Gbranch(optoas(a, nr.Type), nr.Type, likely), to)
		}
		regfree(&n1)
		regfree(&n2)
	}

	return

def:
	var n1 gc.Node
	regalloc(&n1, n.Type, nil)
	cgen(n, &n1)
	var n2 gc.Node
	gc.Nodconst(&n2, n.Type, 0)
	gins(optoas(gc.OCMP, n.Type), &n1, &n2)
	a := x86.AJNE
	if !true_ {
		a = x86.AJEQ
	}
	gc.Patch(gc.Gbranch(a, n.Type, likely), to)
	regfree(&n1)
	return
}
コード例 #9
0
ファイル: cgen.go プロジェクト: klueska/go-akaros
/*
 * generate:
 *	if(n == true) goto to;
 */
func bgen(n *gc.Node, true_ bool, likely int, to *obj.Prog) {
	if gc.Debug['g'] != 0 {
		gc.Dump("\nbgen", n)
	}

	if n == nil {
		n = gc.Nodbool(true)
	}

	if n.Ninit != nil {
		gc.Genlist(n.Ninit)
	}

	if n.Type == nil {
		gc.Convlit(&n, gc.Types[gc.TBOOL])
		if n.Type == nil {
			return
		}
	}

	et := int(n.Type.Etype)
	if et != gc.TBOOL {
		gc.Yyerror("cgen: bad type %v for %v", gc.Tconv(n.Type, 0), gc.Oconv(int(n.Op), 0))
		gc.Patch(gins(obj.AEND, nil, nil), to)
		return
	}

	var nr *gc.Node

	var nl *gc.Node
	switch n.Op {
	default:
		a := gc.ONE
		if !true_ {
			a = gc.OEQ
		}
		gencmp0(n, n.Type, a, likely, to)
		return

		// need to ask if it is bool?
	case gc.OLITERAL:
		if !true_ == (n.Val.U.Bval == 0) {
			gc.Patch(gc.Gbranch(arm.AB, nil, 0), to)
		}
		return

	case gc.OANDAND,
		gc.OOROR:
		if (n.Op == gc.OANDAND) == true_ {
			p1 := gc.Gbranch(obj.AJMP, nil, 0)
			p2 := gc.Gbranch(obj.AJMP, nil, 0)
			gc.Patch(p1, gc.Pc)
			bgen(n.Left, !true_, -likely, p2)
			bgen(n.Right, !true_, -likely, p2)
			p1 = gc.Gbranch(obj.AJMP, nil, 0)
			gc.Patch(p1, to)
			gc.Patch(p2, gc.Pc)
		} else {
			bgen(n.Left, true_, likely, to)
			bgen(n.Right, true_, likely, to)
		}

		return

	case gc.OEQ,
		gc.ONE,
		gc.OLT,
		gc.OGT,
		gc.OLE,
		gc.OGE:
		nr = n.Right
		if nr == nil || nr.Type == nil {
			return
		}
		fallthrough

	case gc.ONOT: // unary
		nl = n.Left

		if nl == nil || nl.Type == nil {
			return
		}
	}

	switch n.Op {
	case gc.ONOT:
		bgen(nl, !true_, likely, to)
		return

	case gc.OEQ,
		gc.ONE,
		gc.OLT,
		gc.OGT,
		gc.OLE,
		gc.OGE:
		a := int(n.Op)
		if !true_ {
			if gc.Isfloat[nl.Type.Etype] {
				// brcom is not valid on floats when NaN is involved.
				p1 := gc.Gbranch(arm.AB, nil, 0)

				p2 := gc.Gbranch(arm.AB, nil, 0)
				gc.Patch(p1, gc.Pc)
				ll := n.Ninit
				n.Ninit = nil
				bgen(n, true, -likely, p2)
				n.Ninit = ll
				gc.Patch(gc.Gbranch(arm.AB, nil, 0), to)
				gc.Patch(p2, gc.Pc)
				return
			}

