// makeUtxoView creates a mock unspent transaction output view by using the // transaction index in order to look up all inputs referenced by the // transactions in the block. This is sometimes needed when catching indexes up // because many of the txouts could actually already be spent however the // associated scripts are still required to index them. func makeUtxoView(dbTx database.Tx, block *btcutil.Block) (*blockchain.UtxoViewpoint, error) { view := blockchain.NewUtxoViewpoint() for txIdx, tx := range block.Transactions() { // Coinbases do not reference any inputs. Since the block is // required to have already gone through full validation, it has // already been proven on the first transaction in the block is // a coinbase. if txIdx == 0 { continue } // Use the transaction index to load all of the referenced // inputs and add their outputs to the view. for _, txIn := range tx.MsgTx().TxIn { originOut := &txIn.PreviousOutPoint originTx, err := dbFetchTx(dbTx, &originOut.Hash) if err != nil { return nil, err } view.AddTxOuts(btcutil.NewTx(originTx), 0) } } return view, nil }
// loadUtxoView returns a utxo view loaded from a file. func loadUtxoView(filename string) (*blockchain.UtxoViewpoint, error) { // The utxostore file format is: // <tx hash><serialized utxo len><serialized utxo> // // The serialized utxo len is a little endian uint32 and the serialized // utxo uses the format described in chainio.go. filename = filepath.Join("testdata", filename) fi, err := os.Open(filename) if err != nil { return nil, err } // Choose read based on whether the file is compressed or not. var r io.Reader if strings.HasSuffix(filename, ".bz2") { r = bzip2.NewReader(fi) } else { r = fi } defer fi.Close() view := blockchain.NewUtxoViewpoint() for { // Hash of the utxo entry. var hash wire.ShaHash _, err := io.ReadAtLeast(r, hash[:], len(hash[:])) if err != nil { // Expected EOF at the right offset. if err == io.EOF { break } return nil, err } // Num of serialize utxo entry bytes. var numBytes uint32 err = binary.Read(r, binary.LittleEndian, &numBytes) if err != nil { return nil, err } // Serialized utxo entry. serialized := make([]byte, numBytes) _, err = io.ReadAtLeast(r, serialized, int(numBytes)) if err != nil { return nil, err } // Deserialize it and add it to the view. utxoEntry, err := blockchain.TstDeserializeUtxoEntry(serialized) if err != nil { return nil, err } view.Entries()[hash] = utxoEntry } return view, nil }
// newUtxoViewpoint returns a new utxo view populated with outputs of the // provided source transactions as if there were available at the respective // block height specified in the heights slice. The length of the source txns // and source tx heights must match or it will panic. func newUtxoViewpoint(sourceTxns []*wire.MsgTx, sourceTxHeights []int32) *blockchain.UtxoViewpoint { if len(sourceTxns) != len(sourceTxHeights) { panic("each transaction must have its block height specified") } view := blockchain.NewUtxoViewpoint() for i, tx := range sourceTxns { view.AddTxOuts(btcutil.NewTx(tx), sourceTxHeights[i]) } return view }
// FetchUtxoView loads utxo details about the input transactions referenced by // the passed transaction from the point of view of the fake chain. // It also attempts to fetch the utxo details for the transaction itself so the // returned view can be examined for duplicate unspent transaction outputs. // // This function is safe for concurrent access however the returned view is NOT. func (s *fakeChain) FetchUtxoView(tx *btcutil.Tx) (*blockchain.UtxoViewpoint, error) { s.RLock() defer s.RUnlock() // All entries are cloned to ensure modifications to the returned view // do not affect the fake chain's view. // Add an entry for the tx itself to the new view. viewpoint := blockchain.NewUtxoViewpoint() entry := s.utxos.LookupEntry(tx.Hash()) viewpoint.Entries()[*tx.Hash()] = entry.Clone() // Add entries for all of the inputs to the tx to the new view. for _, txIn := range tx.MsgTx().TxIn { originHash := &txIn.PreviousOutPoint.Hash entry := s.utxos.LookupEntry(originHash) viewpoint.Entries()[*originHash] = entry.Clone() } return viewpoint, nil }
