func val(lit string) exact.Value { if len(lit) == 0 { return exact.MakeUnknown() } switch lit { case "?": return exact.MakeUnknown() case "true": return exact.MakeBool(true) case "false": return exact.MakeBool(false) } tok := token.INT switch first, last := lit[0], lit[len(lit)-1]; { case first == '"' || first == '`': tok = token.STRING lit = strings.Replace(lit, "_", " ", -1) case first == '\'': tok = token.CHAR case last == 'i': tok = token.IMAG default: if !strings.HasPrefix(lit, "0x") && strings.ContainsAny(lit, "./Ee") { tok = token.FLOAT } } return exact.MakeFromLiteral(lit, tok) }
func val(lit string) exact.Value { if len(lit) == 0 { return exact.MakeUnknown() } switch lit { case "?": return exact.MakeUnknown() case "nil": return nil case "true": return exact.MakeBool(true) case "false": return exact.MakeBool(false) } tok := token.FLOAT switch first, last := lit[0], lit[len(lit)-1]; { case first == '"' || first == '`': tok = token.STRING lit = strings.Replace(lit, "_", " ", -1) case first == '\'': tok = token.CHAR case last == 'i': tok = token.IMAG } return exact.MakeFromLiteral(lit, tok) }
// zeroConst returns a new "zero" constant of the specified type, // which must not be an array or struct type: the zero values of // aggregates are well-defined but cannot be represented by Const. // func zeroConst(t types.Type) *Const { switch t := t.(type) { case *types.Basic: switch { case t.Info()&types.IsBoolean != 0: return NewConst(exact.MakeBool(false), t) case t.Info()&types.IsNumeric != 0: return NewConst(exact.MakeInt64(0), t) case t.Info()&types.IsString != 0: return NewConst(exact.MakeString(""), t) case t.Kind() == types.UnsafePointer: fallthrough case t.Kind() == types.UntypedNil: return nilConst(t) default: panic(fmt.Sprint("zeroConst for unexpected type:", t)) } case *types.Pointer, *types.Slice, *types.Interface, *types.Chan, *types.Map, *types.Signature: return nilConst(t) case *types.Named: return NewConst(zeroConst(t.Underlying()).Value, t) case *types.Array, *types.Struct, *types.Tuple: panic(fmt.Sprint("zeroConst applied to aggregate:", t)) } panic(fmt.Sprint("zeroConst: unexpected ", t)) }
func (p *importer) value() exact.Value { switch kind := exact.Kind(p.int()); kind { case falseTag: return exact.MakeBool(false) case trueTag: return exact.MakeBool(true) case int64Tag: return exact.MakeInt64(p.int64()) case floatTag: return p.float() case fractionTag: return p.fraction() case complexTag: re := p.fraction() im := p.fraction() return exact.BinaryOp(re, token.ADD, exact.MakeImag(im)) case stringTag: return exact.MakeString(p.string()) default: panic(fmt.Sprintf("unexpected value kind %d", kind)) } }
func (check *Checker) comparison(x, y *operand, op token.Token) { // spec: "In any comparison, the first operand must be assignable // to the type of the second operand, or vice versa." err := "" if x.assignableTo(check.conf, y.typ) || y.assignableTo(check.conf, x.typ) { defined := false switch op { case token.EQL, token.NEQ: // spec: "The equality operators == and != apply to operands that are comparable." defined = Comparable(x.typ) || x.isNil() && hasNil(y.typ) || y.isNil() && hasNil(x.typ) case token.LSS, token.LEQ, token.GTR, token.GEQ: // spec: The ordering operators <, <=, >, and >= apply to operands that are ordered." defined = isOrdered(x.typ) default: unreachable() } if !defined { typ := x.typ if x.isNil() { typ = y.typ } err = check.sprintf("operator %s not defined for %s", op, typ) } } else { err = check.sprintf("mismatched types %s and %s", x.typ, y.typ) } if err != "" { check.errorf(x.pos(), "cannot compare %s %s %s (%s)", x.expr, op, y.expr, err) x.mode = invalid return } if x.mode == constant && y.mode == constant { x.val = exact.MakeBool(exact.Compare(x.val, op, y.val)) // The operands are never materialized; no need to update // their types. } else { x.mode = value // The operands have now their final types, which at run- // time will be materialized. Update the expression trees. // If the current types are untyped, the materialized type // is the respective default type. check.updateExprType(x.expr, defaultType(x.typ), true) check.updateExprType(y.expr, defaultType(y.typ), true) } // spec: "Comparison operators compare two operands and yield // an untyped boolean value." x.typ = Typ[UntypedBool] }