			a = gc.Brcom(a)
			true_ = !true_
		}

		// make simplest on right
		if nl.Op == gc.OLITERAL || (nl.Ullman < gc.UINF && nl.Ullman < nr.Ullman) {
			a = gc.Brrev(a)
			r := nl
			nl = nr
			nr = r
		}

		if gc.Isslice(nl.Type) {
			// only valid to cmp darray to literal nil
			if (a != gc.OEQ && a != gc.ONE) || nr.Op != gc.OLITERAL {
				gc.Yyerror("illegal array comparison")
				break
			}

			var n1 gc.Node
			igen(nl, &n1, nil)
			n1.Xoffset += int64(gc.Array_array)
			n1.Type = gc.Types[gc.Tptr]
			gencmp0(&n1, gc.Types[gc.Tptr], a, likely, to)
			regfree(&n1)
			break
		}

		if gc.Isinter(nl.Type) {
			// front end shold only leave cmp to literal nil
			if (a != gc.OEQ && a != gc.ONE) || nr.Op != gc.OLITERAL {
				gc.Yyerror("illegal interface comparison")
				break
			}

			var n1 gc.Node
			igen(nl, &n1, nil)
			n1.Type = gc.Types[gc.Tptr]
			n1.Xoffset += 0
			gencmp0(&n1, gc.Types[gc.Tptr], a, likely, to)
			regfree(&n1)
			break
		}

		if gc.Iscomplex[nl.Type.Etype] {
			gc.Complexbool(a, nl, nr, true_, likely, to)
			break
		}

		if gc.Is64(nr.Type) {
			if nl.Addable == 0 {
				var n1 gc.Node
				gc.Tempname(&n1, nl.Type)
				cgen(nl, &n1)
				nl = &n1
			}

			if nr.Addable == 0 {
				var n2 gc.Node
				gc.Tempname(&n2, nr.Type)
				cgen(nr, &n2)
				nr = &n2
			}

			cmp64(nl, nr, a, likely, to)
			break
		}

		if nr.Op == gc.OLITERAL {
			if gc.Isconst(nr, gc.CTINT) && gc.Mpgetfix(nr.Val.U.Xval) == 0 {
				gencmp0(nl, nl.Type, a, likely, to)
				break
			}

			if nr.Val.Ctype == gc.CTNIL {
				gencmp0(nl, nl.Type, a, likely, to)
				break
			}
		}

		a = optoas(a, nr.Type)

		if nr.Ullman >= gc.UINF {
			var n1 gc.Node
			regalloc(&n1, nl.Type, nil)
			cgen(nl, &n1)

			var tmp gc.Node
			gc.Tempname(&tmp, nl.Type)
			gmove(&n1, &tmp)
			regfree(&n1)

			var n2 gc.Node
			regalloc(&n2, nr.Type, nil)
			cgen(nr, &n2)

			regalloc(&n1, nl.Type, nil)
			cgen(&tmp, &n1)

			gcmp(optoas(gc.OCMP, nr.Type), &n1, &n2)
			gc.Patch(gc.Gbranch(a, nr.Type, likely), to)

			regfree(&n1)
			regfree(&n2)
			break
		}

		var n3 gc.Node
		gc.Tempname(&n3, nl.Type)
		cgen(nl, &n3)

		var tmp gc.Node
		gc.Tempname(&tmp, nr.Type)
		cgen(nr, &tmp)

		var n1 gc.Node
		regalloc(&n1, nl.Type, nil)
		gmove(&n3, &n1)

		var n2 gc.Node
		regalloc(&n2, nr.Type, nil)
		gmove(&tmp, &n2)

		gcmp(optoas(gc.OCMP, nr.Type), &n1, &n2)
		if gc.Isfloat[nl.Type.Etype] {
			if n.Op == gc.ONE {
				p1 := gc.Gbranch(arm.ABVS, nr.Type, likely)
				gc.Patch(gc.Gbranch(a, nr.Type, likely), to)
				gc.Patch(p1, to)
			} else {
				p1 := gc.Gbranch(arm.ABVS, nr.Type, -likely)
				gc.Patch(gc.Gbranch(a, nr.Type, likely), to)
				gc.Patch(p1, gc.Pc)
			}
		} else {
			gc.Patch(gc.Gbranch(a, nr.Type, likely), to)
		}

