// This example demonstrates creating a new database and inserting the genesis // block into it. func ExampleCreateDB() { // Notice in these example imports that the memdb driver is loaded. // Ordinarily this would be whatever driver(s) your application // requires. // import ( // "github.com/btcsuite/btcd/database" // _ "github.com/btcsuite/btcd/database/memdb" // ) // Create a database and schedule it to be closed on exit. This example // uses a memory-only database to avoid needing to write anything to // the disk. Typically, you would specify a persistent database driver // such as "leveldb" and give it a database name as the second // parameter. db, err := database.CreateDB("memdb") if err != nil { fmt.Println(err) return } defer db.Close() // Insert the main network genesis block. genesis := btcutil.NewBlock(chaincfg.MainNetParams.GenesisBlock) newHeight, err := db.InsertBlock(genesis) if err != nil { fmt.Println(err) return } fmt.Println("New height:", newHeight) // Output: // New height: 0 }
// Receive waits for the response promised by the future and returns the raw // block requested from the server given its hash. func (r FutureGetBlockResult) Receive() (*btcutil.Block, error) { res, err := receiveFuture(r) if err != nil { return nil, err } // Unmarshal result as a string. var blockHex string err = json.Unmarshal(res, &blockHex) if err != nil { return nil, err } // Decode the serialized block hex to raw bytes. serializedBlock, err := hex.DecodeString(blockHex) if err != nil { return nil, err } // Deserialize the block and return it. var msgBlock wire.MsgBlock err = msgBlock.Deserialize(bytes.NewReader(serializedBlock)) if err != nil { return nil, err } return btcutil.NewBlock(&msgBlock), nil }
// GenerateAndSubmitBlock creates a block whose contents include the passed // transactions and submits it to the running simnet node. For generating // blocks with only a coinbase tx, callers can simply pass nil instead of // transactions to be mined. Additionally, a custom block version can be set by // the caller. A blockVersion of -1 indicates that the current default block // version should be used. An uninitialized time.Time should be used for the // blockTime parameter if one doesn't wish to set a custom time. // // This function is safe for concurrent access. func (h *Harness) GenerateAndSubmitBlock(txns []*btcutil.Tx, blockVersion int32, blockTime time.Time) (*btcutil.Block, error) { h.Lock() defer h.Unlock() if blockVersion == -1 { blockVersion = wire.BlockVersion } prevBlockHash, prevBlockHeight, err := h.Node.GetBestBlock() if err != nil { return nil, err } mBlock, err := h.Node.GetBlock(prevBlockHash) if err != nil { return nil, err } prevBlock := btcutil.NewBlock(mBlock) prevBlock.SetHeight(prevBlockHeight) // Create a new block including the specified transactions newBlock, err := createBlock(prevBlock, txns, blockVersion, blockTime, h.wallet.coinbaseAddr, h.ActiveNet) if err != nil { return nil, err } // Submit the block to the simnet node. if err := h.Node.SubmitBlock(newBlock, nil); err != nil { return nil, err } return newBlock, nil }
// BenchmarkIsCoinBase performs a simple benchmark against the IsCoinBase // function. func BenchmarkIsCoinBase(b *testing.B) { tx, _ := btcutil.NewBlock(&Block100000).Tx(1) b.ResetTimer() for i := 0; i < b.N; i++ { blockchain.IsCoinBase(tx) } }
// loadBlockDB opens the block database and returns a handle to it. func loadBlockDB() (database.Db, error) { db, err := setupBlockDB() if err != nil { return nil, err } // Get the latest block height from the database. _, height, err := db.NewestSha() if err != nil { db.Close() return nil, err } // Insert the appropriate genesis block for the bitcoin network being // connected to if needed. if height == -1 { genesis := btcutil.NewBlock(activeNetParams.GenesisBlock) _, err := db.InsertBlock(genesis) if err != nil { db.Close() return nil, err } btcdLog.Infof("Inserted genesis block %v", activeNetParams.GenesisHash) height = 0 } btcdLog.Infof("Block database loaded with block height %d", height) return db, nil }
// createBlock creates a new block building from the previous block. func createBlock(prevBlock *btcutil.Block, inclusionTxs []*btcutil.Tx, blockVersion int32, blockTime time.Time, miningAddr btcutil.Address, net *chaincfg.Params) (*btcutil.Block, error) { prevHash := prevBlock.Hash() blockHeight := prevBlock.Height() + 1 // If a target block time was specified, then use that as the header's // timestamp. Otherwise, add one second to the previous block unless // it's the genesis block in which case use the current time. var ts time.Time switch { case !blockTime.IsZero(): ts = blockTime default: ts = prevBlock.MsgBlock().Header.Timestamp.Add(time.Second) } extraNonce := uint64(0) coinbaseScript, err := standardCoinbaseScript(blockHeight, extraNonce) if err != nil { return nil, err } coinbaseTx, err := createCoinbaseTx(coinbaseScript, blockHeight, miningAddr, net) if err != nil { return nil, err } // Create a new block ready to be solved. blockTxns := []*btcutil.Tx{coinbaseTx} if inclusionTxs != nil { blockTxns = append(blockTxns, inclusionTxs...) } merkles := blockchain.BuildMerkleTreeStore(blockTxns) var block wire.MsgBlock block.Header = wire.BlockHeader{ Version: blockVersion, PrevBlock: *prevHash, MerkleRoot: *merkles[len(merkles)-1], Timestamp: ts, Bits: net.PowLimitBits, } for _, tx := range blockTxns { if err := block.AddTransaction(tx.MsgTx()); err != nil { return nil, err } } found := solveBlock(&block.Header, net.PowLimit) if !found { return nil, errors.New("Unable to solve block") } utilBlock := btcutil.NewBlock(&block) utilBlock.SetHeight(blockHeight) return utilBlock, nil }
// TestMerkle tests the BuildMerkleTreeStore API. func TestMerkle(t *testing.T) { block := btcutil.NewBlock(&Block100000) merkles := blockchain.BuildMerkleTreeStore(block.Transactions()) calculatedMerkleRoot := merkles[len(merkles)-1] wantMerkle := &Block100000.Header.MerkleRoot if !wantMerkle.IsEqual(calculatedMerkleRoot) { t.Errorf("BuildMerkleTreeStore: merkle root mismatch - "+ "got %v, want %v", calculatedMerkleRoot, wantMerkle) } }
// This example demonstrates how to create a new chain instance and use // ProcessBlock to attempt to attempt add a block to the chain. As the package // overview documentation describes, this includes all of the Bitcoin consensus // rules. This example intentionally attempts to insert a duplicate genesis // block to illustrate how an invalid block is handled. func ExampleBlockChain_ProcessBlock() { // Create a new database to store the accepted blocks into. Typically // this would be opening an existing database and would not be deleting // and creating a new database like this, but it is done here so this is // a complete working example and does not leave temporary files laying // around. dbPath := filepath.Join(os.TempDir(), "exampleprocessblock") _ = os.RemoveAll(dbPath) db, err := database.Create("ffldb", dbPath, chaincfg.MainNetParams.Net) if err != nil { fmt.Printf("Failed to create database: %v\n", err) return } defer os.RemoveAll(dbPath) defer db.Close() // Create a new BlockChain instance using the underlying database for // the main bitcoin network. This example does not demonstrate some // of the other available configuration options such as specifying a // notification callback and signature cache. chain, err := blockchain.New(&blockchain.Config{ DB: db, ChainParams: &chaincfg.MainNetParams, }) if err != nil { fmt.Printf("Failed to create chain instance: %v\n", err) return } // Create a new median time source that is required by the upcoming // call to ProcessBlock. Ordinarily this would also add time values // obtained from other peers on the network so the local time is // adjusted to be in agreement with other peers. timeSource := blockchain.NewMedianTime() // Process a block. For this example, we are going to intentionally // cause an error by trying to process the genesis block which already // exists. genesisBlock := btcutil.NewBlock(chaincfg.MainNetParams.GenesisBlock) isOrphan, err := chain.ProcessBlock(genesisBlock, timeSource, blockchain.BFNone) if err != nil { fmt.Printf("Failed to process block: %v\n", err) return } fmt.Printf("Block accepted. Is it an orphan?: %v", isOrphan) // Output: // Failed to process block: already have block 000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f }