func doOp(x exact.Value, op token.Token, y exact.Value) (z exact.Value) { defer panicHandler(&z) if x == nil { return exact.UnaryOp(op, y, -1) } switch op { case token.EQL, token.NEQ, token.LSS, token.LEQ, token.GTR, token.GEQ: return exact.MakeBool(exact.Compare(x, op, y)) case token.SHL, token.SHR: s, _ := exact.Int64Val(y) return exact.Shift(x, op, uint(s)) default: return exact.BinaryOp(x, op, y) } }
func (check *checker) comparison(x, y *operand, op token.Token) { // TODO(gri) deal with interface vs non-interface comparison valid := false if x.isAssignableTo(check.conf, y.typ) || y.isAssignableTo(check.conf, x.typ) { switch op { case token.EQL, token.NEQ: valid = isComparable(x.typ) || x.isNil() && hasNil(y.typ) || y.isNil() && hasNil(x.typ) case token.LSS, token.LEQ, token.GTR, token.GEQ: valid = isOrdered(x.typ) default: unreachable() } } if !valid { check.invalidOp(x.pos(), "cannot compare %s %s %s", x, op, y) x.mode = invalid return } if x.mode == constant && y.mode == constant { x.val = exact.MakeBool(exact.Compare(x.val, op, y.val)) // The operands are never materialized; no need to update // their types. } else { x.mode = value // The operands have now their final types, which at run- // time will be materialized. Update the expression trees. // If the current types are untyped, the materialized type // is the respective default type. check.updateExprType(x.expr, defaultType(x.typ), true) check.updateExprType(y.expr, defaultType(y.typ), true) } // spec: "Comparison operators compare two operands and yield // an untyped boolean value." x.typ = Typ[UntypedBool] }
func evalAction(n ast.Node) exact.Value { switch e := n.(type) { case *ast.BasicLit: return val(e.Value) case *ast.BinaryExpr: x := evalAction(e.X) if x == nil { return nil } y := evalAction(e.Y) if y == nil { return nil } switch e.Op { case token.EQL, token.NEQ, token.LSS, token.LEQ, token.GTR, token.GEQ: return exact.MakeBool(exact.Compare(x, e.Op, y)) case token.SHL, token.SHR: s, _ := exact.Int64Val(y) return exact.Shift(x, e.Op, uint(s)) default: return exact.BinaryOp(x, e.Op, y) } case *ast.UnaryExpr: return exact.UnaryOp(e.Op, evalAction(e.X), -1) case *ast.CallExpr: fmt.Printf("Can't handle call (%s) yet at pos %d\n", e.Fun, e.Pos()) return nil case *ast.Ident: fmt.Printf("Can't handle Ident %s here at pos %d\n", e.Name, e.Pos()) return nil case *ast.ParenExpr: return evalAction(e.X) default: fmt.Println("Can't handle") fmt.Printf("n: %s, e: %s\n", n, e) return nil } }
// Error has a nil package in its qualified name since it is in no package res := NewVar(token.NoPos, nil, "", Typ[String]) sig := &Signature{results: NewTuple(res)} err := NewFunc(token.NoPos, nil, "Error", sig) typ := &Named{underlying: NewInterface([]*Func{err}, nil), complete: true} sig.recv = NewVar(token.NoPos, nil, "", typ) def(NewTypeName(token.NoPos, nil, "error", typ)) } var predeclaredConsts = [...]struct { name string kind BasicKind val exact.Value }{ {"true", UntypedBool, exact.MakeBool(true)}, {"false", UntypedBool, exact.MakeBool(false)}, {"iota", UntypedInt, exact.MakeInt64(0)}, } func defPredeclaredConsts() { for _, c := range predeclaredConsts { def(NewConst(token.NoPos, nil, c.name, Typ[c.kind], c.val)) } } func defPredeclaredNil() { def(&Nil{object{name: "nil", typ: Typ[UntypedNil]}}) } // A builtinId is the id of a builtin function.