		regfree(&n1)
		regfree(&n2)
	}

	return
}
コード例 #10
0
ファイル: cgen.go プロジェクト: klueska/go-akaros
/*
 * branch gen
 *	if(n == true) goto to;
 */
func bgen(n *gc.Node, true_ bool, likely int, to *obj.Prog) {
	if gc.Debug['g'] != 0 {
		gc.Dump("\nbgen", n)
	}

	if n == nil {
		n = gc.Nodbool(true)
	}

	if n.Ninit != nil {
		gc.Genlist(n.Ninit)
	}

	if n.Type == nil {
		gc.Convlit(&n, gc.Types[gc.TBOOL])
		if n.Type == nil {
			return
		}
	}

	et := int(n.Type.Etype)
	if et != gc.TBOOL {
		gc.Yyerror("cgen: bad type %v for %v", gc.Tconv(n.Type, 0), gc.Oconv(int(n.Op), 0))
		gc.Patch(gins(obj.AEND, nil, nil), to)
		return
	}

	for n.Op == gc.OCONVNOP {
		n = n.Left
		if n.Ninit != nil {
			gc.Genlist(n.Ninit)
		}
	}

	nl := n.Left
	var nr *gc.Node

	if nl != nil && gc.Isfloat[nl.Type.Etype] {
		bgen_float(n, bool2int(true_), likely, to)
		return
	}

	switch n.Op {
	default:
		goto def

		// need to ask if it is bool?
	case gc.OLITERAL:
		if !true_ == (n.Val.U.Bval == 0) {
			gc.Patch(gc.Gbranch(obj.AJMP, nil, 0), to)
		}
		return

	case gc.ONAME:
		if n.Addable == 0 {
			goto def
		}
		var n1 gc.Node
		gc.Nodconst(&n1, n.Type, 0)
		gins(optoas(gc.OCMP, n.Type), n, &n1)
		a := x86.AJNE
		if !true_ {
			a = x86.AJEQ
		}
		gc.Patch(gc.Gbranch(a, n.Type, likely), to)
		return

	case gc.OANDAND,
		gc.OOROR:
		if (n.Op == gc.OANDAND) == true_ {
			p1 := gc.Gbranch(obj.AJMP, nil, 0)
			p2 := gc.Gbranch(obj.AJMP, nil, 0)
			gc.Patch(p1, gc.Pc)
			bgen(n.Left, !true_, -likely, p2)
			bgen(n.Right, !true_, -likely, p2)
			p1 = gc.Gbranch(obj.AJMP, nil, 0)
			gc.Patch(p1, to)
			gc.Patch(p2, gc.Pc)
		} else {
			bgen(n.Left, true_, likely, to)
			bgen(n.Right, true_, likely, to)
		}

		return

	case gc.OEQ,
		gc.ONE,
		gc.OLT,
		gc.OGT,
		gc.OLE,
		gc.OGE:
		nr = n.Right
		if nr == nil || nr.Type == nil {
			return
		}
		fallthrough

	case gc.ONOT: // unary
		nl = n.Left

		if nl == nil || nl.Type == nil {
			return
		}
	}

	switch n.Op {
	case gc.ONOT:
		bgen(nl, !true_, likely, to)

	case gc.OEQ,
		gc.ONE,
		gc.OLT,
		gc.OGT,
		gc.OLE,
		gc.OGE:
		a := int(n.Op)
		if !true_ {
			a = gc.Brcom(a)
			true_ = !true_
		}