// TestCalcSequenceLock tests the LockTimeToSequence function, and the // CalcSequenceLock method of a Chain instance. The tests exercise several // combinations of inputs to the CalcSequenceLock function in order to ensure // the returned SequenceLocks are correct for each test instance. func TestCalcSequenceLock(t *testing.T) { fileName := "blk_0_to_4.dat.bz2" blocks, err := loadBlocks(fileName) if err != nil { t.Errorf("Error loading file: %v\n", err) return } // Create a new database and chain instance to run tests against. chain, teardownFunc, err := chainSetup("haveblock", &chaincfg.MainNetParams) if err != nil { t.Errorf("Failed to setup chain instance: %v", err) return } defer teardownFunc() // Since we're not dealing with the real block chain, disable // checkpoints and set the coinbase maturity to 1. chain.DisableCheckpoints(true) chain.TstSetCoinbaseMaturity(1) // Load all the blocks into our test chain. for i := 1; i < len(blocks); i++ { _, isOrphan, err := chain.ProcessBlock(blocks[i], blockchain.BFNone) if err != nil { t.Errorf("ProcessBlock fail on block %v: %v\n", i, err) return } if isOrphan { t.Errorf("ProcessBlock incorrectly returned block %v "+ "is an orphan\n", i) return } } // Create with all the utxos within the create created above. utxoView := blockchain.NewUtxoViewpoint() for blockHeight, block := range blocks { for _, tx := range block.Transactions() { utxoView.AddTxOuts(tx, int32(blockHeight)) } } utxoView.SetBestHash(blocks[len(blocks)-1].Hash()) // The median past time from the point of view of the second to last // block in the chain. medianTime := blocks[2].MsgBlock().Header.Timestamp.Unix() // The median past time of the *next* block will be the timestamp of // the 2nd block due to the way MTP is calculated in order to be // compatible with Bitcoin Core. nextMedianTime := blocks[2].MsgBlock().Header.Timestamp.Unix() // We'll refer to this utxo within each input in the transactions // created below. This block that includes this UTXO has a height of 4. targetTx := blocks[4].Transactions()[0] utxo := wire.OutPoint{ Hash: *targetTx.Hash(), Index: 0, } // Add an additional transaction which will serve as our unconfirmed // output. var fakeScript []byte unConfTx := &wire.MsgTx{ TxOut: []*wire.TxOut{{ PkScript: fakeScript, Value: 5, }}, } unConfUtxo := wire.OutPoint{ Hash: unConfTx.TxHash(), Index: 0, } // Adding a utxo with a height of 0x7fffffff indicates that the output // is currently unmined. utxoView.AddTxOuts(btcutil.NewTx(unConfTx), 0x7fffffff) tests := []struct { tx *btcutil.Tx view *blockchain.UtxoViewpoint want *blockchain.SequenceLock mempool bool }{ // A transaction of version one should disable sequence locks // as the new sequence number semantics only apply to // transactions version 2 or higher. { tx: btcutil.NewTx(&wire.MsgTx{ Version: 1, TxIn: []*wire.TxIn{{ PreviousOutPoint: utxo, Sequence: blockchain.LockTimeToSequence(false, 3), }}, }), view: utxoView, want: &blockchain.SequenceLock{ Seconds: -1, BlockHeight: -1, }, }, // A transaction with a single input, that a max int sequence // number. This sequence number has the high bit set, so // sequence locks should be disabled. { tx: btcutil.NewTx(&wire.MsgTx{ Version: 2, TxIn: []*wire.TxIn{{ PreviousOutPoint: utxo, Sequence: wire.MaxTxInSequenceNum, }}, }), view: utxoView, want: &blockchain.SequenceLock{ Seconds: -1, BlockHeight: -1, }, }, // A transaction with a single input whose lock time is // expressed in seconds. However, the specified lock time is // below the required floor for time based lock times since // they have time granularity of 512 seconds. As a result, the // seconds lock-time should be just before the median time of // the targeted block. { tx: btcutil.NewTx(&wire.MsgTx{ Version: 2, TxIn: []*wire.TxIn{{ PreviousOutPoint: utxo, Sequence: blockchain.LockTimeToSequence(true, 2), }}, }), view: utxoView, want: &blockchain.SequenceLock{ Seconds: medianTime - 1, BlockHeight: -1, }, }, // A transaction with a single input whose lock time is // expressed in seconds. The number of seconds should be 1023 // seconds after the median past time of the last block in the // chain. { tx: btcutil.NewTx(&wire.MsgTx{ Version: 2, TxIn: []*wire.TxIn{{ PreviousOutPoint: utxo, Sequence: blockchain.LockTimeToSequence(true, 1024), }}, }), view: utxoView, want: &blockchain.SequenceLock{ Seconds: medianTime + 1023, BlockHeight: -1, }, }, // A transaction with multiple inputs. The first input has a // sequence lock in blocks with a value of 4. The last input // has a sequence number with a value of 5, but has the disable // bit set. So the first lock should be selected as it's the // target lock as its the furthest in the future lock that // isn't disabled. { tx: btcutil.NewTx(&wire.MsgTx{ Version: 2, TxIn: []*wire.TxIn{{ PreviousOutPoint: utxo, Sequence: blockchain.LockTimeToSequence(true, 2560), }, { PreviousOutPoint: utxo, Sequence: blockchain.LockTimeToSequence(false, 3) | wire.SequenceLockTimeDisabled, }, { PreviousOutPoint: utxo, Sequence: blockchain.LockTimeToSequence(false, 3), }}, }), view: utxoView, want: &blockchain.SequenceLock{ Seconds: medianTime + (5 << wire.SequenceLockTimeGranularity) - 1, BlockHeight: 6, }, }, // Transaction has a single input spending the genesis block // transaction. The input's sequence number is encodes a // relative lock-time in blocks (3 blocks). The sequence lock // should have a value of -1 for seconds, but a block height of // 6 meaning it can be included at height 7. { tx: btcutil.NewTx(&wire.MsgTx{ Version: 2, TxIn: []*wire.TxIn{{ PreviousOutPoint: utxo, Sequence: blockchain.LockTimeToSequence(false, 3), }}, }), view: utxoView, want: &blockchain.SequenceLock{ Seconds: -1, BlockHeight: 6, }, }, // A transaction with two inputs with lock times expressed in // seconds. The selected sequence lock value for seconds should // be the time further in the future. { tx: btcutil.NewTx(&wire.MsgTx{ Version: 2, TxIn: []*wire.TxIn{{ PreviousOutPoint: utxo, Sequence: blockchain.LockTimeToSequence(true, 5120), }, { PreviousOutPoint: utxo, Sequence: blockchain.LockTimeToSequence(true, 2560), }}, }), view: utxoView, want: &blockchain.SequenceLock{ Seconds: medianTime + (10 << wire.SequenceLockTimeGranularity) - 1, BlockHeight: -1, }, }, // A transaction with two inputs with lock times expressed in // seconds. The selected sequence lock value for blocks should // be the height further in the future, so a height of 10 // indicating in can be included at height 7. { tx: btcutil.NewTx(&wire.MsgTx{ Version: 2, TxIn: []*wire.TxIn{{ PreviousOutPoint: utxo, Sequence: blockchain.LockTimeToSequence(false, 1), }, { PreviousOutPoint: utxo, Sequence: blockchain.LockTimeToSequence(false, 7), }}, }), view: utxoView, want: &blockchain.SequenceLock{ Seconds: -1, BlockHeight: 10, }, }, // A transaction with multiple inputs. Two inputs are time // based, and the other two are input maturity based. The lock // lying further into the future for both inputs should be // chosen. { tx: btcutil.NewTx(&wire.MsgTx{ Version: 2, TxIn: []*wire.TxIn{{ PreviousOutPoint: utxo, Sequence: blockchain.LockTimeToSequence(true, 2560), }, { PreviousOutPoint: utxo, Sequence: blockchain.LockTimeToSequence(true, 6656), }, { PreviousOutPoint: utxo, Sequence: blockchain.LockTimeToSequence(false, 3), }, { PreviousOutPoint: utxo, Sequence: blockchain.LockTimeToSequence(false, 9), }}, }), view: utxoView, want: &blockchain.SequenceLock{ Seconds: medianTime + (13 << wire.SequenceLockTimeGranularity) - 1, BlockHeight: 12, }, }, // A transaction with a single unconfirmed input. As the input // is confirmed, the height of the input should be interpreted // as the height of the *next* block. So the relative block // lock should be based from a height of 5 rather than a height // of 4. { tx: btcutil.NewTx(&wire.MsgTx{ Version: 2, TxIn: []*wire.TxIn{{ PreviousOutPoint: unConfUtxo, Sequence: blockchain.LockTimeToSequence(false, 2), }}, }), view: utxoView, want: &blockchain.SequenceLock{ Seconds: -1, BlockHeight: 6, }, }, // A transaction with a single unconfirmed input. The input has // a time based lock, so the lock time should be based off the // MTP of the *next* block. { tx: btcutil.NewTx(&wire.MsgTx{ Version: 2, TxIn: []*wire.TxIn{{ PreviousOutPoint: unConfUtxo, Sequence: blockchain.LockTimeToSequence(true, 1024), }}, }), view: utxoView, want: &blockchain.SequenceLock{ Seconds: nextMedianTime + 1023, BlockHeight: -1, }, }, } t.Logf("Running %v SequenceLock tests", len(tests)) for i, test := range tests { seqLock, err := chain.CalcSequenceLock(test.tx, test.view, test.mempool) if err != nil { t.Fatalf("test #%d, unable to calc sequence lock: %v", i, err) } if seqLock.Seconds != test.want.Seconds { t.Fatalf("test #%d got %v seconds want %v seconds", i, seqLock.Seconds, test.want.Seconds) } if seqLock.BlockHeight != test.want.BlockHeight { t.Fatalf("test #%d got height of %v want height of %v ", i, seqLock.BlockHeight, test.want.BlockHeight) } } }
// NewBlockTemplate returns a new block template that is ready to be solved // using the transactions from the passed transaction source pool and a coinbase // that either pays to the passed address if it is not nil, or a coinbase that // is redeemable by anyone if the passed address is nil. The nil address // functionality is useful since there are cases such as the getblocktemplate // RPC where external mining software is responsible for creating their own // coinbase which will replace the one generated for the block template. Thus // the need to have configured address can be avoided. // // The transactions selected and included are prioritized according to several // factors. First, each transaction has a priority calculated based on its // value, age of inputs, and size. Transactions which consist of larger // amounts, older inputs, and small sizes have the highest priority. Second, a // fee per kilobyte is calculated for each transaction. Transactions with a // higher fee per kilobyte are preferred. Finally, the block generation related // policy settings are all taken into account. // // Transactions which only spend outputs from other transactions already in the // block chain are immediately added to a priority queue which either // prioritizes based on the priority (then fee per kilobyte) or the fee per // kilobyte (then priority) depending on whether or not the BlockPrioritySize // policy setting allots space for high-priority transactions. Transactions // which spend outputs from other transactions in the source pool are added to a // dependency map so they can be added to the priority queue once the // transactions they depend on have been included. // // Once the high-priority area (if configured) has been filled with // transactions, or the priority falls below what is considered high-priority, // the priority queue is updated to prioritize by fees per kilobyte (then // priority). // // When the fees per kilobyte drop below the TxMinFreeFee policy setting, the // transaction will be skipped unless the BlockMinSize policy setting is // nonzero, in which case the block will be filled with the low-fee/free // transactions until the block size reaches that minimum size. // // Any transactions which would cause the block to exceed the BlockMaxSize // policy setting, exceed the maximum allowed signature operations per block, or // otherwise cause the block to be invalid are skipped. // // Given the above, a block generated by this function is of the following form: // // ----------------------------------- -- -- // | Coinbase Transaction | | | // |-----------------------------------| | | // | | | | ----- policy.BlockPrioritySize // | High-priority Transactions | | | // | | | | // |-----------------------------------| | -- // | | | // | | | // | | |--- policy.BlockMaxSize // | Transactions prioritized by fee | | // | until <= policy.TxMinFreeFee | | // | | | // | | | // | | | // |-----------------------------------| | // | Low-fee/Non high-priority (free) | | // | transactions (while block size | | // | <= policy.BlockMinSize) | | // ----------------------------------- -- func NewBlockTemplate(policy *mining.Policy, server *server, payToAddress btcutil.Address) (*BlockTemplate, error) { var txSource mining.TxSource = server.txMemPool blockManager := server.blockManager timeSource := server.timeSource chainState := &blockManager.chainState // Extend the most recently known best block. chainState.Lock() prevHash := chainState.newestHash nextBlockHeight := chainState.newestHeight + 1 chainState.Unlock() // Create a standard coinbase transaction paying to the provided // address. NOTE: The coinbase value will be updated to include the // fees from the selected transactions later after they have actually // been selected. It is created here to detect any errors early // before potentially doing a lot of work below. The extra nonce helps // ensure the transaction is not a duplicate transaction (paying the // same value to the same public key address would otherwise be an // identical transaction for block version 1). extraNonce := uint64(0) coinbaseScript, err := standardCoinbaseScript(nextBlockHeight, extraNonce) if err != nil { return nil, err } coinbaseTx, err := createCoinbaseTx(coinbaseScript, nextBlockHeight, payToAddress) if err != nil { return nil, err } numCoinbaseSigOps := int64(blockchain.CountSigOps(coinbaseTx)) // Get the current source transactions and create a priority queue to // hold the transactions which are ready for inclusion into a block // along with some priority related and fee metadata. Reserve the same // number of items that are available for the priority queue. Also, // choose the initial sort order for the priority queue based on whether // or not there is an area allocated for high-priority transactions. sourceTxns := txSource.MiningDescs() sortedByFee := policy.BlockPrioritySize == 0 priorityQueue := newTxPriorityQueue(len(sourceTxns), sortedByFee) // Create a slice to hold the transactions to be included in the // generated block with reserved space. Also create a utxo view to // house all of the input transactions so multiple lookups can be // avoided. blockTxns := make([]*btcutil.Tx, 0, len(sourceTxns)) blockTxns = append(blockTxns, coinbaseTx) blockUtxos := blockchain.NewUtxoViewpoint() // dependers is used to track transactions which depend on another // transaction in the source pool. This, in conjunction with the // dependsOn map kept with each dependent transaction helps quickly // determine which dependent transactions are now eligible for inclusion // in the block once each transaction has been included. dependers := make(map[wire.ShaHash]*list.List) // Create slices to hold the fees and number of signature operations // for each of the selected transactions and add an entry for the // coinbase. This allows the code below to simply append details about // a transaction as it is selected for inclusion in the final block. // However, since the total fees aren't known yet, use a dummy value for // the coinbase fee which will be updated later. txFees := make([]int64, 0, len(sourceTxns)) txSigOpCounts := make([]int64, 0, len(sourceTxns)) txFees = append(txFees, -1) // Updated once known txSigOpCounts = append(txSigOpCounts, numCoinbaseSigOps) minrLog.Debugf("Considering %d transactions for inclusion to new block", len(sourceTxns)) mempoolLoop: for _, txDesc := range sourceTxns { // A block can't have more than one coinbase or contain // non-finalized transactions. tx := txDesc.Tx if blockchain.IsCoinBase(tx) { minrLog.Tracef("Skipping coinbase tx %s", tx.Sha()) continue } if !blockchain.IsFinalizedTransaction(tx, nextBlockHeight, timeSource.AdjustedTime()) { minrLog.Tracef("Skipping non-finalized tx %s", tx.Sha()) continue } // Fetch all