func ExampleLabelPairSorter() { labelPairs := []*dto.LabelPair{ &dto.LabelPair{Name: proto.String("status"), Value: proto.String("404")}, &dto.LabelPair{Name: proto.String("method"), Value: proto.String("get")}, } sort.Sort(prometheus.LabelPairSorter(labelPairs)) fmt.Println(labelPairs) // Output: // [name:"method" value:"get" name:"status" value:"404" ] }
func init() { ext := &pb.Ext{ Data: proto.String("extension"), } if err := proto.SetExtension(cloneTestMessage, pb.E_Ext_More, ext); err != nil { panic("SetExtension: " + err.Error()) } }
func TestStringEscaping(t *testing.T) { testCases := []struct { in *pb.Strings out string }{ { // Test data from C++ test (TextFormatTest.StringEscape). // Single divergence: we don't escape apostrophes. &pb.Strings{StringField: proto.String("\"A string with ' characters \n and \r newlines and \t tabs and \001 slashes \\ and multiple spaces")}, "string_field: \"\\\"A string with ' characters \\n and \\r newlines and \\t tabs and \\001 slashes \\\\ and multiple spaces\"\n", }, { // Test data from the same C++ test. &pb.Strings{StringField: proto.String("\350\260\267\346\255\214")}, "string_field: \"\\350\\260\\267\\346\\255\\214\"\n", }, { // Some UTF-8. &pb.Strings{StringField: proto.String("\x00\x01\xff\x81")}, `string_field: "\000\001\377\201"` + "\n", }, } for i, tc := range testCases { var buf bytes.Buffer if err := proto.MarshalText(&buf, tc.in); err != nil { t.Errorf("proto.MarsalText: %v", err) continue } s := buf.String() if s != tc.out { t.Errorf("#%d: Got:\n%s\nExpected:\n%s\n", i, s, tc.out) continue } // Check round-trip. pb := new(pb.Strings) if err := proto.UnmarshalText(s, pb); err != nil { t.Errorf("#%d: UnmarshalText: %v", i, err) continue } if !proto.Equal(pb, tc.in) { t.Errorf("#%d: Round-trip failed:\nstart: %v\n end: %v", i, tc.in, pb) } } }
// startLabelValue represents the state where the next byte read from p.buf is // the start of a (quoted) label value (or whitespace leading up to it). func (p *TextParser) startLabelValue() stateFn { if p.skipBlankTab(); p.err != nil { return nil // Unexpected end of input. } if p.currentByte != '"' { p.parseError(fmt.Sprintf("expected '\"' at start of label value, found %q", p.currentByte)) return nil } if p.readTokenAsLabelValue(); p.err != nil { return nil } p.currentLabelPair.Value = proto.String(p.currentToken.String()) // Special treatment of summaries: // - Quantile labels are special, will result in dto.Quantile later. // - Other labels have to be added to currentLabels for signature calculation. if p.currentMF.GetType() == dto.MetricType_SUMMARY { if p.currentLabelPair.GetName() == model.QuantileLabel { if p.currentQuantile, p.err = strconv.ParseFloat(p.currentLabelPair.GetValue(), 64); p.err != nil { // Create a more helpful error message. p.parseError(fmt.Sprintf("expected float as value for 'quantile' label, got %q", p.currentLabelPair.GetValue())) return nil } } else { p.currentLabels[p.currentLabelPair.GetName()] = p.currentLabelPair.GetValue() } } // Similar special treatment of histograms. if p.currentMF.GetType() == dto.MetricType_HISTOGRAM { if p.currentLabelPair.GetName() == model.BucketLabel { if p.currentBucket, p.err = strconv.ParseFloat(p.currentLabelPair.GetValue(), 64); p.err != nil { // Create a more helpful error message. p.parseError(fmt.Sprintf("expected float as value for 'le' label, got %q", p.currentLabelPair.GetValue())) return nil } } else { p.currentLabels[p.currentLabelPair.GetName()] = p.currentLabelPair.GetValue() } } if p.skipBlankTab(); p.err != nil { return nil // Unexpected end of input. } switch p.currentByte { case ',': return p.startLabelName case '}': if p.skipBlankTab(); p.err != nil { return nil // Unexpected end of input. } return p.readingValue default: p.parseError(fmt.Sprintf("unexpected end of label value %q", p.currentLabelPair.Value)) return nil } }
// readingHelp represents the state where the last byte read (now in // p.currentByte) is the first byte of the docstring after 'HELP'. func (p *TextParser) readingHelp() stateFn { if p.currentMF.Help != nil { p.parseError(fmt.Sprintf("second HELP line for metric name %q", p.currentMF.GetName())) return nil } // Rest of line is the docstring. if p.readTokenUntilNewline(true); p.err != nil { return nil // Unexpected end of input. } p.currentMF.Help = proto.String(p.currentToken.String()) return p.startOfLine }
func makeLabelPairs(desc *Desc, labelValues []string) []*dto.LabelPair { totalLen := len(desc.variableLabels) + len(desc.constLabelPairs) if totalLen == 0 { // Super fast path. return nil } if len(desc.variableLabels) == 0 { // Moderately fast path. return desc.constLabelPairs } labelPairs := make([]*dto.LabelPair, 0, totalLen) for i, n := range desc.variableLabels { labelPairs = append(labelPairs, &dto.LabelPair{ Name: proto.String(n), Value: proto.String(labelValues[i]), }) } for _, lp := range desc.constLabelPairs { labelPairs = append(labelPairs, lp) } sort.Sort(LabelPairSorter(labelPairs)) return labelPairs }
func protoLabelSet(base, ext model.LabelSet) []*dto.LabelPair { labels := base.Clone().Merge(ext) delete(labels, model.MetricNameLabel) names := make([]string, 0, len(labels)) for ln := range labels { names = append(names, string(ln)) } sort.Strings(names) pairs := make([]*dto.LabelPair, 0, len(labels)) for _, ln := range names { lv := labels[model.LabelName(ln)] pairs = append(pairs, &dto.LabelPair{ Name: proto.String(ln), Value: proto.String(string(lv)), }) } return pairs }
func newTestMessage() *pb.MyMessage { msg := &pb.MyMessage{ Count: proto.Int32(42), Name: proto.String("Dave"), Quote: proto.String(`"I didn't want to go."`), Pet: []string{"bunny", "kitty", "horsey"}, Inner: &pb.InnerMessage{ Host: proto.String("footrest.syd"), Port: proto.Int32(7001), Connected: proto.Bool(true), }, Others: []*pb.OtherMessage{ { Key: proto.Int64(0xdeadbeef), Value: []byte{1, 65, 7, 12}, }, { Weight: proto.Float32(6.022), Inner: &pb.InnerMessage{ Host: proto.String("lesha.mtv"), Port: proto.Int32(8002), }, }, }, Bikeshed: pb.MyMessage_BLUE.Enum(), Somegroup: &pb.MyMessage_SomeGroup{ GroupField: proto.Int32(8), }, // One normally wouldn't do this. // This is an undeclared tag 13, as a varint (wire type 0) with value 4. XXX_unrecognized: []byte{13<<3 | 0, 4}, } ext := &pb.Ext{ Data: proto.String("Big gobs for big rats"), } if err := proto.SetExtension(msg, pb.E_Ext_More, ext); err != nil { panic(err) } greetings := []string{"adg", "easy", "cow"} if err := proto.SetExtension(msg, pb.E_Greeting, greetings); err != nil { panic(err) } // Add an unknown extension. We marshal a pb.Ext, and fake the ID. b, err := proto.Marshal(&pb.Ext{Data: proto.String("3G skiing")}) if err != nil { panic(err) } b = append(proto.EncodeVarint(201<<3|proto.WireBytes), b...) proto.SetRawExtension(msg, 201, b) // Extensions can be plain fields, too, so let's test that. b = append(proto.EncodeVarint(202<<3|proto.WireVarint), 19) proto.SetRawExtension(msg, 202, b) return msg }