		// make simplest on right
		if nl.Op == gc.OLITERAL || (nl.Ullman < nr.Ullman && nl.Ullman < gc.UINF) {
			a = gc.Brrev(a)
			r := nl
			nl = nr
			nr = r
		}

		if gc.Isslice(nl.Type) {
			// front end should only leave cmp to literal nil
			if (a != gc.OEQ && a != gc.ONE) || nr.Op != gc.OLITERAL {
				gc.Yyerror("illegal slice comparison")
				break
			}

			a = optoas(a, gc.Types[gc.Tptr])
			var n1 gc.Node
			igen(nl, &n1, nil)
			n1.Xoffset += int64(gc.Array_array)
			n1.Type = gc.Types[gc.Tptr]
			var tmp gc.Node
			gc.Nodconst(&tmp, gc.Types[gc.Tptr], 0)
			gins(optoas(gc.OCMP, gc.Types[gc.Tptr]), &n1, &tmp)
			gc.Patch(gc.Gbranch(a, gc.Types[gc.Tptr], likely), to)
			regfree(&n1)
			break
		}

		if gc.Isinter(nl.Type) {
			// front end should only leave cmp to literal nil
			if (a != gc.OEQ && a != gc.ONE) || nr.Op != gc.OLITERAL {
				gc.Yyerror("illegal interface comparison")
				break
			}

			a = optoas(a, gc.Types[gc.Tptr])
			var n1 gc.Node
			igen(nl, &n1, nil)
			n1.Type = gc.Types[gc.Tptr]
			var tmp gc.Node
			gc.Nodconst(&tmp, gc.Types[gc.Tptr], 0)
			gins(optoas(gc.OCMP, gc.Types[gc.Tptr]), &n1, &tmp)
			gc.Patch(gc.Gbranch(a, gc.Types[gc.Tptr], likely), to)
			regfree(&n1)
			break
		}

		if gc.Iscomplex[nl.Type.Etype] {
			gc.Complexbool(a, nl, nr, true_, likely, to)
			break
		}

		if gc.Is64(nr.Type) {
			if nl.Addable == 0 || gc.Isconst(nl, gc.CTINT) {
				var n1 gc.Node
				gc.Tempname(&n1, nl.Type)
				cgen(nl, &n1)
				nl = &n1
			}

			if nr.Addable == 0 {
				var n2 gc.Node
				gc.Tempname(&n2, nr.Type)
				cgen(nr, &n2)
				nr = &n2
			}

			cmp64(nl, nr, a, likely, to)
			break
		}

		var n2 gc.Node
		if nr.Ullman >= gc.UINF {
			if nl.Addable == 0 {
				var n1 gc.Node
				gc.Tempname(&n1, nl.Type)
				cgen(nl, &n1)
				nl = &n1
			}

			if nr.Addable == 0 {
				var tmp gc.Node
				gc.Tempname(&tmp, nr.Type)
				cgen(nr, &tmp)
				nr = &tmp
			}

			var n2 gc.Node
			regalloc(&n2, nr.Type, nil)
			cgen(nr, &n2)
			nr = &n2
			goto cmp
		}

		if nl.Addable == 0 {
			var n1 gc.Node
			gc.Tempname(&n1, nl.Type)
			cgen(nl, &n1)
			nl = &n1
		}

		if gc.Smallintconst(nr) {
			gins(optoas(gc.OCMP, nr.Type), nl, nr)
			gc.Patch(gc.Gbranch(optoas(a, nr.Type), nr.Type, likely), to)
			break
		}

		if nr.Addable == 0 {
			var tmp gc.Node
			gc.Tempname(&tmp, nr.Type)
			cgen(nr, &tmp)
			nr = &tmp
		}

		regalloc(&n2, nr.Type, nil)
		gmove(nr, &n2)
		nr = &n2

	cmp:
		gins(optoas(gc.OCMP, nr.Type), nl, nr)
		gc.Patch(gc.Gbranch(optoas(a, nr.Type), nr.Type, likely), to)

		if nl.Op == gc.OREGISTER {
			regfree(nl)
		}
		regfree(nr)
	}

	return

def:
	var n1 gc.Node
	regalloc(&n1, n.Type, nil)
	cgen(n, &n1)
	var n2 gc.Node
	gc.Nodconst(&n2, n.Type, 0)
	gins(optoas(gc.OCMP, n.Type), &n1, &n2)
	a := x86.AJNE
	if !true_ {
		a = x86.AJEQ
	}
	gc.Patch(gc.Gbranch(a, n.Type, likely), to)
	regfree(&n1)
	return
}