of the utxos referenced by the this transaction. // NOTE: This intentionally does not fetch inputs from the // mempool since a transaction which depends on other // transactions in the mempool must come after those // dependencies in the final generated block. utxos, err := blockManager.chain.FetchUtxoView(tx) if err != nil { minrLog.Warnf("Unable to fetch utxo view for tx %s: "+ "%v", tx.Sha(), err) continue } // Setup dependencies for any transactions which reference // other transactions in the mempool so they can be properly // ordered below. prioItem := &txPrioItem{tx: tx} for _, txIn := range tx.MsgTx().TxIn { originHash := &txIn.PreviousOutPoint.Hash originIndex := txIn.PreviousOutPoint.Index utxoEntry := utxos.LookupEntry(originHash) if utxoEntry == nil || utxoEntry.IsOutputSpent(originIndex) { if !txSource.HaveTransaction(originHash) { minrLog.Tracef("Skipping tx %s because "+ "it references unspent output "+ "%s which is not available", tx.Sha(), txIn.PreviousOutPoint) continue mempoolLoop } // The transaction is referencing another // transaction in the source pool, so setup an // ordering dependency. depList, exists := dependers[*originHash] if !exists { depList = list.New() dependers[*originHash] = depList } depList.PushBack(prioItem) if prioItem.dependsOn == nil { prioItem.dependsOn = make( map[wire.ShaHash]struct{}) } prioItem.dependsOn[*originHash] = struct{}{} // Skip the check below. We already know the // referenced transaction is available. continue } } // Calculate the final transaction priority using the input // value age sum as well as the adjusted transaction size. The // formula is: sum(inputValue * inputAge) / adjustedTxSize prioItem.priority = calcPriority(tx.MsgTx(), utxos, nextBlockHeight) // Calculate the fee in Satoshi/kB. txSize := tx.MsgTx().SerializeSize() prioItem.feePerKB = (txDesc.Fee * 1000) / int64(txSize) prioItem.fee = txDesc.Fee // Add the transaction to the priority queue to mark it ready // for inclusion in the block unless it has dependencies. if prioItem.dependsOn == nil { heap.Push(priorityQueue, prioItem) } // Merge the referenced outputs from the input transactions to // this transaction into the block utxo view. This allows the // code below to avoid a second lookup. mergeUtxoView(blockUtxos, utxos) } minrLog.Tracef("Priority queue len %d, dependers len %d", priorityQueue.Len(), len(dependers)) // The starting block size is the size of the block header plus the max // possible transaction count size, plus the size of the coinbase // transaction. blockSize := blockHeaderOverhead + uint32(coinbaseTx.MsgTx().SerializeSize()) blockSigOps := numCoinbaseSigOps totalFees := int64(0) // Choose which transactions make it into the block. for priorityQueue.Len() > 0 { // Grab the highest priority (or highest fee per kilobyte // depending on the sort order) transaction. prioItem := heap.Pop(priorityQueue).(*txPrioItem) tx := prioItem.tx // Grab the list of transactions which depend on this one (if // any) and remove the entry for this transaction as it will // either be included or skipped, but in either case the deps // are no longer needed. deps := dependers[*tx.Sha()] delete(dependers, *tx.Sha()) // Enforce maximum block size. Also check for overflow. txSize := uint32(tx.MsgTx().SerializeSize()) blockPlusTxSize := blockSize + txSize if blockPlusTxSize < blockSize || blockPlusTxSize >= policy.BlockMaxSize { minrLog.Tracef("Skipping tx %s because it would exceed "+ "the max block size", tx.Sha()) logSkippedDeps(tx, deps) continue } // Enforce maximum signature operations per block. Also check // for overflow. numSigOps := int64(blockchain.CountSigOps(tx)) if blockSigOps+numSigOps < blockSigOps || blockSigOps+numSigOps > blockchain.MaxSigOpsPerBlock { minrLog.Tracef("Skipping tx %s because it would "+ "exceed the maximum sigops per block", tx.Sha()) logSkippedDeps(tx, deps) continue } numP2SHSigOps, err := blockchain.CountP2SHSigOps(tx, false, blockUtxos) if err != nil { minrLog.Tracef("Skipping tx %s due to error in "+ "CountP2SHSigOps: %v", tx.Sha(), err) logSkippedDeps(tx, deps) continue } numSigOps += int64(numP2SHSigOps) if blockSigOps+numSigOps < blockSigOps || blockSigOps+numSigOps > blockchain.MaxSigOpsPerBlock { minrLog.Tracef("Skipping tx %s because it would "+ "exceed the maximum sigops per block (p2sh)", tx.Sha()) logSkippedDeps(tx, deps) continue } // Skip free transactions once the block is larger than the // minimum block size. if sortedByFee && prioItem.feePerKB < int64(policy.TxMinFreeFee) && blockPlusTxSize >= policy.BlockMinSize { minrLog.Tracef("Skipping tx %s with feePerKB %d "+ "< TxMinFreeFee %d and block size %d >= "+ "minBlockSize %d", tx.Sha(), prioItem.feePerKB, policy.TxMinFreeFee, blockPlusTxSize, policy.BlockMinSize) logSkippedDeps(tx, deps) continue } // Prioritize by fee per kilobyte once the block is larger than // the priority size or there are no more high-priority // transactions. if !sortedByFee && (blockPlusTxSize >= policy.BlockPrioritySize || prioItem.priority <= minHighPriority) { minrLog.Tracef("Switching to sort by fees per "+ "kilobyte blockSize %d >= BlockPrioritySize "+ "%d || priority %.2f <= minHighPriority %.2f", blockPlusTxSize, policy.BlockPrioritySize, prioItem.priority, minHighPriority) sortedByFee = true priorityQueue.SetLessFunc(txPQByFee) // Put the transaction back into the priority queue and // skip it so it is re-priortized by fees if it won't // fit into the high-priority section or the priority is // too low. Otherwise this transaction will be the // final one in the high-priority section, so just fall // though to the code below so it is added now. if blockPlusTxSize > policy.BlockPrioritySize || prioItem.priority < minHighPriority { heap.Push(priorityQueue, prioItem) continue } } // Ensure the transaction inputs pass all of the necessary // preconditions before allowing it to be added to the block. _, err = blockchain.CheckTransactionInputs(tx, nextBlockHeight, blockUtxos) if err != nil { minrLog.Tracef("Skipping tx %s due to error in "+ "CheckTransactionInputs: %v", tx.Sha(), err) logSkippedDeps(tx, deps) continue } err = blockchain.ValidateTransactionScripts(tx, blockUtxos, txscript.StandardVerifyFlags, server.sigCache) if err != nil { minrLog.Tracef("Skipping tx %s due to error in "+ "ValidateTransactionScripts: %v", tx.Sha(), err) logSkippedDeps(tx, deps) continue } // Spend the transaction inputs in the block utxo view and add // an entry for it to ensure any transactions which reference // this one have it available as an input and can ensure they // aren't double spending. spendTransaction(blockUtxos, tx, nextBlockHeight) // Add the transaction to the block, increment counters, and // save the fees and signature operation counts to the block // template. blockTxns = append(blockTxns, tx) blockSize += txSize blockSigOps += numSigOps totalFees += prioItem.fee txFees = append(txFees, prioItem.fee) txSigOpCounts = append(txSigOpCounts, numSigOps) minrLog.Tracef("Adding tx %s (priority %.2f, feePerKB %d)", prioItem.tx.Sha(), prioItem.priority, prioItem.feePerKB) // Add transactions which depend on this one (and also do not // have any other unsatisified dependencies) to the priority // queue. if deps != nil { for e := deps.Front(); e != nil; e = e.Next() { // Add the transaction to the priority queue if // there are no more dependencies after this // one. item := e.Value.