// exampleLoadDB is used in the example to elide the setup code. func exampleLoadDB() (database.Db, error) { db, err := database.CreateDB("memdb") if err != nil { return nil, err } // Insert the main network genesis block. genesis := btcutil.NewBlock(chaincfg.MainNetParams.GenesisBlock) _, err = db.InsertBlock(genesis) if err != nil { return nil, err } return db, err }
// TestCheckConnectBlock tests the CheckConnectBlock function to ensure it // fails. func TestCheckConnectBlock(t *testing.T) { // Create a new database and chain instance to run tests against. chain, teardownFunc, err := chainSetup("checkconnectblock") if err != nil { t.Errorf("Failed to setup chain instance: %v", err) return } defer teardownFunc() // The genesis block should fail to connect since it's already inserted. genesisBlock := chaincfg.MainNetParams.GenesisBlock err = chain.CheckConnectBlock(btcutil.NewBlock(genesisBlock)) if err == nil { t.Errorf("CheckConnectBlock: Did not received expected error") } }
// FetchBlockBySha returns a btcutil.Block. The implementation may cache the // underlying data if desired. This is part of the database.Db interface // implementation. // // This implementation does not use any additional cache since the entire // database is already in memory. func (db *MemDb) FetchBlockBySha(sha *wire.ShaHash) (*btcutil.Block, error) { db.Lock() defer db.Unlock() if db.closed { return nil, ErrDbClosed } if blockHeight, exists := db.blocksBySha[*sha]; exists { block := btcutil.NewBlock(db.blocks[int(blockHeight)]) block.SetHeight(blockHeight) return block, nil } return nil, fmt.Errorf("block %v is not in database", sha) }
// This example demonstrates how to create a new chain instance and use // ProcessBlock to attempt to attempt add a block to the chain. As the package // overview documentation describes, this includes all of the Bitcoin consensus // rules. This example intentionally attempts to insert a duplicate genesis // block to illustrate how an invalid block is handled. func ExampleBlockChain_ProcessBlock() { // Create a new database to store the accepted blocks into. Typically // this would be opening an existing database and would not use memdb // which is a memory-only database backend, but we create a new db // here so this is a complete working example. db, err := database.CreateDB("memdb") if err != nil { fmt.Printf("Failed to create database: %v\n", err) return } defer db.Close() // Insert the main network genesis block. This is part of the initial // database setup. Like above, this typically would not be needed when // opening an existing database. genesisBlock := btcutil.NewBlock(chaincfg.MainNetParams.GenesisBlock) _, err = db.InsertBlock(genesisBlock) if err != nil { fmt.Printf("Failed to insert genesis block: %v\n", err) return } // Create a new BlockChain instance without an initialized signature // verification cache, using the underlying database for the main // bitcoin network and ignore notifications. chain := blockchain.New(db, &chaincfg.MainNetParams, nil, nil) // Create a new median time source that is required by the upcoming // call to ProcessBlock. Ordinarily this would also add time values // obtained from other peers on the network so the local time is // adjusted to be in agreement with other peers. timeSource := blockchain.NewMedianTime() // Process a block. For this example, we are going to intentionally // cause an error by trying to process the genesis block which already // exists. isOrphan, err := chain.ProcessBlock(genesisBlock, timeSource, blockchain.BFNone) if err != nil { fmt.Printf("Failed to process block: %v\n", err) return } fmt.Printf("Block accepted. Is it an orphan?: %v", isOrphan) // Output: // Failed to process block: already have block 000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f }
// setupDB is used to create a new db instance with the genesis block already // inserted. In addition to the new db instance, it returns a teardown function // the caller should invoke when done testing to clean up. func setupDB(dbType, dbName string) (database.Db, func(), error) { db, teardown, err := createDB(dbType, dbName, true) if err != nil { return nil, nil, err } // Insert the main network genesis block. This is part of the initial // database setup. genesisBlock := btcutil.NewBlock(chaincfg.MainNetParams.GenesisBlock) _, err = db.InsertBlock(genesisBlock) if err != nil { teardown() err := fmt.Errorf("failed to insert genesis block: %v", err) return nil, nil, err } return db, teardown, nil }
// TestCheckBlockSanity tests the CheckBlockSanity function to ensure it works // as expected. func TestCheckBlockSanity(t *testing.T) { powLimit := chaincfg.MainNetParams.PowLimit block := btcutil.NewBlock(&Block100000) timeSource := blockchain.NewMedianTime() err := blockchain.CheckBlockSanity(block, powLimit, timeSource) if err != nil { t.Errorf("CheckBlockSanity: %v", err) } // Ensure a block that has a timestamp with a precision higher than one // second fails. timestamp := block.MsgBlock().Header.Timestamp block.MsgBlock().Header.Timestamp = timestamp.Add(time.Nanosecond) err = blockchain.CheckBlockSanity(block, powLimit, timeSource) if err == nil { t.Errorf("CheckBlockSanity: error is nil when it shouldn't be") } }
// BenchmarkBlockHeader benchmarks how long it takes to load the mainnet genesis // block. func BenchmarkBlock(b *testing.B) { // Start by creating a new database and populating it with the mainnet // genesis block. dbPath := filepath.Join(os.TempDir(), "ffldb-benchblk") _ = os.RemoveAll(dbPath) db, err := database.Create("ffldb", dbPath, blockDataNet) if err != nil { b.Fatal(err) } defer os.RemoveAll(dbPath) defer db.Close() err = db.Update(func(tx database.Tx) error { block := btcutil.NewBlock(chaincfg.MainNetParams.GenesisBlock) if err := tx.StoreBlock(block); err != nil { return err } return nil }) if err != nil { b.Fatal(err) } b.ReportAllocs() b.ResetTimer() err = db.View(func(tx database.Tx) error { blockHash := chaincfg.MainNetParams.GenesisHash for i := 0; i < b.N; i++ { _, err := tx.FetchBlock(blockHash) if err != nil { return err } } return nil }) if err != nil { b.Fatal(err) } // Don't benchmark teardown. b.StopTimer() }
// UpdateExtraNonce updates the extra nonce in the coinbase script of the passed // block by regenerating the coinbase script with the passed value and block // height. It also recalculates and updates the new merkle root that results // from changing the coinbase script. func UpdateExtraNonce(msgBlock *wire.MsgBlock, blockHeight int32, extraNonce uint64) error { coinbaseScript, err := standardCoinbaseScript(blockHeight, extraNonce) if err != nil { return err } if len(coinbaseScript) > blockchain.MaxCoinbaseScriptLen { return fmt.Errorf("coinbase transaction script length "+ "of %d is out of range (min: %d, max: %d)", len(coinbaseScript), blockchain.MinCoinbaseScriptLen, blockchain.MaxCoinbaseScriptLen) } msgBlock.Transactions[0].TxIn[0].SignatureScript = coinbaseScript // TODO(davec): A btcutil.Block should use saved in the state to avoid // recalculating all of the other transaction hashes. // block.Transactions[0].InvalidateCache() // Recalculate the merkle root with the updated extra nonce. block := btcutil.NewBlock(msgBlock) merkles := blockchain.BuildMerkleTreeStore(block.Transactions()) msgBlock.Header.MerkleRoot = *merkles[len(merkles)-1] return nil }
// chainSetup is used to create a new db and chain instance with the genesis // block already inserted. In addition to the new chain instnce, it returns // a teardown function the caller should invoke when done testing to clean up. func chainSetup(dbName string) (*blockchain.BlockChain, func(), error) { if !isSupportedDbType(testDbType) { return nil, nil, fmt.Errorf("unsupported db type %v", testDbType) } // Handle memory database specially since it doesn't need the disk // specific handling. var db database.Db var teardown func() if testDbType == "memdb" { ndb, err := database.CreateDB(testDbType) if err != nil { return nil, nil, fmt.Errorf("error creating db: %v", err) } db = ndb // Setup a teardown function for cleaning up. This function is // returned to the caller to be invoked when it is done testing. teardown = func() { db.Close() } } else { // Create the root directory for test databases. if !fileExists(testDbRoot) { if err := os.MkdirAll(testDbRoot, 0700); err != nil { err := fmt.Errorf("unable to create test db "+ "root: %v", err) return nil, nil, err } } // Create a new database to store the accepted blocks into. dbPath := filepath.Join(testDbRoot, dbName) _ = os.RemoveAll(dbPath) ndb, err := database.CreateDB(testDbType, dbPath) if err != nil { return nil, nil, fmt.Errorf("error creating db: %v", err) } db = ndb // Setup a teardown function for cleaning up. This function is // returned to the caller to be invoked when it is done testing. teardown = func() { dbVersionPath := filepath.Join(testDbRoot, dbName+".ver") db.Sync() db.Close() os.RemoveAll(dbPath) os.Remove(dbVersionPath) os.RemoveAll(testDbRoot) } } // Insert the main network genesis block. This is part of the initial // database setup. genesisBlock := btcutil.NewBlock(chaincfg.MainNetParams.GenesisBlock) _, err := db.InsertBlock(genesisBlock) if err != nil { teardown() err := fmt.Errorf("failed to insert genesis block: %v", err) return nil, nil, err } chain := blockchain.New(db, &chaincfg.MainNetParams, nil) return chain, teardown, nil }