// stmt typechecks statement s. func (check *Checker) stmt(ctxt stmtContext, s ast.Stmt) { // statements cannot use iota in general // (constant declarations set it explicitly) assert(check.iota == nil) // statements must end with the same top scope as they started with if debug { defer func(scope *Scope) { // don't check if code is panicking if p := recover(); p != nil { panic(p) } assert(scope == check.scope) }(check.scope) } inner := ctxt &^ fallthroughOk switch s := s.(type) { case *ast.BadStmt, *ast.EmptyStmt: // ignore case *ast.DeclStmt: check.declStmt(s.Decl) case *ast.LabeledStmt: check.hasLabel = true check.stmt(ctxt, s.Stmt) case *ast.ExprStmt: // spec: "With the exception of specific built-in functions, // function and method calls and receive operations can appear // in statement context. Such statements may be parenthesized." var x operand kind := check.rawExpr(&x, s.X, nil) var msg string switch x.mode { default: if kind == statement { return } msg = "is not used" case builtin: msg = "must be called" case typexpr: msg = "is not an expression" } check.errorf(x.pos(), "%s %s", &x, msg) case *ast.SendStmt: var ch, x operand check.expr(&ch, s.Chan) check.expr(&x, s.Value) if ch.mode == invalid || x.mode == invalid { return } if tch, ok := ch.typ.Underlying().(*Chan); !ok || tch.dir == RecvOnly || !check.assignment(&x, tch.elem) { if x.mode != invalid { check.invalidOp(ch.pos(), "cannot send %s to channel %s", &x, &ch) } } case *ast.IncDecStmt: var op token.Token switch s.Tok { case token.INC: op = token.ADD case token.DEC: op = token.SUB default: check.invalidAST(s.TokPos, "unknown inc/dec operation %s", s.Tok) return } var x operand Y := &ast.BasicLit{ValuePos: s.X.Pos(), Kind: token.INT, Value: "1"} // use x's position check.binary(&x, s.X, Y, op) if x.mode == invalid { return } check.assignVar(s.X, &x) case *ast.AssignStmt: switch s.Tok { case token.ASSIGN, token.DEFINE: if len(s.Lhs) == 0 { check.invalidAST(s.Pos(), "missing lhs in assignment") return } if s.Tok == token.DEFINE { check.shortVarDecl(s.TokPos, s.Lhs, s.Rhs) } else { // regular assignment check.assignVars(s.Lhs, s.Rhs) } default: // assignment operations if len(s.Lhs) != 1 || len(s.Rhs) != 1 { check.errorf(s.TokPos, "assignment operation %s requires single-valued expressions", s.Tok) return } op := assignOp(s.Tok) if op == token.ILLEGAL { check.invalidAST(s.TokPos, "unknown assignment operation %s", s.Tok) return } var x operand check.binary(&x, s.Lhs[0], s.Rhs[0], op) if x.mode == invalid { return } check.assignVar(s.Lhs[0], &x) } case *ast.GoStmt: check.suspendedCall("go", s.Call) case *ast.DeferStmt: check.suspendedCall("defer", s.Call) case *ast.ReturnStmt: res := check.sig.results if res.Len() > 0 { // function returns results // (if one, say the first, result parameter is named, all of them are named) if len(s.Results) == 0 && res.vars[0].name != "" { // spec: "Implementation restriction: A compiler may disallow an empty expression // list in a "return" statement if a different entity (constant, type, or variable) // with the same name as a result parameter is in scope at the place of the return." for _, obj := range res.vars { if alt := check.scope.LookupParent(obj.name); alt != nil && alt != obj { check.errorf(s.Pos(), "result parameter %s not in scope at return", obj.name) check.errorf(alt.Pos(), "\tinner declaration of %s", obj) // ok to continue } } } else { // return has