func parseNode(text, context string, graph bh.SignalGraphTypeIf) (job *PasteJob, ok bool) { xmln := backend.XmlNode{} _, xmlerr := xmln.Read([]byte(text)) if xmlerr != nil { return } nodes := graph.Nodes() for true { valid := true for _, reg := range nodes { if reg.Name() == xmln.NName { valid = false } } if valid { break } xmln.NName = createNextNameCandidate(xmln.NName) } _, validType := freesp.GetNodeTypeByName(xmln.NType) var njob *NewElementJob switch { case validType: njob = NewElementJobNew(context, eNode) njob.input[iNodeName] = xmln.NName njob.input[iNodeTypeSelect] = xmln.NType case len(xmln.InPort) == 0: if len(xmln.OutPort) == 0 { fmt.Printf("parseNode error: no ports.\n") return } njob = NewElementJobNew(context, eInputNode) njob.input[iInputNodeName] = xmln.NName njob.input[iInputTypeSelect] = xmln.OutPort[0].PType // TODO case len(xmln.OutPort) == 0: njob = NewElementJobNew(context, eOutputNode) njob.input[iOutputNodeName] = xmln.NName njob.input[iOutputTypeSelect] = xmln.InPort[0].PType // TODO default: if !validType { fmt.Printf("parseNode error: node type %s not registered.\n", xmln.NType) return } // TODO: Create node type?? njob = NewElementJobNew(context, eNode) njob.input[iNodeName] = xmln.NName njob.input[iNodeTypeSelect] = xmln.NType } job = PasteJobNew() job.context = context job.newElements = append(job.newElements, njob) ok = true return }
func TestGraph(t *testing.T) { case1 := []struct { library, graph string nodes, connections int }{ {`<library xmlns="http://www.freesp.de/xml/freeSP" version="1.0"> <signal-type name="s1" scope="" mode="" c-type="" message-id=""></signal-type> <node-type name="Test"> <intype port="" type="s1"></intype> <outtype port="" type="s1"></outtype> </node-type> </library> `, `<?xml version="1.0" encoding="UTF-8"?> <signal-graph xmlns="http://www.freesp.de/xml/freeSP" version="1.0"> <nodes> <input name="sensor"> <outtype type="s1"/> </input> <output name="actuator"> <intype type="s1"/> </output> <processing-node name="test" type="Test"></processing-node> </nodes> <connections> <connect from="sensor" to="test"/> <connect from="test" to="actuator"/> </connections> </signal-graph> `, 3, 2}, } for i, c := range case1 { freesp.Init() var l bh.LibraryIf = LibraryNew("test.alml", nil) buf := copyBuf(c.library) _, err := l.Read(buf) if err != nil { t.Errorf("Testcase %d: Failed to read from buffer: %v", i, err) return } var sg bh.SignalGraphIf = SignalGraphNew("test.sml", nil) buf = copyBuf(c.graph) _, err = sg.Read(buf) if err != nil { t.Errorf("Testcase %d: Failed to read from buffer: %v", i, err) return } var st bh.SignalGraphTypeIf = sg.ItsType() if len(st.Nodes()) != c.nodes { t.Errorf("Testcase %d: NodeIf count mismatch", i) return } } }
func SignalGraphTypeUsesNodeType(t bh.SignalGraphTypeIf, nt bh.NodeTypeIf) bool { for _, n := range t.Nodes() { if n.ItsType().TypeName() == nt.TypeName() { return true } for _, impl := range n.ItsType().Implementation() { if impl.ImplementationType() == bh.NodeTypeGraph { if SignalGraphTypeUsesNodeType(impl.Graph(), nt) { return true } } } } return false }