func TestRepeatedNilText(t *testing.T) { m := &pb.MessageList{ Message: []*pb.MessageList_Message{ nil, &pb.MessageList_Message{ Name: proto.String("Horse"), }, nil, }, } want := `Message <nil> Message { name: "Horse" } Message <nil> ` if s := proto.MarshalTextString(m); s != want { t.Errorf(" got: %s\nwant: %s", s, want) } }
func (p *TextParser) setOrCreateCurrentMF() { p.currentIsSummaryCount = false p.currentIsSummarySum = false p.currentIsHistogramCount = false p.currentIsHistogramSum = false name := p.currentToken.String() if p.currentMF = p.metricFamiliesByName[name]; p.currentMF != nil { return } // Try out if this is a _sum or _count for a summary/histogram. summaryName := summaryMetricName(name) if p.currentMF = p.metricFamiliesByName[summaryName]; p.currentMF != nil { if p.currentMF.GetType() == dto.MetricType_SUMMARY { if isCount(name) { p.currentIsSummaryCount = true } if isSum(name) { p.currentIsSummarySum = true } return } } histogramName := histogramMetricName(name) if p.currentMF = p.metricFamiliesByName[histogramName]; p.currentMF != nil { if p.currentMF.GetType() == dto.MetricType_HISTOGRAM { if isCount(name) { p.currentIsHistogramCount = true } if isSum(name) { p.currentIsHistogramSum = true } return } } p.currentMF = &dto.MetricFamily{Name: proto.String(name)} p.metricFamiliesByName[name] = p.currentMF }
// startLabelName represents the state where the next byte read from p.buf is // the start of a label name (or whitespace leading up to it). func (p *TextParser) startLabelName() stateFn { if p.skipBlankTab(); p.err != nil { return nil // Unexpected end of input. } if p.currentByte == '}' { if p.skipBlankTab(); p.err != nil { return nil // Unexpected end of input. } return p.readingValue } if p.readTokenAsLabelName(); p.err != nil { return nil // Unexpected end of input. } if p.currentToken.Len() == 0 { p.parseError(fmt.Sprintf("invalid label name for metric %q", p.currentMF.GetName())) return nil } p.currentLabelPair = &dto.LabelPair{Name: proto.String(p.currentToken.String())} if p.currentLabelPair.GetName() == string(model.MetricNameLabel) { p.parseError(fmt.Sprintf("label name %q is reserved", model.MetricNameLabel)) return nil } // Special summary/histogram treatment. Don't add 'quantile' and 'le' // labels to 'real' labels. if !(p.currentMF.GetType() == dto.MetricType_SUMMARY && p.currentLabelPair.GetName() == model.QuantileLabel) && !(p.currentMF.GetType() == dto.MetricType_HISTOGRAM && p.currentLabelPair.GetName() == model.BucketLabel) { p.currentMetric.Label = append(p.currentMetric.Label, p.currentLabelPair) } if p.skipBlankTabIfCurrentBlankTab(); p.err != nil { return nil // Unexpected end of input. } if p.currentByte != '=' { p.parseError(fmt.Sprintf("expected '=' after label name, found %q", p.currentByte)) return nil } return p.startLabelValue }
func (r *registry) writePB(encoder expfmt.Encoder) error { var metricHashes map[uint64]struct{} if r.collectChecksEnabled { metricHashes = make(map[uint64]struct{}) } metricChan := make(chan Metric, capMetricChan) wg := sync.WaitGroup{} r.mtx.RLock() metricFamiliesByName := make(map[string]*dto.MetricFamily, len(r.dimHashesByName)) // Scatter. // (Collectors could be complex and slow, so we call them all at once.) wg.Add(len(r.collectorsByID)) go func() { wg.Wait() close(metricChan) }() for _, collector := range r.collectorsByID { go func(collector Collector) { defer wg.Done() collector.Collect(metricChan) }(collector) } r.mtx.RUnlock() // Drain metricChan in case of premature return. defer func() { for _ = range metricChan { } }() // Gather. for metric := range metricChan { // This could be done concurrently, too, but it required locking // of metricFamiliesByName (and of metricHashes if checks are // enabled). Most likely not worth it. desc := metric.Desc() metricFamily, ok := metricFamiliesByName[desc.fqName] if !ok { metricFamily = r.getMetricFamily() defer r.giveMetricFamily(metricFamily) metricFamily.Name = proto.String(desc.fqName) metricFamily.Help = proto.String(desc.help) metricFamiliesByName[desc.fqName] = metricFamily } dtoMetric := r.getMetric() defer r.giveMetric(dtoMetric) if err := metric.Write(dtoMetric); err != nil { // TODO: Consider different means of error reporting so // that a single erroneous metric could be skipped // instead of blowing up the whole collection. return fmt.Errorf("error collecting metric %v: %s", desc, err) } switch { case metricFamily.Type != nil: // Type already set. We are good. case dtoMetric.Gauge != nil: metricFamily.Type = dto.MetricType_GAUGE.Enum() case dtoMetric.Counter != nil: metricFamily.Type = dto.MetricType_COUNTER.Enum() case dtoMetric.Summary != nil: metricFamily.Type = dto.MetricType_SUMMARY.Enum() case dtoMetric.Untyped != nil: metricFamily.Type = dto.MetricType_UNTYPED.Enum() case dtoMetric.Histogram != nil: metricFamily.Type = dto.MetricType_HISTOGRAM.Enum() default: return fmt.Errorf("empty metric collected: %s", dtoMetric) } if r.collectChecksEnabled { if err := r.checkConsistency(metricFamily, dtoMetric, desc, metricHashes); err != nil { return err } } metricFamily.Metric = append(metricFamily.Metric, dtoMetric) } if r.metricFamilyInjectionHook != nil { for _, mf := range r.metricFamilyInjectionHook() { existingMF, exists := metricFamiliesByName[mf.GetName()] if !exists { metricFamiliesByName[mf.GetName()] = mf if r.collectChecksEnabled { for _, m := range mf.Metric { if err := r.checkConsistency(mf, m, nil, metricHashes); err != nil { return err } } } continue } for _, m := range mf.Metric { if r.collectChecksEnabled { if err := r.checkConsistency(existingMF, m, nil, metricHashes); err != nil { return err } } existingMF.Metric = append(existingMF.Metric, m) } } } // Now that MetricFamilies are all set, sort their Metrics // lexicographically by their label values. for _, mf := range metricFamiliesByName { sort.Sort(metricSorter(mf.Metric)) } // Write out MetricFamilies sorted by their name. names := make([]string, 0, len(metricFamiliesByName)) for name := range metricFamiliesByName { names = append(names, name) } sort.Strings(names) for _, name := range names { if err := encoder.Encode(metricFamiliesByName[name]); err != nil { return err } } return nil }