results or result parameters are unnamed check.initVars(res.vars, s.Results, s.Return) } } else if len(s.Results) > 0 { check.error(s.Results[0].Pos(), "no result values expected") check.use(s.Results...) } case *ast.BranchStmt: if s.Label != nil { check.hasLabel = true return // checked in 2nd pass (check.labels) } switch s.Tok { case token.BREAK: if ctxt&inBreakable == 0 { check.error(s.Pos(), "break not in for, switch, or select statement") } case token.CONTINUE: if ctxt&inContinuable == 0 { check.error(s.Pos(), "continue not in for statement") } case token.FALLTHROUGH: if ctxt&fallthroughOk == 0 { check.error(s.Pos(), "fallthrough statement out of place") } default: check.invalidAST(s.Pos(), "branch statement: %s", s.Tok) } case *ast.BlockStmt: check.openScope(s, "block") defer check.closeScope() check.stmtList(inner, s.List) case *ast.IfStmt: check.openScope(s, "if") defer check.closeScope() check.initStmt(s.Init) var x operand check.expr(&x, s.Cond) if x.mode != invalid && !isBoolean(x.typ) { check.error(s.Cond.Pos(), "non-boolean condition in if statement") } check.stmt(inner, s.Body) if s.Else != nil { check.stmt(inner, s.Else) } case *ast.SwitchStmt: inner |= inBreakable check.openScope(s, "switch") defer check.closeScope() check.initStmt(s.Init) var x operand if s.Tag != nil { check.expr(&x, s.Tag) } else { // spec: "A missing switch expression is // equivalent to the boolean value true." x.mode = constant x.typ = Typ[Bool] x.val = exact.MakeBool(true) x.expr = &ast.Ident{NamePos: s.Body.Lbrace, Name: "true"} } check.multipleDefaults(s.Body.List) for i, c := range s.Body.List { clause, _ := c.(*ast.CaseClause) if clause == nil { check.invalidAST(c.Pos(), "incorrect expression switch case") continue } if x.mode != invalid { check.caseValues(x, clause.List) } check.openScope(clause, "case") inner := inner if i+1 < len(s.Body.List) { inner |= fallthroughOk } check.stmtList(inner, clause.Body) check.closeScope() } case *ast.TypeSwitchStmt: inner |= inBreakable check.openScope(s, "type switch") defer check.closeScope() check.initStmt(s.Init) // A type switch guard must be of the form: // // TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" . // // The parser is checking syntactic correctness; // remaining syntactic errors are considered AST errors here. // TODO(gri) better factoring of error handling (invalid ASTs) // var lhs *ast.Ident // lhs identifier or nil var rhs ast.Expr switch guard := s.Assign.(type) { case *ast.ExprStmt: rhs = guard.X case *ast.AssignStmt: if len(guard.Lhs) != 1 || guard.Tok != token.DEFINE || len(guard.Rhs) != 1 { check.invalidAST(s.Pos(), "incorrect form of type switch guard") return } lhs, _ = guard.Lhs[0].(*ast.Ident) if lhs == nil { check.invalidAST(s.Pos(), "incorrect form of type switch guard") return } check.recordDef(lhs, nil) // lhs variable is implicitly declared in each cause clause rhs = guard.Rhs[0] default: check.invalidAST(s.Pos(), "incorrect form of type switch guard") return } // rhs must be of the form: expr.(type) and expr must be an interface expr, _ := rhs.(*ast.TypeAssertExpr) if expr == nil || expr.Type != nil { check.invalidAST(s.Pos(), "incorrect form of type switch guard") return } var x operand check.expr(&x, expr.X) if x.mode == invalid { return } xtyp, _ := x.typ.Underlying().