func NodesApplyHints(path string, g bh.SignalGraphTypeIf, xmlh []backend.XmlNodePosHint) { for _, n := range g.ProcessingNodes() { var p string if len(path) == 0 { p = n.Name() } else { p = fmt.Sprintf("%s/%s", path, n.Name()) } ok := false var xmln backend.XmlNodePosHint for _, xmln = range xmlh { if p == xmln.Name { ok = true break } } if ok { n.SetExpanded(xmln.Expanded) freesp.PathModePositionerApplyHints(n, xmln.XmlModeHint) for i, p := range n.InPorts() { ok = p.Name() == xmln.InPorts[i].Name if !ok { log.Printf("NodesApplyHints FIXME: name mismatch\n") continue } freesp.ModePositionerApplyHints(p, xmln.InPorts[i].XmlModeHint) } for i, p := range n.OutPorts() { ok = p.Name() == xmln.OutPorts[i].Name if !ok { log.Printf("NodesApplyHints FIXME: name mismatch\n") continue } freesp.ModePositionerApplyHints(p, xmln.OutPorts[i].XmlModeHint) } } nt := n.ItsType() for _, impl := range nt.Implementation() { if impl.ImplementationType() == bh.NodeTypeGraph { NodesApplyHints(p, impl.Graph(), xmlh) break } } } }
func SignalGraphTypeUsesSignalType(t bh.SignalGraphTypeIf, st bh.SignalTypeIf) bool { for _, n := range t.Nodes() { for _, p := range n.InPorts() { if p.SignalType() == st { return true } } for _, p := range n.OutPorts() { if p.SignalType() == st { return true } } for _, impl := range n.ItsType().Implementation() { if impl.ImplementationType() == bh.NodeTypeGraph { if SignalGraphTypeUsesSignalType(impl.Graph(), st) { return true } } } } return false }
func NodeNew(name string, ntype bh.NodeTypeIf, context bh.SignalGraphTypeIf) (ret *node, err error) { for _, n := range context.Nodes() { if n.Name() == name { err = fmt.Errorf("NodeNew error: node '%s' already exists in context.", name) return } } if len(ntype.InPorts())+len(ntype.OutPorts()) == 0 { err = fmt.Errorf("NodeNew error: type '%s' has no ports.", ntype.TypeName()) return } ret = &node{*gr.PathModePositionerObjectNew(), context, name, ntype, portListInit(), portListInit(), nil, false} for _, p := range ntype.InPorts() { ret.addInPort(p) } for _, p := range ntype.OutPorts() { ret.addOutPort(p) } ntype.(*nodeType).addInstance(ret) return }
func CreateXmlSignalGraphType(t bh.SignalGraphTypeIf) *backend.XmlSignalGraph { ret := backend.XmlSignalGraphNew() for _, l := range t.Libraries() { ret.Libraries = append(ret.Libraries, *CreateXmlLibraryRef(l.Filename())) } for _, n := range t.InputNodes() { ret.InputNodes = append(ret.InputNodes, *CreateXmlInputNode(n)) } for _, n := range t.OutputNodes() { ret.OutputNodes = append(ret.OutputNodes, *CreateXmlOutputNode(n)) } for _, n := range t.ProcessingNodes() { ret.ProcessingNodes = append(ret.ProcessingNodes, *CreateXmlProcessingNode(n)) } for _, n := range t.Nodes() { for _, p := range n.OutPorts() { for _, c := range p.Connections() { conn := p.Connection(c) ret.Connections = append(ret.Connections, *CreateXmlConnection(conn)) } } } return ret }
func ExpandedNodeNew(getPositioner GetPositioner, userObj bh.NodeIf, nId bh.NodeIdIf) (ret *ExpandedNode) { positioner := getPositioner(nId) pos := positioner.Position() path := nId.String() config := DrawConfig{ColorInit(ColorOption(NormalExpandedNode)), ColorInit(ColorOption(HighlightExpandedNode)), ColorInit(ColorOption(SelectExpandedNode)), ColorInit(ColorOption(BoxFrame)), ColorInit(ColorOption(Text)), image.Point{global.padX, global.padY}} cconfig := ContainerConfig{expandedPortWidth, expandedPortHeight, 120, 80} // Add children var g bh.SignalGraphTypeIf nt := userObj.ItsType() for _, impl := range nt.Implementation() { if impl.ImplementationType() == bh.NodeTypeGraph { g = impl.Graph() break } } var children []ContainerChild if g != nil { empty := image.Point{} first := image.Point{16, 32} shift := image.Point{16, 16} for i, n := range g.ProcessingNodes() { var ch ContainerChild var mode gr.PositionMode if n.Expanded() { mode = gr.PositionModeExpanded } else { mode = gr.PositionModeNormal } proxy := gr.PathModePositionerProxyNew(n) proxy.SetActivePath(path) proxy.SetActiveMode(mode) log.Printf("ExpandedNodeNew