// TestClosed ensure calling the interface functions on a closed database // returns appropriate errors for the interface functions that return errors // and does not panic or otherwise misbehave for functions which do not return // errors. func TestClosed(t *testing.T) { db, err := database.CreateDB("memdb") if err != nil { t.Errorf("Failed to open test database %v", err) return } _, err = db.InsertBlock(btcutil.NewBlock(chaincfg.MainNetParams.GenesisBlock)) if err != nil { t.Errorf("InsertBlock: %v", err) } if err := db.Close(); err != nil { t.Errorf("Close: unexpected error %v", err) } genesisHash := chaincfg.MainNetParams.GenesisHash if err := db.DropAfterBlockBySha(genesisHash); err != memdb.ErrDbClosed { t.Errorf("DropAfterBlockBySha: unexpected error %v", err) } if _, err := db.ExistsSha(genesisHash); err != memdb.ErrDbClosed { t.Errorf("ExistsSha: Unexpected error: %v", err) } if _, err := db.FetchBlockBySha(genesisHash); err != memdb.ErrDbClosed { t.Errorf("FetchBlockBySha: unexpected error %v", err) } if _, err := db.FetchBlockShaByHeight(0); err != memdb.ErrDbClosed { t.Errorf("FetchBlockShaByHeight: unexpected error %v", err) } if _, err := db.FetchHeightRange(0, 1); err != memdb.ErrDbClosed { t.Errorf("FetchHeightRange: unexpected error %v", err) } genesisCoinbaseTx := chaincfg.MainNetParams.GenesisBlock.Transactions[0] coinbaseHash, err := genesisCoinbaseTx.TxSha() if err != nil { t.Errorf("TxSha: unexpected error %v", err) } if _, err := db.ExistsTxSha(&coinbaseHash); err != memdb.ErrDbClosed { t.Errorf("ExistsTxSha: unexpected error %v", err) } if _, err := db.FetchTxBySha(genesisHash); err != memdb.ErrDbClosed { t.Errorf("FetchTxBySha: unexpected error %v", err) } requestHashes := []*wire.ShaHash{genesisHash} reply := db.FetchTxByShaList(requestHashes) if len(reply) != len(requestHashes) { t.Errorf("FetchUnSpentTxByShaList unexpected number of replies "+ "got: %d, want: %d", len(reply), len(requestHashes)) } for i, txLR := range reply { wantReply := &database.TxListReply{ Sha: requestHashes[i], Err: memdb.ErrDbClosed, } if !reflect.DeepEqual(wantReply, txLR) { t.Errorf("FetchTxByShaList unexpected reply\ngot: %v\n"+ "want: %v", txLR, wantReply) } } reply = db.FetchUnSpentTxByShaList(requestHashes) if len(reply) != len(requestHashes) { t.Errorf("FetchUnSpentTxByShaList unexpected number of replies "+ "got: %d, want: %d", len(reply), len(requestHashes)) } for i, txLR := range reply { wantReply := &database.TxListReply{ Sha: requestHashes[i], Err: memdb.ErrDbClosed, } if !reflect.DeepEqual(wantReply, txLR) { t.Errorf("FetchUnSpentTxByShaList unexpected reply\n"+ "got: %v\nwant: %v", txLR, wantReply) } } if _, _, err := db.NewestSha(); err != memdb.ErrDbClosed { t.Errorf("NewestSha: unexpected error %v", err) } if err := db.Sync(); err != memdb.ErrDbClosed { t.Errorf("Sync: unexpected error %v", err) } if err := db.RollbackClose(); err != memdb.ErrDbClosed { t.Errorf("RollbackClose: unexpected error %v", err) } if err := db.Close(); err != memdb.ErrDbClosed { t.Errorf("Close: unexpected error %v", err) } }
// This example demonstrates creating a new database, using a managed read-write // transaction to store a block, and using a managed read-only transaction to // fetch the block. func Example_blockStorageAndRetrieval() { // This example assumes the ffldb driver is imported. // // import ( // "github.com/btcsuite/btcd/database" // _ "github.com/btcsuite/btcd/database/ffldb" // ) // Create a database and schedule it to be closed and removed on exit. // Typically you wouldn't want to remove the database right away like // this, nor put it in the temp directory, but it's done here to ensure // the example cleans up after itself. dbPath := filepath.Join(os.TempDir(), "exampleblkstorage") db, err := database.Create("ffldb", dbPath, wire.MainNet) if err != nil { fmt.Println(err) return } defer os.RemoveAll(dbPath) defer db.Close() // Use the Update function of the database to perform a managed // read-write transaction and store a genesis block in the database as // and example. err = db.Update(func(tx database.Tx) error { genesisBlock := chaincfg.MainNetParams.GenesisBlock return tx.StoreBlock(btcutil.NewBlock(genesisBlock)) }) if err != nil { fmt.Println(err) return } // Use the View function of the database to perform a managed read-only // transaction and fetch the block stored above. var loadedBlockBytes []byte err = db.Update(func(tx database.Tx) error { genesisHash := chaincfg.MainNetParams.GenesisHash blockBytes, err := tx.FetchBlock(genesisHash) if err != nil { return err } // As documented, all data fetched from the database is only // valid during a database transaction in order to support // zero-copy backends. Thus, make a copy of the data so it // can be used outside of the transaction. loadedBlockBytes = make([]byte, len(blockBytes)) copy(loadedBlockBytes, blockBytes) return nil }) if err != nil { fmt.Println(err) return } // Typically at this point, the block could be deserialized via the // wire.MsgBlock.Deserialize function or used in its serialized form // depending on need. However, for this example, just display the // number of serialized bytes to show it was loaded as expected. fmt.Printf("Serialized block size: %d bytes\n", len(loadedBlockBytes)) // Output: // Serialized block size: 285 bytes }
// GenerateNBlocks generates the requested number of blocks. It is self // contained in that it creates block templates and attempts to solve them while // detecting when it is performing stale work and reacting accordingly by // generating a new block template. When a block is solved, it is submitted. // The function returns a list of the hashes of generated blocks. func (m *CPUMiner) GenerateNBlocks(n uint32) ([]*wire.ShaHash, error) { m.Lock() // Respond with an error if there's virtually 0 chance of CPU-mining a block. if !m.server.chainParams.GenerateSupported { m.Unlock() return nil, errors.New("No support for `generate` on the current " + "network, " + m.server.chainParams.Net.String() + ", as it's unlikely to be possible to CPU-mine a block.") } // Respond with an error if server is already mining. if m.started || m.discreteMining { m.Unlock() return nil, errors.New("Server is already CPU mining. Please call " + "`setgenerate 0` before calling discrete `generate` commands.") } m.started = true m.discreteMining = true m.speedMonitorQuit = make(chan struct{}) m.wg.Add(1) go m.speedMonitor() m.Unlock() minrLog.Tracef("Generating %d blocks", n) i := uint32(0) blockHashes := make([]*wire.ShaHash, n, n) // Start a ticker which is used to signal checks for stale work and // updates to the speed monitor. ticker := time.NewTicker(time.Second * hashUpdateSecs) defer ticker.Stop() for { // Read updateNumWorkers in case someone tries a `setgenerate` while // we're generating. We can ignore it as the `generate` RPC call only // uses 1 worker. select { case <-m.updateNumWorkers: default: } // Grab the lock used for block submission, since the current block will // be changing and this would otherwise end up building a new block // template on a block that is in the process of becoming stale. m.submitBlockLock.Lock() _, curHeight := m.server.blockManager.chainState.Best() // Choose a payment address at random. rand.Seed(time.Now().UnixNano()) payToAddr := cfg.miningAddrs[rand.Intn(len(cfg.miningAddrs))] // Create a new block template using the available transactions // in the memory pool as a source of transactions to potentially // include in the block. template, err := NewBlockTemplate(m.policy, m.server, payToAddr) m.submitBlockLock.Unlock() if err != nil { errStr := fmt.Sprintf("Failed to create new block "+ "template: %v", err) minrLog.Errorf(errStr) continue } // Attempt to solve the block. The function will exit early // with false when conditions that trigger a stale block, so // a new block template can be generated. When the return is // true a solution was found, so submit the solved block. if m.solveBlock(template.Block, curHeight+1, ticker, nil) { block := btcutil.NewBlock(template.Block) m.submitBlock(block) blockHashes[i] = block.Sha() i++ if i == n { minrLog.Tracef("Generated %d blocks", i) m.Lock() close(m.speedMonitorQuit) m.wg.Wait() m.started = false m.discreteMining = false m.Unlock() return blockHashes, nil } } } }