(*Interface) if xtyp == nil { check.errorf(x.pos(), "%s is not an interface", &x) return } check.multipleDefaults(s.Body.List) var lhsVars []*Var // list of implicitly declared lhs variables seen := make(map[Type]token.Pos) // map of seen types to positions for _, s := range s.Body.List { clause, _ := s.(*ast.CaseClause) if clause == nil { check.invalidAST(s.Pos(), "incorrect type switch case") continue } // Check each type in this type switch case. T := check.caseTypes(&x, xtyp, clause.List, seen) check.openScope(clause, "case") // If lhs exists, declare a corresponding variable in the case-local scope. if lhs != nil { // spec: "The TypeSwitchGuard may include a short variable declaration. // When that form is used, the variable is declared at the beginning of // the implicit block in each clause. In clauses with a case listing // exactly one type, the variable has that type; otherwise, the variable // has the type of the expression in the TypeSwitchGuard." if len(clause.List) != 1 || T == nil { T = x.typ } obj := NewVar(lhs.Pos(), check.pkg, lhs.Name, T) check.declare(check.scope, nil, obj) check.recordImplicit(clause, obj) // For the "declared but not used" error, all lhs variables act as // one; i.e., if any one of them is 'used', all of them are 'used'. // Collect them for later analysis. lhsVars = append(lhsVars, obj) } check.stmtList(inner, clause.Body) check.closeScope() } // If lhs exists, we must have at least one lhs variable that was used. if lhs != nil { var used bool for _, v := range lhsVars { if v.used { used = true } v.used = true // avoid usage error when checking entire function } if !used { check.softErrorf(lhs.Pos(), "%s declared but not used", lhs.Name) } } case *ast.SelectStmt: inner |= inBreakable check.multipleDefaults(s.Body.List) for _, s := range s.Body.List { clause, _ := s.(*ast.CommClause) if clause == nil { continue // error reported before } // clause.Comm must be a SendStmt, RecvStmt, or default case valid := false var rhs ast.Expr // rhs of RecvStmt, or nil switch s := clause.Comm.(type) { case nil, *ast.SendStmt: valid = true case *ast.AssignStmt: if len(s.Rhs) == 1 { rhs = s.Rhs[0] } case *ast.ExprStmt: rhs = s.X } // if present, rhs must be a receive operation if rhs != nil { if x, _ := unparen(rhs).(*ast.UnaryExpr); x != nil && x.Op == token.ARROW { valid = true } } if !valid { check.error(clause.Comm.Pos(), "select case must be send or receive (possibly with assignment)") continue } check.openScope(s, "case") defer check.closeScope() if clause.Comm != nil { check.stmt(inner, clause.Comm) } check.stmtList(inner, clause.Body) } case *ast.ForStmt: inner |= inBreakable | inContinuable check.openScope(s, "for") defer check.closeScope() check.initStmt(s.Init) if s.Cond != nil { var x operand check.expr(&x, s.Cond) if x.mode != invalid && !isBoolean(x.typ) { check.error(s.Cond.Pos(), "non-boolean condition in for statement") } } check.initStmt(s.Post) check.stmt(inner, s.Body) case *ast.RangeStmt: inner |= inBreakable | inContinuable check.openScope(s, "for") defer check.closeScope() // check expression to iterate over decl := s.Tok == token.DEFINE var x operand check.expr(&x, s.X) if x.mode == invalid { // if we don't have a declaration, we can still check the loop's body // (otherwise we can't because we are missing the declared variables) if !decl { check.stmt(inner, s.Body) } return } // determine key/value types var key, val Type switch typ := x.typ.Underlying().