func testHandler(t testing.TB) { metricVec := NewCounterVec( CounterOpts{ Name: "name", Help: "docstring", ConstLabels: Labels{"constname": "constvalue"}, }, []string{"labelname"}, ) metricVec.WithLabelValues("val1").Inc() metricVec.WithLabelValues("val2").Inc() varintBuf := make([]byte, binary.MaxVarintLen32) externalMetricFamily := &dto.MetricFamily{ Name: proto.String("externalname"), Help: proto.String("externaldocstring"), Type: dto.MetricType_COUNTER.Enum(), Metric: []*dto.Metric{ { Label: []*dto.LabelPair{ { Name: proto.String("externalconstname"), Value: proto.String("externalconstvalue"), }, { Name: proto.String("externallabelname"), Value: proto.String("externalval1"), }, }, Counter: &dto.Counter{ Value: proto.Float64(1), }, }, }, } marshaledExternalMetricFamily, err := proto.Marshal(externalMetricFamily) if err != nil { t.Fatal(err) } var externalBuf bytes.Buffer l := binary.PutUvarint(varintBuf, uint64(len(marshaledExternalMetricFamily))) _, err = externalBuf.Write(varintBuf[:l]) if err != nil { t.Fatal(err) } _, err = externalBuf.Write(marshaledExternalMetricFamily) if err != nil { t.Fatal(err) } externalMetricFamilyAsBytes := externalBuf.Bytes() externalMetricFamilyAsText := []byte(`# HELP externalname externaldocstring # TYPE externalname counter externalname{externalconstname="externalconstvalue",externallabelname="externalval1"} 1 `) externalMetricFamilyAsProtoText := []byte(`name: "externalname" help: "externaldocstring" type: COUNTER metric: < label: < name: "externalconstname" value: "externalconstvalue" > label: < name: "externallabelname" value: "externalval1" > counter: < value: 1 > > `) externalMetricFamilyAsProtoCompactText := []byte(`name:"externalname" help:"externaldocstring" type:COUNTER metric:<label:<name:"externalconstname" value:"externalconstvalue" > label:<name:"externallabelname" value:"externalval1" > counter:<value:1 > > `) expectedMetricFamily := &dto.MetricFamily{ Name: proto.String("name"), Help: proto.String("docstring"), Type: dto.MetricType_COUNTER.Enum(), Metric: []*dto.Metric{ { Label: []*dto.LabelPair{ { Name: proto.String("constname"), Value: proto.String("constvalue"), }, { Name: proto.String("labelname"), Value: proto.String("val1"), }, }, Counter: &dto.Counter{ Value: proto.Float64(1), }, }, { Label: []*dto.LabelPair{ { Name: proto.String("constname"), Value: proto.String("constvalue"), }, { Name: proto.String("labelname"), Value: proto.String("val2"), }, }, Counter: &dto.Counter{ Value: proto.Float64(1), }, }, }, } marshaledExpectedMetricFamily, err := proto.Marshal(expectedMetricFamily) if err != nil { t.Fatal(err) } var buf bytes.Buffer l = binary.PutUvarint(varintBuf, uint64(len(marshaledExpectedMetricFamily))) _, err = buf.Write(varintBuf[:l]) if err != nil { t.Fatal(err) } _, err = buf.Write(marshaledExpectedMetricFamily) if err != nil { t.Fatal(err) } expectedMetricFamilyAsBytes := buf.Bytes() expectedMetricFamilyAsText := []byte(`# HELP name docstring # TYPE name counter name{constname="constvalue",labelname="val1"} 1 name{constname="constvalue",labelname="val2"} 1 `) expectedMetricFamilyAsProtoText := []byte(`name: "name" help: "docstring" type: COUNTER metric: < label: < name: "constname" value: "constvalue" > label: < name: "labelname" value: "val1" > counter: < value: 1 > > metric: < label: < name: "constname" value: "constvalue" > label: < name: "labelname" value: "val2" > counter: < value: 1 > > `) expectedMetricFamilyAsProtoCompactText := []byte(`name:"name" help:"docstring" type:COUNTER metric:<label:<name:"constname" value:"constvalue" > label:<name:"labelname" value:"val1" > counter:<value:1 > > metric:<label:<name:"constname" value:"constvalue" > label:<name:"labelname" value:"val2" > counter:<value:1 > > `) externalMetricFamilyWithSameName := &dto.MetricFamily{ Name: proto.String("name"), Help: proto.String("inconsistent help string does not matter here"), Type: dto.MetricType_COUNTER.Enum(), Metric: []*dto.Metric{ { Label: []*dto.LabelPair{ { Name: proto.String("constname"), Value: proto.String("constvalue"), }, { Name: proto.String("labelname"), Value: proto.String("different_val"), }, }, Counter: &dto.Counter{ Value: proto.Float64(42), }, }, }, } expectedMetricFamilyMergedWithExternalAsProtoCompactText := []byte(`name:"name" help:"docstring" type:COUNTER metric:<label:<name:"constname" value:"constvalue" > label:<name:"labelname" value:"different_val" > counter:<value:42 > > metric:<label:<name:"constname" value:"constvalue" > label:<name:"labelname" value:"val1" > counter:<value:1 > > metric:<label:<name:"constname" value:"constvalue" > label:<name:"labelname" value:"val2" > counter:<value:1 > > `) type output struct { headers map[string]string body []byte } var scenarios = []struct { headers map[string]string out output collector Collector externalMF []*dto.MetricFamily }{ { // 0 headers: map[string]string{ "Accept": "foo/bar;q=0.2, dings/bums;q=0.8", }, out: output{ headers: map[string]string{ "Content-Type": `text/plain; version=0.0.4`, }, body: []byte{}, }, }, { // 1 headers: map[string]string{ "Accept": "foo/bar;q=0.2, application/quark;q=0.8", }, out: output{ headers: map[string]string{ "Content-Type": `text/plain; version=0.0.4`, }, body: []byte{}, }, }, { // 2 headers: map[string]string{ "Accept": "foo/bar;q=0.2, application/vnd.google.protobuf;proto=io.prometheus.client.MetricFamily;encoding=bla;q=0.8", }, out: output{ headers: map[string]string{ "Content-Type": `text/plain; version=0.0.4`, }, body: []byte{}, }, }, { // 3 headers: map[string]string{ "Accept": "text/plain;q=0.2, application/vnd.google.protobuf;proto=io.prometheus.client.MetricFamily;encoding=delimited;q=0.8", }, out: output{ headers: map[string]string{ "Content-Type": `application/vnd.google.protobuf; proto=io.prometheus.client.MetricFamily; encoding=delimited`, }, body: []byte{}, }, }, { // 4 headers: map[string]string{ "Accept": "application/json", }, out: output{ headers: map[string]string{ "Content-Type": `text/plain; version=0.0.4`, }, body: expectedMetricFamilyAsText, }, collector: metricVec, }, { // 5 headers: map[string]string{ "Accept": "application/vnd.google.protobuf;proto=io.prometheus.client.MetricFamily;encoding=delimited", }, out: output{ headers: map[string]string{ "Content-Type": `application/vnd.google.protobuf; proto=io.prometheus.client.MetricFamily; encoding=delimited`, }, body: expectedMetricFamilyAsBytes, }, collector: metricVec, }, { // 6 headers: map[string]string{ "Accept": "application/json", }, out: output{ headers: map[string]string{ "Content-Type": `text/plain; version=0.0.4`, }, body: externalMetricFamilyAsText, }, externalMF: []*dto.MetricFamily{externalMetricFamily}, }, { // 7 headers: map[string]string{ "Accept": "application/vnd.google.protobuf;proto=io.prometheus.client.MetricFamily;encoding=delimited", }, out: output{ headers: map[string]string{ "Content-Type": `application/vnd.google.protobuf; proto=io.prometheus.client.MetricFamily; encoding=delimited`, }, body: externalMetricFamilyAsBytes, }, externalMF: []*dto.MetricFamily{externalMetricFamily}, }, { // 8 headers: map[string]string{ "Accept": "application/vnd.google.protobuf;proto=io.prometheus.client.MetricFamily;encoding=delimited", }, out: output{ headers: map[string]string{ "Content-Type": `application/vnd.google.protobuf; proto=io.prometheus.client.MetricFamily; encoding=delimited`, }, body: bytes.Join( [][]byte{ externalMetricFamilyAsBytes, expectedMetricFamilyAsBytes, }, []byte{}, ), }, collector: metricVec, externalMF: []*dto.MetricFamily{externalMetricFamily}, }, { // 9 headers: map[string]string{ "Accept": "text/plain", }, out: output{ headers: map[string]string{ "Content-Type": `text/plain; version=0.0.4`, }, body: []byte{}, }, }, { // 10 headers: map[string]string{ "Accept": "application/vnd.google.protobuf;proto=io.prometheus.client.MetricFamily;encoding=bla;q=0.2, text/plain;q=0.5", }, out: output{ headers: map[string]string{ "Content-Type": `text/plain; version=0.0.4`, }, body: expectedMetricFamilyAsText, }, collector: metricVec, }, { // 11 headers: map[string]string{ "Accept": "application/vnd.google.protobuf;proto=io.prometheus.client.MetricFamily;encoding=bla;q=0.2, text/plain;q=0.5;version=0.0.4", }, out: output{ headers: map[string]string{ "Content-Type": `text/plain; version=0.0.4`, }, body: bytes.Join( [][]byte{ externalMetricFamilyAsText, expectedMetricFamilyAsText, }, []byte{}, ), }, collector: metricVec, externalMF: []*dto.MetricFamily{externalMetricFamily}, }, { // 12 headers: map[string]string{ "Accept": "application/vnd.google.protobuf;proto=io.prometheus.client.MetricFamily;encoding=delimited;q=0.2, text/plain;q=0.5;version=0.0.2", }, out: output{ headers: map[string]string{ "Content-Type": `application/vnd.google.protobuf; proto=io.prometheus.client.MetricFamily; encoding=delimited`, }, body: bytes.Join( [][]byte{ externalMetricFamilyAsBytes, expectedMetricFamilyAsBytes, }, []byte{}, ), }, collector: metricVec, externalMF: []*dto.MetricFamily{externalMetricFamily}, }, { // 13 headers: map[string]string{ "Accept": "application/vnd.google.protobuf;proto=io.prometheus.client.MetricFamily;encoding=text;q=0.5, application/vnd.google.protobuf;proto=io.prometheus.client.MetricFamily;encoding=delimited;q=0.4", }, out: output{ headers: map[string]string{ "Content-Type": `application/vnd.google.protobuf; proto=io.prometheus.client.MetricFamily; encoding=text`, }, body: bytes.Join( [][]byte{ externalMetricFamilyAsProtoText, expectedMetricFamilyAsProtoText, }, []byte{}, ), }, collector: metricVec, externalMF: []*dto.MetricFamily{externalMetricFamily}, }, { // 14 headers: map[string]string{ "Accept": "application/vnd.google.protobuf;proto=io.prometheus.client.MetricFamily;encoding=compact-text", }, out: output{ headers: map[string]string{ "Content-Type": `application/vnd.google.protobuf; proto=io.prometheus.client.MetricFamily; encoding=compact-text`, }, body: bytes.Join( [][]byte{ externalMetricFamilyAsProtoCompactText, expectedMetricFamilyAsProtoCompactText, }, []byte{}, ), }, collector: metricVec, externalMF: []*dto.MetricFamily{externalMetricFamily}, }, { // 15 headers: map[string]string{ "Accept": "application/vnd.google.protobuf;proto=io.prometheus.client.MetricFamily;encoding=compact-text", }, out: output{ headers: map[string]string{ "Content-Type": `application/vnd.google.protobuf; proto=io.prometheus.client.MetricFamily; encoding=compact-text`, }, body: bytes.Join( [][]byte{ externalMetricFamilyAsProtoCompactText, expectedMetricFamilyMergedWithExternalAsProtoCompactText, }, []byte{}, ), }, collector: metricVec, externalMF: []*dto.MetricFamily{ externalMetricFamily, externalMetricFamilyWithSameName, }, }, } for i, scenario := range scenarios { registry := newRegistry() registry.collectChecksEnabled = true if scenario.collector != nil { registry.Register(scenario.collector) } if scenario.externalMF != nil { registry.metricFamilyInjectionHook = func() []*dto.MetricFamily { return scenario.externalMF } } writer := &fakeResponseWriter{ header: http.Header{}, } handler := InstrumentHandler("prometheus", registry) request, _ := http.NewRequest("GET", "/", nil) for key, value := range scenario.headers { request.Header.Add(key, value) } handler(writer, request) for key, value := range scenario.out.headers { if writer.Header().Get(key) != value { t.Errorf( "%d. expected %q for header %q, got %q", i, value, key, writer.Header().Get(key), ) } } if !bytes.Equal(scenario.out.body, writer.body.Bytes()) { t.Errorf( "%d. expected %q for body, got %q", i, scenario.out.body, writer.body.Bytes(), ) } } }
func testTextParse(t testing.TB) { var scenarios = []struct { in string out []*dto.MetricFamily }{ // 0: Empty lines as input. { in: ` `, out: []*dto.MetricFamily{}, }, // 1: Minimal case. { in: ` minimal_metric 1.234 another_metric -3e3 103948 # Even that: no_labels{} 3 # HELP line for non-existing metric will be ignored. `, out: []*dto.MetricFamily{ &dto.MetricFamily{ Name: proto.String("minimal_metric"), Type: dto.MetricType_UNTYPED.Enum(), Metric: []*dto.Metric{ &dto.Metric{ Untyped: &dto.Untyped{ Value: proto.Float64(1.234), }, }, }, }, &dto.MetricFamily{ Name: proto.String("another_metric"), Type: dto.MetricType_UNTYPED.Enum(), Metric: []*dto.Metric{ &dto.Metric{ Untyped: &dto.Untyped{ Value: proto.Float64(-3e3), }, TimestampMs: proto.Int64(103948), }, }, }, &dto.MetricFamily{ Name: proto.String("no_labels"), Type: dto.MetricType_UNTYPED.Enum(), Metric: []*dto.Metric{ &dto.Metric{ Untyped: &dto.Untyped{ Value: proto.Float64(3), }, }, }, }, }, }, // 2: Counters & gauges, docstrings, various whitespace, escape sequences. { in: ` # A normal