// createChainState initializes both the database and the chain state to the // genesis block. This includes creating the necessary buckets and inserting // the genesis block, so it must only be called on an uninitialized database. func (b *BlockChain) createChainState() error { // Create a new node from the genesis block and set it as the best node. genesisBlock := btcutil.NewBlock(b.chainParams.GenesisBlock) header := &genesisBlock.MsgBlock().Header node := newBlockNode(header, genesisBlock.Hash(), 0) node.inMainChain = true b.bestNode = node // Add the new node to the index which is used for faster lookups. b.index[*node.hash] = node // Initialize the state related to the best block. numTxns := uint64(len(genesisBlock.MsgBlock().Transactions)) blockSize := uint64(genesisBlock.MsgBlock().SerializeSize()) b.stateSnapshot = newBestState(b.bestNode, blockSize, numTxns, numTxns) // Create the initial the database chain state including creating the // necessary index buckets and inserting the genesis block. err := b.db.Update(func(dbTx database.Tx) error { // Create the bucket that houses the chain block hash to height // index. meta := dbTx.Metadata() _, err := meta.CreateBucket(hashIndexBucketName) if err != nil { return err } // Create the bucket that houses the chain block height to hash // index. _, err = meta.CreateBucket(heightIndexBucketName) if err != nil { return err } // Create the bucket that houses the spend journal data. _, err = meta.CreateBucket(spendJournalBucketName) if err != nil { return err } // Create the bucket that houses the utxo set. Note that the // genesis block coinbase transaction is intentionally not // inserted here since it is not spendable by consensus rules. _, err = meta.CreateBucket(utxoSetBucketName) if err != nil { return err } // Add the genesis block hash to height and height to hash // mappings to the index. err = dbPutBlockIndex(dbTx, b.bestNode.hash, b.bestNode.height) if err != nil { return err } // Store the current best chain state into the database. err = dbPutBestState(dbTx, b.stateSnapshot, b.bestNode.workSum) if err != nil { return err } // Store the genesis block into the database. return dbTx.StoreBlock(genesisBlock) }) return err }
// TestFullBlocks ensures all tests generated by the fullblocktests package // have the expected result when processed via ProcessBlock. func TestFullBlocks(t *testing.T) { tests, err := fullblocktests.Generate(false) if err != nil { t.Fatalf("failed to generate tests: %v", err) } // Create a new database and chain instance to run tests against. chain, teardownFunc, err := chainSetup("fullblocktest", &chaincfg.RegressionNetParams) if err != nil { t.Errorf("Failed to setup chain instance: %v", err) return } defer teardownFunc() // testAcceptedBlock attempts to process the block in the provided test // instance and ensures that it was accepted according to the flags // specified in the test. testAcceptedBlock := func(item fullblocktests.AcceptedBlock) { blockHeight := item.Height block := btcutil.NewBlock(item.Block) block.SetHeight(blockHeight) t.Logf("Testing block %s (hash %s, height %d)", item.Name, block.Hash(), blockHeight) isMainChain, isOrphan, err := chain.ProcessBlock(block, blockchain.BFNone) if err != nil { t.Fatalf("block %q (hash %s, height %d) should "+ "have been accepted: %v", item.Name, block.Hash(), blockHeight, err) } // Ensure the main chain and orphan flags match the values // specified in the test. if isMainChain != item.IsMainChain { t.Fatalf("block %q (hash %s, height %d) unexpected main "+ "chain flag -- got %v, want %v", item.Name, block.Hash(), blockHeight, isMainChain, item.IsMainChain) } if isOrphan != item.IsOrphan { t.Fatalf("block %q (hash %s, height %d) unexpected "+ "orphan flag -- got %v, want %v", item.Name, block.Hash(), blockHeight, isOrphan, item.IsOrphan) } } // testRejectedBlock attempts to process the block in the provided test // instance and ensures that it was rejected with the reject code // specified in the test. testRejectedBlock := func(item fullblocktests.RejectedBlock) { blockHeight := item.Height block := btcutil.NewBlock(item.Block) block.SetHeight(blockHeight) t.Logf("Testing block %s (hash %s, height %d)", item.Name, block.Hash(), blockHeight) _, _, err := chain.ProcessBlock(block, blockchain.BFNone) if err == nil { t.Fatalf("block %q (hash %s, height %d) should not "+ "have been accepted", item.Name, block.Hash(), blockHeight) } // Ensure the error code is of the expected type and the reject // code matches the value specified in the test instance. rerr, ok := err.(blockchain.RuleError) if !ok { t.Fatalf("block %q (hash %s, height %d) returned "+ "unexpected error type -- got %T, want "+ "blockchain.RuleError", item.Name, block.Hash(), blockHeight, err) } if rerr.ErrorCode != item.RejectCode { t.Fatalf("block %q (hash %s, height %d) does not have "+ "expected reject code -- got %v, want %v", item.Name, block.Hash(), blockHeight, rerr.ErrorCode, item.RejectCode) } } // testRejectedNonCanonicalBlock attempts to decode the block in the // provided test instance and ensures that it failed to decode with a // message error. testRejectedNonCanonicalBlock := func(item fullblocktests.RejectedNonCanonicalBlock) { headerLen := len(item.RawBlock) if headerLen > 80 { headerLen = 80 } blockHash := chainhash.DoubleHashH(item.RawBlock[0:headerLen]) blockHeight := item.Height t.Logf("Testing block %s (hash %s, height %d)", item.Name, blockHash, blockHeight) // Ensure there is an error due to deserializing the block. var msgBlock wire.MsgBlock err := msgBlock.BtcDecode(bytes.NewReader(item.RawBlock), 0) if _, ok := err.(*wire.MessageError); !ok { t.Fatalf("block %q (hash %s, height %d) should have "+ "failed to decode", item.Name, blockHash, blockHeight) } } // testOrphanOrRejectedBlock attempts to process the block in the // provided test instance and ensures that it was either accepted as an // orphan or rejected with a rule violation. testOrphanOrRejectedBlock := func(item fullblocktests.OrphanOrRejectedBlock) { blockHeight := item.Height block := btcutil.NewBlock(item.Block) block.SetHeight(blockHeight) t.Logf("Testing block %s (hash %s, height %d)", item.Name, block.Hash(), blockHeight) _, isOrphan, err := chain.ProcessBlock(block, blockchain.BFNone) if err != nil { // Ensure the error code is of the expected type. if _, ok := err.(blockchain.RuleError); !ok { t.Fatalf("block %q (hash %s, height %d) "+ "returned unexpected error type -- "+ "got %T, want blockchain.RuleError", item.Name, block.Hash(), blockHeight, err) } } if !isOrphan { t.Fatalf("block %q (hash %s, height %d) was accepted, "+ "but is not considered an orphan", item.Name, block.Hash(), blockHeight) } } // testExpectedTip ensures the current tip of the blockchain is the // block specified in the provided test instance. testExpectedTip := func(item fullblocktests.ExpectedTip) { blockHeight := item.Height block := btcutil.NewBlock(item.Block) block.SetHeight(blockHeight) t.Logf("Testing tip for block %s (hash %s, height %d)", item.Name, block.Hash(), blockHeight) // Ensure hash and height match. best := chain.BestSnapshot() if *best.Hash != item.Block.BlockHash() || best.Height != blockHeight { t.Fatalf("block %q (hash %s, height %d) should be "+ "the current tip -- got (hash %s, height %d)", item.Name, block.Hash(), blockHeight, best.Hash, best.Height) } } for testNum, test := range tests { for itemNum, item := range test { switch item := item.(type) { case fullblocktests.AcceptedBlock: testAcceptedBlock(item) case fullblocktests.RejectedBlock: testRejectedBlock(item) case fullblocktests.RejectedNonCanonicalBlock: testRejectedNonCanonicalBlock(item) case fullblocktests.OrphanOrRejectedBlock: testOrphanOrRejectedBlock(item) case fullblocktests.ExpectedTip: testExpectedTip(item) default: t.Fatalf("test #%d, item #%d is not one of "+ "the supported test instance types -- "+ "got type: %T", testNum, itemNum, item) } } } }