(type) { case *Basic: if isString(typ) { key = Typ[Int] val = UniverseRune // use 'rune' name } case *Array: key = Typ[Int] val = typ.elem case *Slice: key = Typ[Int] val = typ.elem case *Pointer: if typ, _ := typ.base.Underlying().(*Array); typ != nil { key = Typ[Int] val = typ.elem } case *Map: key = typ.key val = typ.elem case *Chan: key = typ.elem val = Typ[Invalid] if typ.dir == SendOnly { check.errorf(x.pos(), "cannot range over send-only channel %s", &x) // ok to continue } if s.Value != nil { check.errorf(s.Value.Pos(), "iteration over %s permits only one iteration variable", &x) // ok to continue } } if key == nil { check.errorf(x.pos(), "cannot range over %s", &x) // if we don't have a declaration, we can still check the loop's body if !decl { check.stmt(inner, s.Body) } return } // check assignment to/declaration of iteration variables // (irregular assignment, cannot easily map to existing assignment checks) // lhs expressions and initialization value (rhs) types lhs := [2]ast.Expr{s.Key, s.Value} rhs := [2]Type{key, val} if decl { // short variable declaration; variable scope starts after the range clause // (the for loop opens a new scope, so variables on the lhs never redeclare // previously declared variables) var vars []*Var for i, lhs := range lhs { if lhs == nil { continue } // determine lhs variable var obj *Var if ident, _ := lhs.(*ast.Ident); ident != nil { // declare new variable name := ident.Name obj = NewVar(ident.Pos(), check.pkg, name, nil) check.recordDef(ident, obj) // _ variables don't count as new variables if name != "_" { vars = append(vars, obj) } } else { check.errorf(lhs.Pos(), "cannot declare %s", lhs) obj = NewVar(lhs.Pos(), check.pkg, "_", nil) // dummy variable } // initialize lhs variable x.mode = value x.expr = lhs // we don't have a better rhs expression to use here x.typ = rhs[i] check.initVar(obj, &x, false) } // declare variables if len(vars) > 0 { for _, obj := range vars { check.declare(check.scope, nil /* recordDef already called */, obj) } } else { check.error(s.TokPos, "no new variables on left side of :=") } } else { // ordinary assignment for i, lhs := range lhs { if lhs == nil { continue } x.mode = value x.expr = lhs // we don't have a better rhs expression to use here x.typ = rhs[i] check.assignVar(lhs, &x) } } check.stmt(inner, s.Body) default: check.error(s.Pos(), "invalid statement") } }
func (c *compiler) VisitSwitchStmt(stmt *ast.SwitchStmt) { if stmt.Init != nil { c.VisitStmt(stmt.Init) } var tag Value if stmt.Tag != nil { tag = c.VisitExpr(stmt.Tag) } else { tag = c.NewConstValue(exact.MakeBool(true), types.Typ[types.Bool]) } if len(stmt.Body.List) == 0 { return } // Convert untyped constant clauses. for _, clause := range stmt.Body.List { for _, expr := range clause.(*ast.CaseClause).List { if typ := c.typeinfo.Types[expr]; isUntyped(typ) { c.typeinfo.Types[expr] = tag.Type() } } } // makeValueFunc takes an expression, evaluates it, and returns // a Value representing its equality comparison with the tag. makeValueFunc := func(expr ast.Expr) func() Value { return func() Value { return c.VisitExpr(expr).BinaryOp(token.EQL, tag) } } // Create a BasicBlock for each case clause and each associated // statement body. Each case clause will branch to either its // statement body (success) or to the next case (failure), or the // end block if there are no remaining cases. startBlock := c.builder.GetInsertBlock() endBlock := llvm.AddBasicBlock(startBlock.Parent(), "end") endBlock.MoveAfter(startBlock) defer