(*txPrioItem) delete(item.dependsOn, *tx.Sha()) if len(item.dependsOn) == 0 { heap.Push(priorityQueue, item) } } } } // Now that the actual transactions have been selected, update the // block size for the real transaction count and coinbase value with // the total fees accordingly. blockSize -= wire.MaxVarIntPayload - uint32(wire.VarIntSerializeSize(uint64(len(blockTxns)))) coinbaseTx.MsgTx().TxOut[0].Value += totalFees txFees[0] = -totalFees // Calculate the required difficulty for the block. The timestamp // is potentially adjusted to ensure it comes after the median time of // the last several blocks per the chain consensus rules. ts, err := medianAdjustedTime(chainState, timeSource) if err != nil { return nil, err } reqDifficulty, err := blockManager.chain.CalcNextRequiredDifficulty(ts) if err != nil { return nil, err } // Create a new block ready to be solved. merkles := blockchain.BuildMerkleTreeStore(blockTxns) var msgBlock wire.MsgBlock msgBlock.Header = wire.BlockHeader{ Version: generatedBlockVersion, PrevBlock: *prevHash, MerkleRoot: *merkles[len(merkles)-1], Timestamp: ts, Bits: reqDifficulty, } for _, tx := range blockTxns { if err := msgBlock.AddTransaction(tx.MsgTx()); err != nil { return nil, err } } // Finally, perform a full check on the created block against the chain // consensus rules to ensure it properly connects to the current best // chain with no issues. block := btcutil.NewBlock(&msgBlock) block.SetHeight(nextBlockHeight) if err := blockManager.chain.CheckConnectBlock(block); err != nil { return nil, err } minrLog.Debugf("Created new block template (%d transactions, %d in "+ "fees, %d signature operations, %d bytes, target difficulty "+ "%064x)", len(msgBlock.Transactions), totalFees, blockSigOps, blockSize, blockchain.CompactToBig(msgBlock.Header.Bits)) return &BlockTemplate{ Block: &msgBlock, Fees: txFees, SigOpCounts: txSigOpCounts, Height: nextBlockHeight, ValidPayAddress: payToAddress != nil, }, nil }
// newPoolHarness returns a new instance of a pool harness initialized with a // fake chain and a TxPool bound to it that is configured with a policy suitable // for testing. Also, the fake chain is populated with the returned spendable // outputs so the caller can easily create new valid transactions which build // off of it. func newPoolHarness(chainParams *chaincfg.Params) (*poolHarness, []spendableOutput, error) { // Use a hard coded key pair for deterministic results. keyBytes, err := hex.DecodeString("700868df1838811ffbdf918fb482c1f7e" + "ad62db4b97bd7012c23e726485e577d") if err != nil { return nil, nil, err } signKey, signPub := btcec.PrivKeyFromBytes(btcec.S256(), keyBytes) // Generate associated pay-to-script-hash address and resulting payment // script. pubKeyBytes := signPub.SerializeCompressed() payPubKeyAddr, err := btcutil.NewAddressPubKey(pubKeyBytes, chainParams) if err != nil { return nil, nil, err } payAddr := payPubKeyAddr.AddressPubKeyHash() pkScript, err := txscript.PayToAddrScript(payAddr) if err != nil { return nil, nil, err } // Create a new fake chain and harness bound to it. chain := &fakeChain{utxos: blockchain.NewUtxoViewpoint()} harness := poolHarness{ signKey: signKey, payAddr: payAddr, payScript: pkScript, chainParams: chainParams, chain: chain, txPool: New(&Config{ Policy: Policy{ DisableRelayPriority: true, FreeTxRelayLimit: 15.0, MaxOrphanTxs: 5, MaxOrphanTxSize: 1000, MaxSigOpsPerTx: blockchain.MaxSigOpsPerBlock / 5, MinRelayTxFee: 1000, // 1 Satoshi per byte MaxTxVersion: 1, }, ChainParams: chainParams, FetchUtxoView: chain.FetchUtxoView, BestHeight: chain.BestHeight, MedianTimePast: chain.MedianTimePast, CalcSequenceLock: chain.CalcSequenceLock, SigCache: nil, AddrIndex: nil, }), } // Create a single coinbase transaction and add it to the harness // chain's utxo set and set the harness chain height such that the // coinbase will mature in the next block. This ensures the txpool // accepts transactions which spend immature coinbases that will become // mature in the next block. numOutputs := uint32(1) outputs := make([]spendableOutput, 0, numOutputs) curHeight := harness.chain.BestHeight() coinbase, err := harness.CreateCoinbaseTx(curHeight+1, numOutputs) if err != nil { return nil, nil, err } harness.chain.utxos.AddTxOuts(coinbase, curHeight+1) for i := uint32(0); i < numOutputs; i++ { outputs = append(outputs, txOutToSpendableOut(coinbase, i)) } harness.chain.SetHeight(int32(chainParams.CoinbaseMaturity) + curHeight) harness.chain.SetMedianTimePast(time.Now()) return &harness, outputs, nil }