// generateBlocks is a worker that is controlled by the miningWorkerController. // It is self contained in that it creates block templates and attempts to solve // them while detecting when it is performing stale work and reacting // accordingly by generating a new block template. When a block is solved, it // is submitted. // // It must be run as a goroutine. func (m *CPUMiner) generateBlocks(quit chan struct{}) { minrLog.Tracef("Starting generate blocks worker") // Start a ticker which is used to signal checks for stale work and // updates to the speed monitor. ticker := time.NewTicker(time.Second * hashUpdateSecs) defer ticker.Stop() out: for { // Quit when the miner is stopped. select { case <-quit: break out default: // Non-blocking select to fall through } // Wait until there is a connection to at least one other peer // since there is no way to relay a found block or receive // transactions to work on when there are no connected peers. if m.server.ConnectedCount() == 0 { time.Sleep(time.Second) continue } // No point in searching for a solution before the chain is // synced. Also, grab the same lock as used for block // submission, since the current block will be changing and // this would otherwise end up building a new block template on // a block that is in the process of becoming stale. m.submitBlockLock.Lock() _, curHeight := m.server.blockManager.chainState.Best() if curHeight != 0 && !m.server.blockManager.IsCurrent() { m.submitBlockLock.Unlock() time.Sleep(time.Second) continue } // Choose a payment address at random. rand.Seed(time.Now().UnixNano()) payToAddr := cfg.miningAddrs[rand.Intn(len(cfg.miningAddrs))] // Create a new block template using the available transactions // in the memory pool as a source of transactions to potentially // include in the block. template, err := NewBlockTemplate(m.policy, m.server, payToAddr) m.submitBlockLock.Unlock() if err != nil { errStr := fmt.Sprintf("Failed to create new block "+ "template: %v", err) minrLog.Errorf(errStr) continue } // Attempt to solve the block. The function will exit early // with false when conditions that trigger a stale block, so // a new block template can be generated. When the return is // true a solution was found, so submit the solved block. if m.solveBlock(template.Block, curHeight+1, ticker, quit) { block := btcutil.NewBlock(template.Block) m.submitBlock(block) } } m.workerWg.Done() minrLog.Tracef("Generate blocks worker done") }
func Test_dupTx(t *testing.T) { // Ignore db remove errors since it means we didn't have an old one. dbname := fmt.Sprintf("tstdbdup0") dbnamever := dbname + ".ver" _ = os.RemoveAll(dbname) _ = os.RemoveAll(dbnamever) db, err := database.CreateDB("leveldb", dbname) if err != nil { t.Errorf("Failed to open test database %v", err) return } defer os.RemoveAll(dbname) defer os.RemoveAll(dbnamever) defer func() { if err := db.Close(); err != nil { t.Errorf("Close: unexpected error: %v", err) } }() testdatafile := filepath.Join("testdata", "blocks1-256.bz2") blocks, err := loadBlocks(t, testdatafile) if err != nil { t.Errorf("Unable to load blocks from test data for: %v", err) return } var lastSha *wire.ShaHash // Populate with the fisrt 256 blocks, so we have blocks to 'mess with' err = nil out: for height := int64(0); height < int64(len(blocks)); height++ { block := blocks[height] // except for NoVerify which does not allow lookups check inputs mblock := block.MsgBlock() var txneededList []*wire.ShaHash for _, tx := range mblock.Transactions { for _, txin := range tx.TxIn { if txin.PreviousOutPoint.Index == uint32(4294967295) { continue } origintxsha := &txin.PreviousOutPoint.Hash txneededList = append(txneededList, origintxsha) exists, err := db.ExistsTxSha(origintxsha) if err != nil { t.Errorf("ExistsTxSha: unexpected error %v ", err) } if !exists { t.Errorf("referenced tx not found %v ", origintxsha) } _, err = db.FetchTxBySha(origintxsha) if err != nil { t.Errorf("referenced tx not found %v err %v ", origintxsha, err) } } } txlist := db.FetchUnSpentTxByShaList(txneededList) for _, txe := range txlist { if txe.Err != nil { t.Errorf("tx list fetch failed %v err %v ", txe.Sha, txe.Err) break out } } newheight, err := db.InsertBlock(block) if err != nil { t.Errorf("failed to insert block %v err %v", height, err) break out } if newheight != height { t.Errorf("height mismatch expect %v returned %v", height, newheight) break out } newSha, blkid, err := db.NewestSha() if err != nil { t.Errorf("failed to obtain latest sha %v %v", height, err) } if blkid != height { t.Errorf("height doe not match latest block height %v %v %v", blkid, height, err) } blkSha := block.Sha() if *newSha != *blkSha { t.Errorf("Newest block sha does not match freshly inserted one %v %v %v ", newSha, blkSha, err) } lastSha = blkSha } // generate a new block based on the last sha // these block are not verified, so there are a bunch of garbage fields // in the 'generated' block. var bh wire.BlockHeader bh.Version = 2 bh.PrevBlock = *lastSha // Bits, Nonce are not filled in mblk := wire.NewMsgBlock(&bh) hash, _ := wire.NewShaHashFromStr("df2b060fa2e5e9c8ed5eaf6a45c13753ec8c63282b2688322eba40cd98ea067a") po := wire.NewOutPoint(hash, 0) txI := wire.NewTxIn(po, []byte("garbage")) txO := wire.NewTxOut(50000000, []byte("garbageout")) var tx wire.MsgTx tx.AddTxIn(txI) tx.AddTxOut(txO) mblk.AddTransaction(&tx) blk := btcutil.NewBlock(mblk) fetchList := []*wire.ShaHash{hash} listReply := db.FetchUnSpentTxByShaList(fetchList) for _, lr := range listReply { if lr.Err != nil { t.Errorf("sha %v spent %v err %v\n", lr.Sha, lr.TxSpent, lr.Err) } } _, err = db.InsertBlock(blk) if err != nil { t.Errorf("failed to insert phony block %v", err) } // ok, did it 'spend' the tx ? listReply = db.FetchUnSpentTxByShaList(fetchList) for _, lr := range listReply { if lr.Err != database.ErrTxShaMissing { t.Errorf("sha %v spent %v err %v\n", lr.Sha, lr.TxSpent, lr.Err) } } txlist := blk.Transactions() for _, tx := range txlist { txsha := tx.Sha() txReply, err := db.FetchTxBySha(txsha) if err != nil { t.Errorf("fully spent lookup %v err %v\n", hash, err) } else { for _, lr := range txReply { if lr.Err != nil { t.Errorf("stx %v spent %v err %v\n", lr.Sha, lr.TxSpent, lr.Err) } } } } t.Logf("Dropping block") err = db.DropAfterBlockBySha(lastSha) if err != nil { t.Errorf("failed to drop spending block %v", err) } }
// loadBlocks loads the blocks contained in the testdata directory and returns // a slice of them. func loadBlocks(t *testing.T, dataFile string, network wire.BitcoinNet) ([]*btcutil.Block, error) { // Open the file that contains the blocks for reading. fi, err := os.Open(dataFile) if err != nil { t.Errorf("failed to open file %v, err %v", dataFile, err) return nil, err } defer func() { if err := fi.Close(); err != nil { t.Errorf("failed to close file %v %v", dataFile, err) } }() dr := bzip2.NewReader(fi) // Set the first block as the genesis block. blocks := make([]*btcutil.Block, 0, 256) genesis := btcutil.NewBlock(chaincfg.MainNetParams.GenesisBlock) blocks = append(blocks, genesis) // Load the remaining blocks. for height := 1; ; height++ { var net uint32 err := binary.Read(dr, binary.LittleEndian, &net) if err == io.EOF { // Hit end of file at the expected offset. No error. break } if err != nil { t.Errorf("Failed to load network type for block %d: %v", height, err) return nil, err } if net != uint32(network) { t.Errorf("Block doesn't match network: %v expects %v", net, network) return nil, err } var blockLen uint32 err = binary.Read(dr, binary.LittleEndian, &blockLen) if err != nil { t.Errorf("Failed to load block size for block %d: %v", height, err) return nil, err } // Read the block. blockBytes := make([]byte, blockLen) _, err = io.ReadFull(dr, blockBytes) if err != nil { t.Errorf("Failed to load block %d: %v", height, err) return nil, err } // Deserialize and store the block. block, err := btcutil.NewBlockFromBytes(blockBytes) if err != nil { t.Errorf("Failed to parse block %v: %v", height, err) return nil, err } blocks = append(blocks, block) } return blocks, nil }