c.builder.SetInsertPointAtEnd(endBlock) if c.lastlabel != nil { labelData := c.labelData(c.lastlabel) labelData.Break = endBlock c.lastlabel = nil } // Add a "break" block to the stack. c.breakblocks = append(c.breakblocks, endBlock) defer func() { c.breakblocks = c.breakblocks[:len(c.breakblocks)-1] }() caseBlocks := make([]llvm.BasicBlock, 0, len(stmt.Body.List)) stmtBlocks := make([]llvm.BasicBlock, 0, len(stmt.Body.List)) for _ = range stmt.Body.List { caseBlocks = append(caseBlocks, llvm.InsertBasicBlock(endBlock, "")) } for _ = range stmt.Body.List { stmtBlocks = append(stmtBlocks, llvm.InsertBasicBlock(endBlock, "")) } // Move the "default" block to the end, if there is one. caseclauses := make([]*ast.CaseClause, 0, len(stmt.Body.List)) var defaultclause *ast.CaseClause for _, stmt := range stmt.Body.List { clause := stmt.(*ast.CaseClause) if clause.List == nil { defaultclause = clause } else { caseclauses = append(caseclauses, clause) } } if defaultclause != nil { caseclauses = append(caseclauses, defaultclause) } c.builder.CreateBr(caseBlocks[0]) for i, clause := range caseclauses { c.builder.SetInsertPointAtEnd(caseBlocks[i]) stmtBlock := stmtBlocks[i] nextBlock := endBlock if i+1 < len(caseBlocks) { nextBlock = caseBlocks[i+1] } if clause.List != nil { value := c.VisitExpr(clause.List[0]) result := value.BinaryOp(token.EQL, tag) for _, expr := range clause.List[1:] { rhsResultFunc := makeValueFunc(expr) result = c.compileLogicalOp(token.LOR, result, rhsResultFunc) } c.builder.CreateCondBr(result.LLVMValue(), stmtBlock, nextBlock) } else { // default case c.builder.CreateBr(stmtBlock) } c.builder.SetInsertPointAtEnd(stmtBlock) branchBlock := endBlock for _, stmt := range clause.Body { if br, isbr := stmt.(*ast.BranchStmt); isbr { if br.Tok == token.FALLTHROUGH { if i+1 < len(stmtBlocks) { branchBlock = stmtBlocks[i+1] } } else { c.VisitStmt(stmt) } // Ignore anything after a branch statement. break } else { c.VisitStmt(stmt) } } c.maybeImplicitBranch(branchBlock) } }
// ConstDecl = "const" ExportedName [ Type ] "=" Literal . // Literal = bool_lit | int_lit | float_lit | complex_lit | rune_lit | string_lit . // bool_lit = "true" | "false" . // complex_lit = "(" float_lit "+" float_lit "i" ")" . // rune_lit = "(" int_lit "+" int_lit ")" . // string_lit = `"` { unicode_char } `"` . // func (p *gcParser) parseConstDecl() { p.expectKeyword("const") pkg, name := p.parseExportedName() obj := declConst(pkg, name) var x operand if p.tok != '=' { obj.typ = p.parseType() } p.expect('=') switch p.tok { case scanner.Ident: // bool_lit if p.lit != "true" && p.lit != "false" { p.error("expected true or false") } x.typ = Typ[UntypedBool] x.val = exact.MakeBool(p.lit == "true") p.next() case '-', scanner.Int: // int_lit x = p.parseNumber() case '(': // complex_lit or rune_lit p.next() if p.tok == scanner.Char { p.next() p.expect('+') x = p.parseNumber() x.typ = Typ[UntypedRune] p.expect(')') break } re := p.parseNumber() p.expect('+') im := p.parseNumber() p.expectKeyword("i") p.expect(')') x.typ = Typ[UntypedComplex] // TODO(gri) fix this _, _ = re, im x.val = exact.MakeInt64(0) case scanner.Char: // rune_lit x.setConst(token.CHAR, p.lit) p.next() case scanner.String: // string_lit x.setConst(token.STRING, p.lit) p.next() default: p.errorf("expected literal got %s", scanner.TokenString(p.tok)) } if obj.typ == nil { obj.typ = x.typ } assert(x.val != nil) obj.val = x.val }