TODO: position of child nodes. path=%s, mode=%v\n", path, mode) chpos := proxy.Position() if chpos == empty { chpos = pos.Add(first.Add(shift.Mul(i))) proxy.SetPosition(chpos) } id := freesp.NodeIdNew(nId, n.Name()) if n.Expanded() { ch = ExpandedNodeNew(getPositioner, n, id) } else { ch = NodeNew(getPositioner, n, id) } children = append(children, ch) } } ret = &ExpandedNode{ContainerInit(children, config, userObj, cconfig), userObj, positioner, nil, nil} ret.ContainerInit() empty := image.Point{} config = DrawConfig{ColorInit(ColorOption(InputPort)), ColorInit(ColorOption(HighlightInPort)), ColorInit(ColorOption(SelectInPort)), ColorInit(ColorOption(BoxFrame)), Color{}, image.Point{}} for i, p := range userObj.InPorts() { pos := p.ModePosition(gr.PositionModeExpanded) if pos == empty { pos = ret.CalcInPortPos(i) } positioner := gr.ModePositionerProxyNew(p, gr.PositionModeExpanded) ret.AddPort(config, p, positioner) } config = DrawConfig{ColorInit(ColorOption(OutputPort)), ColorInit(ColorOption(HighlightOutPort)), ColorInit(ColorOption(SelectOutPort)), ColorInit(ColorOption(BoxFrame)), Color{}, image.Point{}} for i, p := range userObj.OutPorts() { pos := p.ModePosition(gr.PositionModeExpanded) if pos == empty { pos = ret.CalcOutPortPos(i) } positioner := gr.ModePositionerProxyNew(p, gr.PositionModeExpanded) ret.AddPort(config, p, positioner) } for _, n := range g.ProcessingNodes() { from, ok := ret.ChildByName(n.Name()) if !ok { log.Printf("ExpandedNodeNew error: node %s not found\n", n.Name()) continue } for _, p := range n.OutPorts() { fromId := from.OutPortIndex(p.Name()) for _, c := range p.Connections() { to, ok := ret.ChildByName(c.Node().Name()) if ok { toId := to.InPortIndex(c.Name()) ret.connections = append(ret.connections, ConnectionNew(from, to, fromId, toId)) } else { portname, ok := c.Node().PortLink() if !ok { log.Printf("ExpandedNodeNew error: output node %s not linked\n", c.Node().Name()) continue } ownPort, ok := ret.OutPortByName(portname) if !ok { log.Printf("ExpandedNodeNew error: linked port %s of output node %s not found\n", portname, c.Node().Name()) continue } nodePort, ok := from.OutPortByName(p.Name()) if !ok { log.Printf("ExpandedNodeNew error: port %s of output node %s not found\n", p.Name(), from.Name()) continue } ret.portconn = append(ret.portconn, PortConnectorNew(nodePort, ownPort)) } } } } for _, n := range g.InputNodes() { for _, p := range n.OutPorts() { fromlink, ok := p.Node().PortLink() if !ok { log.Printf("ExpandedNodeNew error: input node %s not linked\n", p.Node().Name()) continue } fromPort, ok := ret.InPortByName(fromlink) if !ok { log.Printf("ExpandedNodeNew error: linked port %s of input node %s not found\n", fromlink, n.Name()) continue } for _, c := range p.Connections() { to, ok := ret.ChildByName(c.Node().Name()) if ok { // TODO: connect with node toPort, ok := to.InPortByName(c.Name()) if !ok { log.Printf("ExpandedNodeNew error: port %s of node %s not found\n", c.Name(), to.Name()) continue } ret.portconn = append(ret.portconn, PortConnectorNew(fromPort, toPort)) } else { tolink, ok := c.Node().PortLink() if !ok { log.Printf("ExpandedNodeNew error: output node %s not linked\n", c.Node().Name()) continue } toPort, ok := ret.OutPortByName(tolink) if !ok { log.Printf("ExpandedNodeNew error: linked port %s of output node %s not found\n", tolink, c.Node().Name()) continue } ret.portconn = append(ret.portconn, PortConnectorNew(fromPort, toPort)) } } } } ret.RegisterOnDraw(func(ctxt interface{}) { expandedNodeOnDraw(ret, ctxt) }) return }