// NewBlockTemplate returns a new block template that is ready to be solved // using the transactions from the passed transaction memory pool and a coinbase // that either pays to the passed address if it is not nil, or a coinbase that // is redeemable by anyone if the passed address is nil. The nil address // functionality is useful since there are cases such as the getblocktemplate // RPC where external mining software is responsible for creating their own // coinbase which will replace the one generated for the block template. Thus // the need to have configured address can be avoided. // // The transactions selected and included are prioritized according to several // factors. First, each transaction has a priority calculated based on its // value, age of inputs, and size. Transactions which consist of larger // amounts, older inputs, and small sizes have the highest priority. Second, a // fee per kilobyte is calculated for each transaction. Transactions with a // higher fee per kilobyte are preferred. Finally, the block generation related // configuration options are all taken into account. // // Transactions which only spend outputs from other transactions already in the // block chain are immediately added to a priority queue which either // prioritizes based on the priority (then fee per kilobyte) or the fee per // kilobyte (then priority) depending on whether or not the BlockPrioritySize // configuration option allots space for high-priority transactions. // Transactions which spend outputs from other transactions in the memory pool // are added to a dependency map so they can be added to the priority queue once // the transactions they depend on have been included. // // Once the high-priority area (if configured) has been filled with transactions, // or the priority falls below what is considered high-priority, the priority // queue is updated to prioritize by fees per kilobyte (then priority). // // When the fees per kilobyte drop below the TxMinFreeFee configuration option, // the transaction will be skipped unless there is a BlockMinSize set, in which // case the block will be filled with the low-fee/free transactions until the // block size reaches that minimum size. // // Any transactions which would cause the block to exceed the BlockMaxSize // configuration option, exceed the maximum allowed signature operations per // block, or otherwise cause the block to be invalid are skipped. // // Given the above, a block generated by this function is of the following form: // // ----------------------------------- -- -- // | Coinbase Transaction | | | // |-----------------------------------| | | // | | | | ----- cfg.BlockPrioritySize // | High-priority Transactions | | | // | | | | // |-----------------------------------| | -- // | | | // | | | // | | |--- cfg.BlockMaxSize // | Transactions prioritized by fee | | // | until <= cfg.TxMinFreeFee | | // | | | // | | | // | | | // |-----------------------------------| | // | Low-fee/Non high-priority (free) | | // | transactions (while block size | | // | <= cfg.BlockMinSize) | | // ----------------------------------- -- func NewBlockTemplate(server *server, payToAddress btcutil.Address) (*BlockTemplate, error) { blockManager := server.blockManager timeSource := server.timeSource chainState := &blockManager.chainState // Extend the most recently known best block. chainState.Lock() prevHash := chainState.newestHash nextBlockHeight := chainState.newestHeight + 1 chainState.Unlock() // Create a standard coinbase transaction paying to the provided // address. NOTE: The coinbase value will be updated to include the // fees from the selected transactions later after they have actually // been selected. It is created here to detect any errors early // before potentially doing a lot of work below. The extra nonce helps // ensure the transaction is not a duplicate transaction (paying the // same value to the same public key address would otherwise be an // identical transaction for block version 1). extraNonce := uint64(0) coinbaseScript, err := standardCoinbaseScript(nextBlockHeight, extraNonce) if err != nil { return nil, err } coinbaseTx, err := createCoinbaseTx(coinbaseScript, nextBlockHeight, payToAddress) if err != nil { return nil, err } numCoinbaseSigOps := int64(blockchain.CountSigOps(coinbaseTx)) // Get the current memory pool transactions and create a priority queue // to hold the transactions which are ready for inclusion into a block // along with some priority related and fee metadata. Reserve the same // number of items that are in the memory pool for the priority queue. // Also, choose the initial sort order for the priority queue based on // whether or not there is an area allocated for high-priority // transactions. mempoolTxns := server.txMemPool.TxDescs() sortedByFee := cfg.BlockPrioritySize == 0 priorityQueue := newTxPriorityQueue(len(mempoolTxns), sortedByFee) // Create a slice to hold the transactions to be included in the // generated block with reserved space. Also create a transaction // store to house all of the input transactions so multiple lookups // can be avoided. blockTxns := make([]*btcutil.Tx, 0, len(mempoolTxns)) blockTxns = append(blockTxns, coinbaseTx) blockTxStore := make(blockchain.TxStore) // dependers is used to track transactions which depend on another // transaction in the memory pool. This, in conjunction with the // dependsOn map kept with each dependent transaction helps quickly // determine which dependent transactions are now eligible for inclusion // in the block once each transaction has been included. dependers := make(map[wire.ShaHash]*list.List) // Create slices to hold the fees and number of signature operations // for each of the selected transactions and add an entry for the // coinbase. This allows the code below to simply append details about // a transaction as it is selected for inclusion in the final block. // However, since the total fees aren't known yet, use a dummy value for // the coinbase fee which will be updated later. txFees := make([]int64, 0, len(mempoolTxns)) txSigOpCounts := make([]int64, 0, len(mempoolTxns)) txFees = append(txFees, -1) // Updated once known txSigOpCounts = append(txSigOpCounts, numCoinbaseSigOps) minrLog.Debugf("Considering %d mempool transactions for inclusion to "+ "new block", len(mempoolTxns)) mempoolLoop: for _, txDesc := range mempoolTxns { // A block can't have more than one coinbase or contain // non-finalized transactions. tx := txDesc.Tx if blockchain.IsCoinBase(tx) { minrLog.Tracef("Skipping coinbase tx %s", tx.Sha()) continue } if !blockchain.IsFinalizedTransaction(tx, nextBlockHeight, timeSource.AdjustedTime()) { minrLog.Tracef("Skipping non-finalized tx %s", tx.Sha()) continue } // Fetch all of the transactions referenced by the inputs to // this transaction. NOTE: This intentionally does not fetch // inputs from the mempool since a transaction which depends on // other transactions in the mempool must come after those // dependencies in the final generated block. txStore, err := blockManager.FetchTransactionStore(tx) if err != nil { minrLog.Warnf("Unable to fetch transaction store for "+ "tx %s: %v", tx.Sha(), err) continue } // Setup dependencies for any transactions which reference // other transactions in the mempool so they can be properly // ordered below. prioItem := &txPrioItem{tx: txDesc.Tx} for _, txIn := range tx.MsgTx().TxIn { originHash := &txIn.PreviousOutPoint.Hash originIndex := txIn.PreviousOutPoint.Index txData, exists := txStore[*originHash] if !exists || txData.Err != nil || txData.Tx == nil { if !server.txMemPool.HaveTransaction(originHash) { minrLog.Tracef("Skipping tx %s because "+ "it references tx %s which is "+ "not available", tx.Sha, originHash) continue mempoolLoop } // The transaction is referencing another // transaction in the memory pool, so setup an // ordering dependency. depList, exists := dependers[*originHash] if !exists { depList = list.New() dependers[*originHash] = depList } depList.PushBack(prioItem) if prioItem.dependsOn == nil { prioItem.dependsOn = make( map[wire.ShaHash]struct{}) } prioItem.dependsOn[*originHash] = struct{}{} // Skip the check below. We already know the // referenced transaction is available. continue } // Ensure the output index in the referenced transaction // is available. msgTx := txData.Tx.MsgTx() if originIndex > uint32(len(msgTx.TxOut)) { minrLog.Tracef("Skipping tx %s because "+ "it references output %d of tx %s "+ "which is out of bounds", tx.Sha, originIndex, originHash) continue mempoolLoop } } // Calculate the final transaction priority using the input // value age sum as well as the adjusted transaction size. The // formula is: sum(inputValue * inputAge) / adjustedTxSize prioItem.priority = txDesc.CurrentPriority(txStore, nextBlockHeight) // Calculate the fee in Satoshi/KB. // NOTE: This is a more precise value than the one calculated // during calcMinRelayFee which rounds up to the nearest full // kilobyte boundary. This is beneficial since it provides an // incentive to create smaller transactions. txSize := tx.MsgTx().SerializeSize() prioItem.feePerKB = float64(txDesc.Fee) / (float64(txSize) / 1000) prioItem.fee = txDesc.Fee // Add the transaction to the priority queue to mark it ready // for inclusion in the block unless it has dependencies. if prioItem.dependsOn == nil { heap.Push(priorityQueue, prioItem) } // Merge the store which contains all of the input transactions // for this transaction into the input transaction store. This // allows the code below to avoid a second lookup. mergeTxStore(blockTxStore, txStore) } minrLog.Tracef("Priority queue len %d, dependers len %d", priorityQueue.Len(), len(dependers)) // The starting block size is the size of the block header plus the max // possible transaction count size, plus the size of the coinbase // transaction. blockSize := blockHeaderOverhead + uint32(coinbaseTx.MsgTx().SerializeSize()) blockSigOps := numCoinbaseSigOps totalFees := int64(0) // Choose which transactions make it into the block. for priorityQueue.Len() > 0 { // Grab the highest priority (or highest fee per kilobyte // depending on the sort order) transaction. prioItem := heap.Pop(priorityQueue).(*txPrioItem) tx := prioItem.tx // Grab the list of transactions which depend on this one (if // any) and remove the entry for this transaction as it will // either be included or skipped, but in either case the deps // are no longer needed. deps := dependers[*tx.Sha()] delete(dependers, *tx.Sha()) // Enforce maximum block size. Also check for overflow. txSize := uint32(tx.MsgTx().SerializeSize()) blockPlusTxSize := blockSize + txSize if blockPlusTxSize < blockSize || blockPlusTxSize >= cfg.BlockMaxSize { minrLog.Tracef("Skipping tx %s because it would exceed "+ "the max block size", tx.Sha()) logSkippedDeps(tx, deps) continue } // Enforce maximum signature operations per block. Also check // for overflow. numSigOps := int64(blockchain.CountSigOps(tx)) if blockSigOps+numSigOps < blockSigOps || blockSigOps+numSigOps > blockchain.MaxSigOpsPerBlock { minrLog.Tracef("Skipping tx %s because it would "+ "exceed the maximum sigops per block", tx.Sha()) logSkippedDeps(tx, deps) continue } numP2SHSigOps, err := blockchain.CountP2SHSigOps(tx, false, blockTxStore) if err != nil { minrLog.Tracef("Skipping tx %s due to error in "+ "CountP2SHSigOps: %v", tx.Sha(), err) logSkippedDeps(tx, deps) continue } numSigOps += int64(numP2SHSigOps) if blockSigOps+numSigOps < blockSigOps || blockSigOps+numSigOps > blockchain.MaxSigOpsPerBlock { minrLog.Tracef("Skipping tx %s because it would "+ "exceed the maximum sigops per block (p2sh)", tx.Sha()) logSkippedDeps(tx, deps) continue } // Skip free transactions once the block is larger than the // minimum block size. if sortedByFee && prioItem.feePerKB < float64(cfg.minRelayTxFee) && blockPlusTxSize >= cfg.BlockMinSize { minrLog.Tracef("Skipping tx %s with feePerKB %.2f "+ "< minTxRelayFee %d and block size %d >= "+ "minBlockSize %d", tx.Sha(), prioItem.feePerKB, cfg.minRelayTxFee, blockPlusTxSize, cfg.BlockMinSize) logSkippedDeps(tx, deps) continue } // Prioritize by fee per kilobyte once the block is larger than // the priority size or there are no more high-priority // transactions. if !sortedByFee && (blockPlusTxSize >= cfg.BlockPrioritySize || prioItem.priority <= minHighPriority) { minrLog.Tracef("Switching to sort by fees per "+ "kilobyte blockSize %d >= BlockPrioritySize "+ "%d || priority %.2f <= minHighPriority %.2f", blockPlusTxSize, cfg.BlockPrioritySize, prioItem.priority, minHighPriority) sortedByFee = true priorityQueue.SetLessFunc(txPQByFee) // Put the transaction back into the priority queue and // skip it so it is re-priortized by fees if it won't // fit into the high-priority section or the priority is // too low. Otherwise this transaction will be the // final one in the high-priority section, so just fall // though to the code below so it is added now. if blockPlusTxSize > cfg.BlockPrioritySize || prioItem.priority < minHighPriority { heap.Push(priorityQueue, prioItem) continue } } // Ensure the transaction inputs pass all of the necessary // preconditions before allowing it to be added to the block. _, err = blockchain.CheckTransactionInputs(tx, nextBlockHeight, blockTxStore) if err != nil { minrLog.Tracef("Skipping tx %s due to error in "+ "CheckTransactionInputs: %v", tx.Sha(), err) logSkippedDeps(tx, deps) continue } err = blockchain.ValidateTransactionScripts(tx, blockTxStore, txscript.StandardVerifyFlags, server.sigCache) if err != nil { minrLog.Tracef("Skipping tx %s due to error in "+ "ValidateTransactionScripts: %v", tx.Sha(), err) logSkippedDeps(tx, deps) continue } // Spend the transaction inputs in the block transaction store // and add an entry for it to ensure any transactions which // reference this one have it available as an input and can // ensure they aren't double spending. spendTransaction(blockTxStore, tx, nextBlockHeight) // Add the transaction to the block, increment counters, and // save the fees and signature operation counts to the block // template. blockTxns = append(blockTxns, tx) blockSize += txSize blockSigOps += numSigOps totalFees += prioItem.fee txFees = append(txFees, prioItem.fee) txSigOpCounts = append(txSigOpCounts, numSigOps) minrLog.Tracef("Adding tx %s (priority %.2f, feePerKB %.2f)", prioItem.tx.Sha(), prioItem.priority, prioItem.feePerKB) // Add transactions which depend on this one (and also do not // have any other unsatisified dependencies) to the priority // queue. if deps != nil { for e := deps.Front(); e != nil; e = e.Next() { // Add the transaction to the priority queue if // there are no more dependencies after this // one. item := e.Value.(*txPrioItem) delete(item.dependsOn, *tx.Sha()) if len(item.dependsOn) == 0 { heap.Push(priorityQueue, item) } } } } // Now that the actual transactions have been selected, update the // block size for the real transaction count and coinbase value with // the total fees accordingly. blockSize -= wire.MaxVarIntPayload - uint32(wire.VarIntSerializeSize(uint64(len(blockTxns)))) coinbaseTx.MsgTx().TxOut[0].Value += totalFees txFees[0] = -totalFees // Calculate the required difficulty for the block. The timestamp // is potentially adjusted to ensure it comes after the median time of // the last several blocks per the chain consensus rules. ts, err := medianAdjustedTime(chainState, timeSource) if err != nil { return nil, err } requiredDifficulty, err := blockManager.CalcNextRequiredDifficulty(ts) if err != nil { return nil, err } // Create a new block ready to be solved. merkles := blockchain.BuildMerkleTreeStore(blockTxns) var msgBlock wire.MsgBlock msgBlock.Header = wire.BlockHeader{ Version: generatedBlockVersion, PrevBlock: *prevHash, MerkleRoot: *merkles[len(merkles)-1], Timestamp: ts, Bits: requiredDifficulty, } for _, tx := range blockTxns { if err := msgBlock.AddTransaction(tx.MsgTx()); err != nil { return nil, err } } // Finally, perform a full check on the created block against the chain // consensus rules to ensure it properly connects to the current best // chain with no issues. block := btcutil.NewBlock(&msgBlock) block.SetHeight(nextBlockHeight) if err := blockManager.CheckConnectBlock(block); err != nil { return nil, err } minrLog.Debugf("Created new block template (%d transactions, %d in "+ "fees, %d signature operations, %d bytes, target difficulty "+ "%064x)", len(msgBlock.Transactions), totalFees, blockSigOps, blockSize, blockchain.CompactToBig(msgBlock.Header.Bits)) return &BlockTemplate{ block: &msgBlock, fees: txFees, sigOpCounts: txSigOpCounts, height: nextBlockHeight, validPayAddress: payToAddress != nil, }, nil }