// ConstDecl = "const" ExportedName [ Type ] "=" Literal . // Literal = bool_lit | int_lit | float_lit | complex_lit | rune_lit | string_lit . // bool_lit = "true" | "false" . // complex_lit = "(" float_lit "+" float_lit "i" ")" . // rune_lit = "(" int_lit "+" int_lit ")" . // string_lit = `"` { unicode_char } `"` . // func (p *parser) parseConstDecl() { p.expectKeyword("const") pkg, name := p.parseExportedName() var typ0 types.Type if p.tok != '=' { typ0 = p.parseType() } p.expect('=') var typ types.Type var val exact.Value switch p.tok { case scanner.Ident: // bool_lit if p.lit != "true" && p.lit != "false" { p.error("expected true or false") } typ = types.Typ[types.UntypedBool] val = exact.MakeBool(p.lit == "true") p.next() case '-', scanner.Int: // int_lit typ, val = p.parseNumber() case '(': // complex_lit or rune_lit p.next() if p.tok == scanner.Char { p.next() p.expect('+') typ = types.Typ[types.UntypedRune] _, val = p.parseNumber() p.expect(')') break } _, re := p.parseNumber() p.expect('+') _, im := p.parseNumber() p.expectKeyword("i") p.expect(')') typ = types.Typ[types.UntypedComplex] val = exact.BinaryOp(re, token.ADD, exact.MakeImag(im)) case scanner.Char: // rune_lit typ = types.Typ[types.UntypedRune] val = exact.MakeFromLiteral(p.lit, token.CHAR) p.next() case scanner.String: // string_lit typ = types.Typ[types.UntypedString] val = exact.MakeFromLiteral(p.lit, token.STRING) p.next() default: p.errorf("expected literal got %s", scanner.TokenString(p.tok)) } if typ0 == nil { typ0 = typ } pkg.Scope().Insert(types.NewConst(token.NoPos, pkg, name, typ0, val)) }
// ConstValue = string | "false" | "true" | ["-"] (int ["'"] | FloatOrComplex) . // FloatOrComplex = float ["i" | ("+"|"-") float "i"] . func (p *parser) parseConstValue() (val exact.Value, typ types.Type) { switch p.tok { case scanner.String: str := p.parseString() val = exact.MakeString(str) typ = types.Typ[types.UntypedString] return case scanner.Ident: b := false switch p.lit { case "false": case "true": b = true default: p.errorf("expected const value, got %s (%q)", scanner.TokenString(p.tok), p.lit) } p.next() val = exact.MakeBool(b) typ = types.Typ[types.UntypedBool] return } sign := "" if p.tok == '-' { p.next() sign = "-" } switch p.tok { case scanner.Int: val = exact.MakeFromLiteral(sign+p.lit, token.INT) if val == nil { p.error("could not parse integer literal") } p.next() if p.tok == '\'' { p.next() typ = types.Typ[types.UntypedRune] } else { typ = types.Typ[types.UntypedInt] } case scanner.Float: re := sign + p.lit p.next() var im string switch p.tok { case '+': p.next() im = p.expect(scanner.Float) case '-': p.next() im = "-" + p.expect(scanner.Float) case scanner.Ident: // re is in fact the imaginary component. Expect "i" below. im = re re = "0" default: val = exact.MakeFromLiteral(re, token.FLOAT) if val == nil { p.error("could not parse float literal") } typ = types.Typ[types.UntypedFloat] return } p.expectKeyword("i") reval := exact.MakeFromLiteral(re, token.FLOAT) if reval == nil { p.error("could not parse real component of complex literal") } imval := exact.MakeFromLiteral(im+"i", token.IMAG) if imval == nil { p.error("could not parse imag component of complex literal") } val = exact.BinaryOp(reval, token.ADD, imval) typ = types.Typ[types.UntypedComplex] default: p.errorf("expected const value, got %s (%q)", scanner.TokenString(p.tok), p.lit) } return }