comment. # # TYPE name counter name{labelname="val1",basename="basevalue"} NaN name {labelname="val2",basename="base\"v\\al\nue"} 0.23 1234567890 # HELP name two-line\n doc str\\ing # HELP name2 doc str"ing 2 # TYPE name2 gauge name2{labelname="val2" ,basename = "basevalue2" } +Inf 54321 name2{ labelname = "val1" , }-Inf `, out: []*dto.MetricFamily{ &dto.MetricFamily{ Name: proto.String("name"), Help: proto.String("two-line\n doc str\\ing"), Type: dto.MetricType_COUNTER.Enum(), Metric: []*dto.Metric{ &dto.Metric{ Label: []*dto.LabelPair{ &dto.LabelPair{ Name: proto.String("labelname"), Value: proto.String("val1"), }, &dto.LabelPair{ Name: proto.String("basename"), Value: proto.String("basevalue"), }, }, Counter: &dto.Counter{ Value: proto.Float64(math.NaN()), }, }, &dto.Metric{ Label: []*dto.LabelPair{ &dto.LabelPair{ Name: proto.String("labelname"), Value: proto.String("val2"), }, &dto.LabelPair{ Name: proto.String("basename"), Value: proto.String("base\"v\\al\nue"), }, }, Counter: &dto.Counter{ Value: proto.Float64(.23), }, TimestampMs: proto.Int64(1234567890), }, }, }, &dto.MetricFamily{ Name: proto.String("name2"), Help: proto.String("doc str\"ing 2"), Type: dto.MetricType_GAUGE.Enum(), Metric: []*dto.Metric{ &dto.Metric{ Label: []*dto.LabelPair{ &dto.LabelPair{ Name: proto.String("labelname"), Value: proto.String("val2"), }, &dto.LabelPair{ Name: proto.String("basename"), Value: proto.String("basevalue2"), }, }, Gauge: &dto.Gauge{ Value: proto.Float64(math.Inf(+1)), }, TimestampMs: proto.Int64(54321), }, &dto.Metric{ Label: []*dto.LabelPair{ &dto.LabelPair{ Name: proto.String("labelname"), Value: proto.String("val1"), }, }, Gauge: &dto.Gauge{ Value: proto.Float64(math.Inf(-1)), }, }, }, }, }, }, // 3: The evil summary, mixed with other types and funny comments. { in: ` # TYPE my_summary summary my_summary{n1="val1",quantile="0.5"} 110 decoy -1 -2 my_summary{n1="val1",quantile="0.9"} 140 1 my_summary_count{n1="val1"} 42 # Latest timestamp wins in case of a summary. my_summary_sum{n1="val1"} 4711 2 fake_sum{n1="val1"} 2001 # TYPE another_summary summary another_summary_count{n2="val2",n1="val1"} 20 my_summary_count{n2="val2",n1="val1"} 5 5 another_summary{n1="val1",n2="val2",quantile=".3"} -1.2 my_summary_sum{n1="val2"} 08 15 my_summary{n1="val3", quantile="0.2"} 4711 my_summary{n1="val1",n2="val2",quantile="-12.34",} NaN # some # funny comments # HELP # HELP # HELP my_summary # HELP my_summary `, out: []*dto.MetricFamily{ &dto.MetricFamily{ Name: proto.String("fake_sum"), Type: dto.MetricType_UNTYPED.Enum(), Metric: []*dto.Metric{ &dto.Metric{ Label: []*dto.LabelPair{ &dto.LabelPair{ Name: proto.String("n1"), Value: proto.String("val1"), }, }, Untyped: &dto.Untyped{ Value: proto.Float64(2001), }, }, }, }, &dto.MetricFamily{ Name: proto.String("decoy"), Type: dto.MetricType_UNTYPED.Enum(), Metric: []*dto.Metric{ &dto.Metric{ Untyped: &dto.Untyped{ Value: proto.Float64(-1), }, TimestampMs: proto.Int64(-2), }, }, }, &dto.MetricFamily{ Name: proto.String("my_summary"), Type: dto.MetricType_SUMMARY.Enum(), Metric: []*dto.Metric{ &dto.Metric{ Label: []*dto.LabelPair{ &dto.LabelPair{ Name: proto.String("n1"), Value: proto.String("val1"), }, }, Summary: &dto.Summary{ SampleCount: proto.Uint64(42), SampleSum: proto.Float64(4711), Quantile: []*dto.Quantile{ &dto.Quantile{ Quantile: proto.Float64(0.5), Value: proto.Float64(110), }, &dto.Quantile{ Quantile: proto.Float64(0.9), Value: proto.Float64(140), }, }, }, TimestampMs: proto.Int64(2), }, &dto.Metric{ Label: []*dto.LabelPair{ &dto.LabelPair{ Name: proto.String("n2"), Value: proto.String("val2"), }, &dto.LabelPair{ Name: proto.String("n1"), Value: proto.String("val1"), }, }, Summary: &dto.Summary{ SampleCount: proto.Uint64(5), Quantile: []*dto.Quantile{ &dto.Quantile{ Quantile: proto.Float64(-12.34), Value: proto.Float64(math.NaN()), }, }, }, TimestampMs: proto.Int64(5), }, &dto.Metric{ Label: []*dto.LabelPair{ &dto.LabelPair{ Name: proto.String("n1"), Value: proto.String("val2"), }, }, Summary: &dto.Summary{ SampleSum: proto.Float64(8), }, TimestampMs: proto.Int64(15), }, &dto.Metric{ Label: []*dto.LabelPair{ &dto.LabelPair{ Name: proto.String("n1"), Value: proto.String("val3"), }, }, Summary: &dto.Summary{ Quantile: []*dto.Quantile{ &dto.Quantile{ Quantile: proto.Float64(0.2), Value: proto.Float64(4711), }, }, }, }, }, }, &dto.MetricFamily{ Name: proto.String("another_summary"), Type: dto.MetricType_SUMMARY.Enum(), Metric: []*dto.Metric{ &dto.Metric{ Label: []*dto.LabelPair{ &dto.LabelPair{ Name: proto.String("n2"), Value: proto.String("val2"), }, &dto.LabelPair{ Name: proto.String("n1"), Value: proto.String("val1"), }, }, Summary: &dto.Summary{ SampleCount: proto.Uint64(20), Quantile: []*dto.Quantile{ &dto.Quantile{ Quantile: proto.Float64(0.3), Value: proto.Float64(-1.2), }, }, }, }, }, }, }, }, // 4: The histogram. { in: ` # HELP request_duration_microseconds The response latency. # TYPE request_duration_microseconds histogram request_duration_microseconds_bucket{le="100"} 123 request_duration_microseconds_bucket{le="120"} 412 request_duration_microseconds_bucket{le="144"} 592 request_duration_microseconds_bucket{le="172.8"} 1524 request_duration_microseconds_bucket{le="+Inf"} 2693 request_duration_microseconds_sum 1.7560473e+06 request_duration_microseconds_count 2693 `, out: []*dto.MetricFamily{ { Name: proto.String("request_duration_microseconds"), Help: proto.String("The response latency."), Type: dto.MetricType_HISTOGRAM.Enum(), Metric: []*dto.Metric{ &dto.Metric{ Histogram: &dto.Histogram{ SampleCount: proto.Uint64(2693), SampleSum: proto.Float64(1756047.3), Bucket: []*dto.Bucket{ &dto.Bucket{ UpperBound: proto.Float64(100), CumulativeCount: proto.Uint64(123), }, &dto.Bucket{ UpperBound: proto.Float64(120), CumulativeCount: proto.Uint64(412), }, &dto.Bucket{ UpperBound: proto.Float64(144), CumulativeCount: proto.Uint64(592), }, &dto.Bucket{ UpperBound: proto.Float64(172.8), CumulativeCount: proto.Uint64(1524), }, &dto.Bucket{ UpperBound: proto.Float64(math.Inf(+1)), CumulativeCount: proto.Uint64(2693), }, }, }, }, }, }, }, }, } for i, scenario := range scenarios { out, err := parser.TextToMetricFamilies(strings.NewReader(scenario.in)) if err != nil { t.Errorf("%d. error: %s", i, err) continue } if expected, got := len(scenario.out), len(out); expected != got { t.Errorf( "%d. expected %d MetricFamilies, got %d", i, expected, got, ) } for _, expected := range scenario.out { got, ok := out[expected.GetName()] if !ok { t.Errorf( "%d. expected MetricFamily %q, found none", i, expected.GetName(), ) continue } if expected.String() != got.String() { t.Errorf( "%d. expected MetricFamily %s, got %s", i, expected, got, ) } } } }