// TestHaveBlock tests the HaveBlock API to ensure proper functionality. func TestHaveBlock(t *testing.T) { // Load up blocks such that there is a side chain. // (genesis block) -> 1 -> 2 -> 3 -> 4 // \-> 3a testFiles := []string{ "blk_0_to_4.dat.bz2", "blk_3A.dat.bz2", } var blocks []*btcutil.Block for _, file := range testFiles { blockTmp, err := loadBlocks(file) if err != nil { t.Errorf("Error loading file: %v\n", err) return } for _, block := range blockTmp { blocks = append(blocks, block) } } // Create a new database and chain instance to run tests against. chain, teardownFunc, err := chainSetup("haveblock") if err != nil { t.Errorf("Failed to setup chain instance: %v", err) return } defer teardownFunc() // Since we're not dealing with the real block chain, disable // checkpoints and set the coinbase maturity to 1. chain.DisableCheckpoints(true) blockchain.TstSetCoinbaseMaturity(1) timeSource := blockchain.NewMedianTime() for i := 1; i < len(blocks); i++ { isOrphan, err := chain.ProcessBlock(blocks[i], timeSource, blockchain.BFNone) if err != nil { t.Errorf("ProcessBlock fail on block %v: %v\n", i, err) return } if isOrphan { t.Errorf("ProcessBlock incorrectly returned block %v "+ "is an orphan\n", i) return } } // Insert an orphan block. isOrphan, err := chain.ProcessBlock(btcutil.NewBlock(&Block100000), timeSource, blockchain.BFNone) if err != nil { t.Errorf("Unable to process block: %v", err) return } if !isOrphan { t.Errorf("ProcessBlock indicated block is an not orphan when " + "it should be\n") return } tests := []struct { hash string want bool }{ // Genesis block should be present (in the main chain). {hash: chaincfg.MainNetParams.GenesisHash.String(), want: true}, // Block 3a should be present (on a side chain). {hash: "00000000474284d20067a4d33f6a02284e6ef70764a3a26d6a5b9df52ef663dd", want: true}, // Block 100000 should be present (as an orphan). {hash: "000000000003ba27aa200b1cecaad478d2b00432346c3f1f3986da1afd33e506", want: true}, // Random hashes should not be availble. {hash: "123", want: false}, } for i, test := range tests { hash, err := wire.NewShaHashFromStr(test.hash) if err != nil { t.Errorf("NewShaHashFromStr: %v", err) continue } result, err := chain.HaveBlock(hash) if err != nil { t.Errorf("HaveBlock #%d unexpected error: %v", i, err) return } if result != test.want { t.Errorf("HaveBlock #%d got %v want %v", i, result, test.want) continue } } }
func TestLimitAndSkipFetchTxsForAddr(t *testing.T) { testDb, err := setUpTestDb(t, "tstdbtxaddr") if err != nil { t.Errorf("Failed to open test database %v", err) return } defer testDb.cleanUpFunc() // Insert a block with some fake test transactions. The block will have // 10 copies of a fake transaction involving same address. addrString := "1A1zP1eP5QGefi2DMPTfTL5SLmv7DivfNa" targetAddr, err := btcutil.DecodeAddress(addrString, &chaincfg.MainNetParams) if err != nil { t.Fatalf("Unable to decode test address: %v", err) } outputScript, err := txscript.PayToAddrScript(targetAddr) if err != nil { t.Fatalf("Unable make test pkScript %v", err) } fakeTxOut := wire.NewTxOut(10, outputScript) var emptyHash wire.ShaHash fakeHeader := wire.NewBlockHeader(&emptyHash, &emptyHash, 1, 1) msgBlock := wire.NewMsgBlock(fakeHeader) for i := 0; i < 10; i++ { mtx := wire.NewMsgTx() mtx.AddTxOut(fakeTxOut) msgBlock.AddTransaction(mtx) } // Insert the test block into the DB. testBlock := btcutil.NewBlock(msgBlock) newheight, err := testDb.db.InsertBlock(testBlock) if err != nil { t.Fatalf("Unable to insert block into db: %v", err) } // Create and insert an address index for out test addr. txLoc, _ := testBlock.TxLoc() index := make(database.BlockAddrIndex) for i := range testBlock.Transactions() { var hash160 [ripemd160.Size]byte scriptAddr := targetAddr.ScriptAddress() copy(hash160[:], scriptAddr[:]) index[hash160] = append(index[hash160], &txLoc[i]) } blkSha := testBlock.Sha() err = testDb.db.UpdateAddrIndexForBlock(blkSha, newheight, index) if err != nil { t.Fatalf("UpdateAddrIndexForBlock: failed to index"+ " addrs for block #%d (%s) "+ "err %v", newheight, blkSha, err) return } // Try skipping the first 4 results, should get 6 in return. txReply, err := testDb.db.FetchTxsForAddr(targetAddr, 4, 100000) if err != nil { t.Fatalf("Unable to fetch transactions for address: %v", err) } if len(txReply) != 6 { t.Fatalf("Did not correctly skip forward in txs for address reply"+ " got %v txs, expected %v", len(txReply), 6) } // Limit the number of results to 3. txReply, err = testDb.db.FetchTxsForAddr(targetAddr, 0, 3) if err != nil { t.Fatalf("Unable to fetch transactions for address: %v", err) } if len(txReply) != 3 { t.Fatalf("Did not correctly limit in txs for address reply"+ " got %v txs, expected %v", len(txReply), 3) } // Skip 1, limit 5. txReply, err = testDb.db.FetchTxsForAddr(targetAddr, 1, 5) if err != nil { t.Fatalf("Unable to fetch transactions for address: %v", err) } if len(txReply) != 5 { t.Fatalf("Did not correctly limit in txs for address reply"+ " got %v txs, expected %v", len(txReply), 5) } }
func loadBlocks(t *testing.T, file string) (blocks []*btcutil.Block, err error) { if len(savedblocks) != 0 { blocks = savedblocks return } testdatafile := filepath.Join("..", "testdata", "blocks1-256.bz2") var dr io.Reader var fi io.ReadCloser fi, err = os.Open(testdatafile) if err != nil { t.Errorf("failed to open file %v, err %v", testdatafile, err) return } if strings.HasSuffix(testdatafile, ".bz2") { z := bzip2.NewReader(fi) dr = z } else { dr = fi } defer func() { if err := fi.Close(); err != nil { t.Errorf("failed to close file %v %v", testdatafile, err) } }() // Set the first block as the genesis block. genesis := btcutil.NewBlock(chaincfg.MainNetParams.GenesisBlock) blocks = append(blocks, genesis) var block *btcutil.Block err = nil for height := int32(1); err == nil; height++ { var rintbuf uint32 err = binary.Read(dr, binary.LittleEndian, &rintbuf) if err == io.EOF { // hit end of file at expected offset: no warning height-- err = nil break } if err != nil { t.Errorf("failed to load network type, err %v", err) break } if rintbuf != uint32(network) { t.Errorf("Block doesn't match network: %v expects %v", rintbuf, network) break } err = binary.Read(dr, binary.LittleEndian, &rintbuf) blocklen := rintbuf rbytes := make([]byte, blocklen) // read block dr.Read(rbytes) block, err = btcutil.NewBlockFromBytes(rbytes) if err != nil { t.Errorf("failed to parse block %v", height) return } blocks = append(blocks, block) } savedblocks = blocks return }
// TestPersistence ensures that values stored are still valid after closing and // reopening the database. func TestPersistence(t *testing.T) { t.Parallel() // Create a new database to run tests against. dbPath := filepath.Join(os.TempDir(), "ffldb-persistencetest") _ = os.RemoveAll(dbPath) db, err := database.Create(dbType, dbPath, blockDataNet) if err != nil { t.Errorf("Failed to create test database (%s) %v", dbType, err) return } defer os.RemoveAll(dbPath) defer db.Close() // Create a bucket, put some values into it, and store a block so they // can be tested for existence on re-open. bucket1Key := []byte("bucket1") storeValues := map[string]string{ "b1key1": "foo1", "b1key2": "foo2", "b1key3": "foo3", } genesisBlock := btcutil.NewBlock(chaincfg.MainNetParams.GenesisBlock) genesisHash := chaincfg.MainNetParams.GenesisHash err = db.Update(func(tx database.Tx) error { metadataBucket := tx.Metadata() if metadataBucket == nil { return fmt.Errorf("Metadata: unexpected nil bucket") } bucket1, err := metadataBucket.CreateBucket(bucket1Key) if err != nil { return fmt.Errorf("CreateBucket: unexpected error: %v", err) } for k, v := range storeValues { err := bucket1.Put([]byte(k), []byte(v)) if err != nil { return fmt.Errorf("Put: unexpected error: %v", err) } } if err := tx.StoreBlock(genesisBlock); err != nil { return fmt.Errorf("StoreBlock: unexpected error: %v", err) } return nil }) if err != nil { t.Errorf("Update: unexpected error: %v", err) return } // Close and reopen the database to ensure the values persist. db.Close() db, err = database.Open(dbType, dbPath, blockDataNet) if err != nil { t.Errorf("Failed to open test database (%s) %v", dbType, err) return } defer db.Close() // Ensure the values previously stored in the 3rd namespace still exist // and are correct. err = db.View(func(tx database.Tx) error { metadataBucket := tx.Metadata() if metadataBucket == nil { return fmt.Errorf("Metadata: unexpected nil bucket") } bucket1 := metadataBucket.Bucket(bucket1Key) if bucket1 == nil { return fmt.Errorf("Bucket1: unexpected nil bucket") } for k, v := range storeValues { gotVal := bucket1.Get([]byte(k)) if !reflect.DeepEqual(gotVal, []byte(v)) { return fmt.Errorf("Get: key '%s' does not "+ "match expected value - got %s, want %s", k, gotVal, v) } } genesisBlockBytes, _ := genesisBlock.Bytes() gotBytes, err := tx.FetchBlock(genesisHash) if err != nil { return fmt.Errorf("FetchBlock: unexpected error: %v", err) } if !reflect.DeepEqual(gotBytes, genesisBlockBytes) { return fmt.Errorf("FetchBlock: stored block mismatch") } return nil }) if err != nil { t.Errorf("View: unexpected error: %v", err) return } }