func (r *registry) checkConsistency(metricFamily *dto.MetricFamily, dtoMetric *dto.Metric, desc *Desc, metricHashes map[uint64]struct{}) error { // Type consistency with metric family. if metricFamily.GetType() == dto.MetricType_GAUGE && dtoMetric.Gauge == nil || metricFamily.GetType() == dto.MetricType_COUNTER && dtoMetric.Counter == nil || metricFamily.GetType() == dto.MetricType_SUMMARY && dtoMetric.Summary == nil || metricFamily.GetType() == dto.MetricType_HISTOGRAM && dtoMetric.Histogram == nil || metricFamily.GetType() == dto.MetricType_UNTYPED && dtoMetric.Untyped == nil { return fmt.Errorf( "collected metric %s %s is not a %s", metricFamily.GetName(), dtoMetric, metricFamily.GetType(), ) } // Is the metric unique (i.e. no other metric with the same name and the same label values)? h := fnv.New64a() var buf bytes.Buffer buf.WriteString(metricFamily.GetName()) buf.WriteByte(separatorByte) h.Write(buf.Bytes()) // Make sure label pairs are sorted. We depend on it for the consistency // check. Label pairs must be sorted by contract. But the point of this // method is to check for contract violations. So we better do the sort // now. sort.Sort(LabelPairSorter(dtoMetric.Label)) for _, lp := range dtoMetric.Label { buf.Reset() buf.WriteString(lp.GetValue()) buf.WriteByte(separatorByte) h.Write(buf.Bytes()) } metricHash := h.Sum64() if _, exists := metricHashes[metricHash]; exists { return fmt.Errorf( "collected metric %s %s was collected before with the same name and label values", metricFamily.GetName(), dtoMetric, ) } metricHashes[metricHash] = struct{}{} if desc == nil { return nil // Nothing left to check if we have no desc. } // Desc consistency with metric family. if metricFamily.GetName() != desc.fqName { return fmt.Errorf( "collected metric %s %s has name %q but should have %q", metricFamily.GetName(), dtoMetric, metricFamily.GetName(), desc.fqName, ) } if metricFamily.GetHelp() != desc.help { return fmt.Errorf( "collected metric %s %s has help %q but should have %q", metricFamily.GetName(), dtoMetric, metricFamily.GetHelp(), desc.help, ) } // Is the desc consistent with the content of the metric? lpsFromDesc := make([]*dto.LabelPair, 0, len(dtoMetric.Label)) lpsFromDesc = append(lpsFromDesc, desc.constLabelPairs...) for _, l := range desc.variableLabels { lpsFromDesc = append(lpsFromDesc, &dto.LabelPair{ Name: proto.String(l), }) } if len(lpsFromDesc) != len(dtoMetric.Label) { return fmt.Errorf( "labels in collected metric %s %s are inconsistent with descriptor %s", metricFamily.GetName(), dtoMetric, desc, ) } sort.Sort(LabelPairSorter(lpsFromDesc)) for i, lpFromDesc := range lpsFromDesc { lpFromMetric := dtoMetric.Label[i] if lpFromDesc.GetName() != lpFromMetric.GetName() || lpFromDesc.Value != nil && lpFromDesc.GetValue() != lpFromMetric.GetValue() { return fmt.Errorf( "labels in collected metric %s %s are inconsistent with descriptor %s", metricFamily.GetName(), dtoMetric, desc, ) } } r.mtx.RLock() // Remaining checks need the read lock. defer r.mtx.RUnlock() // Is the desc registered? if _, exist := r.descIDs[desc.id]; !exist { return fmt.Errorf( "collected metric %s %s with unregistered descriptor %s", metricFamily.GetName(), dtoMetric, desc, ) } return nil }
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. package proto_test import ( "testing" "github.com/algoadv/etcd/Godeps/_workspace/src/github.com/golang/protobuf/proto" pb "./testdata" ) var cloneTestMessage = &pb.MyMessage{ Count: proto.Int32(42), Name: proto.String("Dave"), Pet: []string{"bunny", "kitty", "horsey"}, Inner: &pb.InnerMessage{ Host: proto.String("niles"), Port: proto.Int32(9099), Connected: proto.Bool(true), }, Others: []*pb.OtherMessage{ { Value: []byte("some bytes"), }, }, Somegroup: &pb.MyMessage_SomeGroup{ GroupField: proto.Int32(6), }, RepBytes: [][]byte{[]byte("sham"), []byte("wow")},
func testCreateError(t testing.TB) { var scenarios = []struct { in *dto.MetricFamily err string }{ // 0: No metric. { in: &dto.MetricFamily{ Name: proto.String("name"), Help: proto.String("doc string"), Type: dto.MetricType_COUNTER.Enum(), Metric: []*dto.Metric{}, }, err: "MetricFamily has no metrics", }, // 1: No metric name. { in: &dto.MetricFamily{ Help: proto.String("doc string"), Type: dto.MetricType_UNTYPED.Enum(), Metric: []*dto.Metric{ &dto.Metric{ Untyped: &dto.Untyped{ Value: proto.Float64(math.Inf(-1)), }, }, }, }, err: "MetricFamily has no name", }, // 2: Wrong type. { in: &dto.MetricFamily{ Name: proto.String("name"), Help: proto.String("doc string"), Type: dto.MetricType_COUNTER.Enum(), Metric: []*dto.Metric{ &dto.Metric{ Untyped: &dto.Untyped{ Value: proto.Float64(math.Inf(-1)), }, }, }, }, err: "expected counter in metric", }, } for i, scenario := range scenarios { var out bytes.Buffer _, err := MetricFamilyToText(&out, scenario.in) if err == nil { t.Errorf("%d. expected error, got nil", i) continue } if expected, got := scenario.err, err.Error(); strings.Index(got, expected) != 0 { t.Errorf( "%d. expected error starting with %q, got %q", i, expected, got, ) } } }
func testCreate(t testing.TB) { var scenarios = []struct { in *dto.MetricFamily out string }{ // 0: Counter, NaN as value, timestamp given. { in: &dto.MetricFamily{ Name: proto.String("name"), Help: proto.String("two-line\n doc str\\ing"), Type: dto.MetricType_COUNTER.Enum(), Metric: []*dto.Metric{ &dto.Metric{ Label: []*dto.LabelPair{ &dto.LabelPair{ Name: proto.String("labelname"), Value: proto.String("val1"), }, &dto.LabelPair{ Name: proto.String("basename"), Value: proto.String("basevalue"), }, }, Counter: &dto.Counter{ Value: proto.Float64(math.NaN()), }, }, &dto.Metric{ Label: []*dto.LabelPair{ &dto.LabelPair{ Name: proto.String("labelname"), Value: proto.String("val2"), }, &dto.LabelPair{ Name: proto.String("basename"), Value: proto.String("basevalue"), }, }, Counter: &dto.Counter{ Value: proto.Float64(.23), }, TimestampMs: proto.Int64(1234567890), }, }, }, out: `# HELP name two-line\n doc str\\ing # TYPE name counter name{labelname="val1",basename="basevalue"} NaN name{labelname="val2",basename="basevalue"} 0.23 1234567890 `, }, // 1: Gauge, some escaping required, +Inf as value, multi-byte characters in label values. { in: &dto.MetricFamily{ Name: proto.String("gauge_name"), Help: proto.String("gauge\ndoc\nstr\"ing"), Type: dto.MetricType_GAUGE.Enum(), Metric: []*dto.Metric{ &dto.Metric{ Label: []*dto.LabelPair{ &dto.LabelPair{ Name: proto.String("name_1"), Value: proto.String("val with\nnew line"), }, &dto.LabelPair{ Name: proto.String("name_2"), Value: proto.String("val with \\backslash and \"quotes\""), }, }, Gauge: &dto.Gauge{ Value: proto.Float64(math.Inf(+1)), }, }, &dto.Metric{ Label: []*dto.LabelPair{ &dto.LabelPair{ Name: proto.String("name_1"), Value: proto.String("Björn"), }, &dto.LabelPair{ Name: proto.String("name_2"), Value: proto.String("佖佥"), }, }, Gauge: &dto.Gauge{ Value: proto.Float64(3.14E42), }, }, }, }, out: `# HELP gauge_name gauge\ndoc\nstr"ing # TYPE gauge_name gauge gauge_name{name_1="val with\nnew line",name_2="val with \\backslash and \"quotes\""} +Inf gauge_name{name_1="Björn",name_2="佖佥"} 3.14e+42 `, }, // 2: Untyped, no help, one sample with no labels and -Inf as value, another sample with one label. { in: &dto.MetricFamily{ Name: proto.String("untyped_name"), Type: dto.MetricType_UNTYPED.Enum(), Metric: []*dto.Metric{ &dto.Metric{ Untyped: &dto.Untyped{ Value: proto.Float64(math.Inf(-1)), }, }, &dto.Metric{ Label: []*dto.LabelPair{ &dto.LabelPair{ Name: proto.String("name_1"), Value: proto.String("value 1"), }, }, Untyped: &dto.Untyped{ Value: proto.Float64(-1.23e-45), }, }, }, }, out: `# TYPE untyped_name untyped untyped_name -Inf untyped_name{name_1="value 1"} -1.23e-45 `, }, // 3: Summary. { in: &dto.MetricFamily{ Name: proto.String("summary_name"), Help: proto.String("summary docstring"), Type: dto.MetricType_SUMMARY.Enum(), Metric: []*dto.Metric{ &dto.Metric{ Summary: &dto.Summary{ SampleCount: proto.Uint64(42), SampleSum: proto.Float64(-3.4567), Quantile: []*dto.Quantile{ &dto.Quantile{ Quantile: proto.Float64(0.5), Value: proto.Float64(-1.23), }, &dto.Quantile{ Quantile: proto.Float64(0.9), Value: proto.Float64(.2342354), }, &dto.Quantile{ Quantile: proto.Float64(0.99), Value: proto.Float64(0), }, }, }, }, &dto.Metric{ Label: []*dto.LabelPair{ &dto.LabelPair{ Name: proto.String("name_1"), Value: proto.String("value 1"), }, &dto.LabelPair{ Name: proto.String("name_2"), Value: proto.String("value 2"), }, }, Summary: &dto.Summary{ SampleCount: proto.Uint64(4711), SampleSum: proto.Float64(2010.1971), Quantile: []*dto.Quantile{ &dto.Quantile{ Quantile: proto.Float64(0.5), Value: proto.Float64(1), }, &dto.Quantile{ Quantile: proto.Float64(0.9), Value: proto.Float64(2), }, &dto.Quantile{ Quantile: proto.Float64(0.99), Value: proto.Float64(3), }, }, }, }, }, }, out: `# HELP summary_name summary docstring # TYPE summary_name summary summary_name{quantile="0.5"} -1.23 summary_name{quantile="0.9"} 0.2342354 summary_name{quantile="0.99"} 0 summary_name_sum -3.4567 summary_name_count 42 summary_name{name_1="value 1",name_2="value 2",quantile="0.5"} 1 summary_name{name_1="value 1",name_2="value 2",quantile="0.9"} 2 summary_name{name_1="value 1",name_2="value 2",quantile="0.99"} 3 summary_name_sum{name_1="value 1",name_2="value 2"} 2010.1971 summary_name_count{name_1="value 1",name_2="value 2"} 4711 `, }, // 4: Histogram { in: &dto.MetricFamily{ Name: proto.String("request_duration_microseconds"), Help: proto.String("The response latency."), Type: dto.MetricType_HISTOGRAM.Enum(), Metric: []*dto.Metric{ &dto.Metric{ Histogram: &dto.Histogram{ SampleCount: proto.Uint64(2693), SampleSum: proto.Float64(1756047.3), Bucket: []*dto.Bucket{ &dto.Bucket{ UpperBound: proto.Float64(100), CumulativeCount: proto.Uint64(123), }, &dto.Bucket{ UpperBound: proto.Float64(120), CumulativeCount: proto.Uint64(412), }, &dto.Bucket{ UpperBound: proto.Float64(144), CumulativeCount: proto.Uint64(592), }, &dto.Bucket{ UpperBound: proto.Float64(172.8), CumulativeCount: proto.Uint64(1524), }, &dto.Bucket{ UpperBound: proto.Float64(math.Inf(+1)), CumulativeCount: proto.Uint64(2693), }, }, }, }, }, }, out: `# HELP request_duration_microseconds The response latency. # TYPE request_duration_microseconds histogram request_duration_microseconds_bucket{le="100"} 123 request_duration_microseconds_bucket{le="120"} 412 request_duration_microseconds_bucket{le="144"} 592 request_duration_microseconds_bucket{le="172.8"} 1524 request_duration_microseconds_bucket{le="+Inf"} 2693 request_duration_microseconds_sum 1.7560473e+06 request_duration_microseconds_count 2693 `, }, // 5: Histogram with missing +Inf bucket. { in: &dto.MetricFamily{ Name: proto.String("request_duration_microseconds"), Help: proto.String("The response latency."), Type: dto.MetricType_HISTOGRAM.Enum(), Metric: []*dto.Metric{ &dto.Metric{ Histogram: &dto.Histogram{ SampleCount: proto.Uint64(2693), SampleSum: proto.Float64(1756047.3), Bucket: []*dto.Bucket{ &dto.Bucket{ UpperBound: proto.Float64(100), CumulativeCount: proto.Uint64(123), }, &dto.Bucket{ UpperBound: proto.Float64(120), CumulativeCount: proto.Uint64(412), }, &dto.Bucket{ UpperBound: proto.Float64(144), CumulativeCount: proto.Uint64(592), }, &dto.Bucket{ UpperBound: proto.Float64(172.8), CumulativeCount: proto.Uint64(1524), }, }, }, }, }, }, out: `# HELP request_duration_microseconds The response latency. # TYPE request_duration_microseconds histogram request_duration_microseconds_bucket{le="100"} 123 request_duration_microseconds_bucket{le="120"} 412 request_duration_microseconds_bucket{le="144"} 592 request_duration_microseconds_bucket{le="172.8"} 1524 request_duration_microseconds_bucket{le="+Inf"} 2693 request_duration_microseconds_sum 1.7560473e+06 request_duration_microseconds_count 2693 `, }, // 6: No metric type, should result in default type Counter. { in: &dto.MetricFamily{ Name: proto.String("name"), Help: proto.String("doc string"), Metric: []*dto.Metric{ &dto.Metric{ Counter: &dto.Counter{ Value: proto.Float64(math.Inf(-1)), }, }, }, }, out: `# HELP name doc string # TYPE name counter name -Inf `, }, } for i, scenario := range scenarios { out := bytes.NewBuffer(make([]byte, 0, len(scenario.out))) n, err := MetricFamilyToText(out, scenario.in) if err != nil { t.Errorf("%d. error: %s", i, err) continue } if expected, got := len(scenario.out), n; expected != got { t.Errorf( "%d. expected %d bytes written, got %d", i, expected, got, ) } if expected, got := scenario.out, out.String(); expected != got { t.Errorf( "%d. expected out=%q, got %q", i, expected, got, ) } } }
// NewDesc allocates and initializes a new Desc. Errors are recorded in the Desc // and will be reported on registration time. variableLabels and constLabels can // be nil if no such labels should be set. fqName and help must not be empty. // // variableLabels only contain the label names. Their label values are variable // and therefore not part of the Desc. (They are managed within the Metric.) // // For constLabels, the label values are constant. Therefore, they are fully // specified in the Desc. See the Opts documentation for the implications of // constant labels. func NewDesc(fqName, help string, variableLabels []string, constLabels Labels) *Desc { d := &Desc{ fqName: fqName, help: help, variableLabels: variableLabels, } if help == "" { d.err = errors.New("empty help string") return d } if !metricNameRE.MatchString(fqName) { d.err = fmt.Errorf("%q is not a valid metric name", fqName) return d } // labelValues contains the label values of const labels (in order of // their sorted label names) plus the fqName (at position 0). labelValues := make([]string, 1, len(constLabels)+1) labelValues[0] = fqName labelNames := make([]string, 0, len(constLabels)+len(variableLabels)) labelNameSet := map[string]struct{}{} // First add only the const label names and sort them... for labelName := range constLabels { if !checkLabelName(labelName) { d.err = fmt.Errorf("%q is not a valid label name", labelName) return d } labelNames = append(labelNames, labelName) labelNameSet[labelName] = struct{}{} } sort.Strings(labelNames) // ... so that we can now add const label values in the order of their names. for _, labelName := range labelNames { labelValues = append(labelValues, constLabels[labelName]) } // Now add the variable label names, but prefix them with something that // cannot be in a regular label name. That prevents matching the label // dimension with a different mix between preset and variable labels. for _, labelName := range variableLabels { if !checkLabelName(labelName) { d.err = fmt.Errorf("%q is not a valid label name", labelName) return d } labelNames = append(labelNames, "$"+labelName) labelNameSet[labelName] = struct{}{} } if len(labelNames) != len(labelNameSet) { d.err = errors.New("duplicate label names") return d } h := fnv.New64a() var b bytes.Buffer // To copy string contents into, avoiding []byte allocations. for _, val := range labelValues { b.Reset() b.WriteString(val) b.WriteByte(separatorByte) h.Write(b.Bytes()) } d.id = h.Sum64() // Sort labelNames so that order doesn't matter for the hash. sort.Strings(labelNames) // Now hash together (in this order) the help string and the sorted // label names. h.Reset() b.Reset() b.WriteString(help) b.WriteByte(separatorByte) h.Write(b.Bytes()) for _, labelName := range labelNames { b.Reset() b.WriteString(labelName) b.WriteByte(separatorByte) h.Write(b.Bytes()) } d.dimHash = h.Sum64() d.constLabelPairs = make([]*dto.LabelPair, 0, len(constLabels)) for n, v := range constLabels { d.constLabelPairs = append(d.constLabelPairs, &dto.LabelPair{ Name: proto.String(n), Value: proto.String(v), }) } sort.Sort(LabelPairSorter(d.constLabelPairs)) return d }
func TestJSON2Decode(t *testing.T) { f, err := os.Open("testdata/json2") if err != nil { t.Fatal(err) } defer f.Close() dec := newJSON2Decoder(f) var v1 dto.MetricFamily if err := dec.Decode(&v1); err != nil { t.Fatal(err) } exp1 := dto.MetricFamily{ Type: dto.MetricType_UNTYPED.Enum(), Help: proto.String("RPC calls."), Name: proto.String("rpc_calls_total"), Metric: []*dto.Metric{ { Label: []*dto.LabelPair{ { Name: proto.String("job"), Value: proto.String("batch_job"), }, { Name: proto.String("service"), Value: proto.String("zed"), }, }, Untyped: &dto.Untyped{ Value: proto.Float64(25), }, }, { Label: []*dto.LabelPair{ { Name: proto.String("job"), Value: proto.String("batch_job"), }, { Name: proto.String("service"), Value: proto.String("bar"), }, }, Untyped: &dto.Untyped{ Value: proto.Float64(24), }, }, }, } if !reflect.DeepEqual(v1, exp1) { t.Fatalf("Expected %v, got %v", exp1, v1) } var v2 dto.MetricFamily if err := dec.Decode(&v2); err != nil { t.Fatal(err) } exp2 := dto.MetricFamily{ Type: dto.MetricType_UNTYPED.Enum(), Help: proto.String("RPC latency."), Name: proto.String("rpc_latency_microseconds"), Metric: []*dto.Metric{ { Label: []*dto.LabelPair{ { Name: proto.String("percentile"), Value: proto.String("0.010000"), }, { Name: proto.String("service"), Value: proto.String("foo"), }, }, Untyped: &dto.Untyped{ Value: proto.Float64(15), }, }, { Label: []*dto.LabelPair{ { Name: proto.String("percentile"), Value: proto.String("0.990000"), }, { Name: proto.String("service"), Value: proto.String("foo"), }, }, Untyped: &dto.Untyped{ Value: proto.Float64(17), }, }, }, } if !reflect.DeepEqual(v2, exp2) { t.Fatalf("Expected %v, got %v", exp2, v2) } }
func (d *json2Decoder) more() error { var entities []struct { BaseLabels model.LabelSet `json:"baseLabels"` Docstring string `json:"docstring"` Metric struct { Type string `json:"type"` Values json.RawMessage `json:"value"` } `json:"metric"` } if err := d.dec.Decode(&entities); err != nil { return err } for _, e := range entities { f := &dto.MetricFamily{ Name: proto.String(string(e.BaseLabels[model.MetricNameLabel])), Help: proto.String(e.Docstring), Type: dto.MetricType_UNTYPED.Enum(), Metric: []*dto.Metric{}, } d.fams = append(d.fams, f) switch e.Metric.Type { case "counter", "gauge": var values []counter002 if err := json.Unmarshal(e.Metric.Values, &values); err != nil { return fmt.Errorf("could not extract %s value: %s", e.Metric.Type, err) } for _, ctr := range values { f.Metric = append(f.Metric, &dto.Metric{ Label: protoLabelSet(e.BaseLabels, ctr.Labels), Untyped: &dto.Untyped{ Value: proto.Float64(ctr.Value), }, }) } case "histogram": var values []histogram002 if err := json.Unmarshal(e.Metric.Values, &values); err != nil { return fmt.Errorf("could not extract %s value: %s", e.Metric.Type, err) } for _, hist := range values { quants := make([]string, 0, len(values)) for q := range hist.Values { quants = append(quants, q) } sort.Strings(quants) for _, q := range quants { value := hist.Values[q] // The correct label is "quantile" but to not break old expressions // this remains "percentile" hist.Labels["percentile"] = model.LabelValue(q) f.Metric = append(f.Metric, &dto.Metric{ Label: protoLabelSet(e.BaseLabels, hist.Labels), Untyped: &dto.Untyped{ Value: proto.Float64(value), }, }) } } default: return fmt.Errorf("unknown metric type %q", e.Metric.Type) } } return nil }